
K42 Overview
Jonathan Appavoo

Marc Auslander
Dilma DaSilva

David Edelsohn
Orran Krieger

Michal Ostrowski
Bryan Rosenburg

Robert W. Wisniewski
Jimi Xenidis

K42 is an open-source research kernel for cache-coherent 64-bit multiprocessor systems. K42 focuses on

achieving good performance and scalability, providing a customizable and maintainable system, and be-

ing accessible to a large community through an open source development model. To that end, K42 fully

supports the Linux API and ABI and uses Linux libraries, device drivers, file systems, and other code. In

this paper we present a brief overview of K42, describe the goals of K42 and the core technologies we used

to achieve those goals. More detailed descriptions of specific technologies and OS services are available in

separate white papers.

1. Introduction and Goals
The K42 project is developing a new operating system kernel incorporating innovative mecha-

nisms, policies, and modern programming technologies. Most existing operating systems were

designed using technology that was current when those systems were new but that is now

outdated. Their designs use centralized critical code paths, global data structures, and global

policies. We believe that major structural changes, not just incremental modifications to existing

systems, are needed to achieve excellent performance in a maintainable and extensible system.

We don’t intend to introduce a new personality that would require the porting of applications,

but instead intend K42 to be Linux API- and ABI-compatible. Also, we hope to exploit the rich

set of device drivers, file systems, and other code available with Linux, and to be a part of the

community that is developing core kernel technology. Therefore we are focused only on design-

ing and implementing a new operating system kernel, allowing us to maintain external and

internal Linux compatibility. Our support for the Linux API and ABI makes our system avail-

able to a wide base of application programmers, and our modular structure makes the system

accessible to the community of developers who wish to experiment with kernel innovations.

In designing K42 we’ve tried to 1) structure the system using modular, object-oriented code, 2)

avoid centralized code paths, global data structures, and global locks, and 3) move system func-

tionality from the kernel to server processes and into application libraries. While we believe

in these design principles, we’re willing to make sensible compromises for the sake of perfor-

mance. We’re not a research project that carries its design philosophies to extremes in order to

fully explore their ramifications.
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Key goals of the K42 project include:

• Innovation. Develop and explore innovative technologies and provide an environment that

allows easy prototyping of new operating system technologies.

• Performance. A) Scale up to run well on large multiprocessors and support large-scale ap-

plications efficiently. B) Scale down to run as well on small multiprocessors as kernels that do

not scale up. C) Support small-scale applications as efficiently on large multiprocessors as on

small multiprocessors.

• Wide availability. A) Be available to a large open-source and research community. B) Support

Linux external and internal interfaces. C) Make it easy to add specialized components for

experimenting with policies and implementation strategies. D) Open up for experimentation

parts of the system that are traditionally accessible only to experts.

• Customizability. A) Allow applications to determine (by choosing from existing components

or by writing new ones) how the operating system manages their resources. B) Let the system

adapt to changing workload characteristics.

• Applicability. A) Effectively support a wide variety of systems and problem domains. B)

Make it easy to modify the operating system to support new processor and system archi-

tectures. C) Support systems ranging from embedded processors all the way up to high-end

enterprise servers.

The rest of this paper is organized as follows. In Section 2 we briefly describe the structure of

K42. Section 3 describes some of the different technologies we employ in K42 and the approaches

we have taken in its design and implementation. In subsequent sections we examine two of these

key technologies in more detail: our user-level implementation of system services in Section 4

and our object-oriented model in Section 5. Section 6 concludes. For more in-depth information

on particular subjects see our other white papers: ClusteredObjects in K42, K42’s MemoryMan-

agement, K42’s Filesystems, K42’s Performance Monitoring and Tracing Infrastructure, The K42

Linux Environment, On-The-Fly Object Switching in K42, Utilizing Linux Kernel Components

in K42, Real-Time in K42, Scheduling in K42

2. Overview of K42’s Structure
K42 is structured around a client-server model (see Figure 1). The kernel is one of the core

servers. It currently provides memory management, process management, IPC infrastructure,

base scheduling, networking, device support, etc. 1 Above the kernel are applications and sys-

tem servers, including the NFS file server, name server, socket server, pty server, and pipe server.

For flexibility, and to avoid IPC overhead, we implement as much functionality as possible in

application-level libraries. For example, all thread scheduling is done by a user-level scheduler

linked into each process.

All layers of K42, the kernel, system servers, and user-level libraries, make extensive use of

object-oriented technology. All inter-process communication (IPC) is between objects in the

1. In the future we plan to move networking and device support into user-mode servers.
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Figure 1. Structural Overview of K42

client and server address spaces. We use a stub compiler with decorations on the C++ class dec-

larations to automatically generate IPC calls from a client to a server, and have optimized these

IPC paths to have good performance. The kernel provides the basic IPC transport and attaches

sufficient information for the server to provide authentication on those calls.

From an application’s perspective, K42 supports the Linux API and will support the Linux ABI.

This is accomplished by an emulation layer that implements Linux system calls by method in-

vocations on K42 objects. When writing an application to run on K42, it is possible to program

to the Linux API or directly to the native K42 interfaces. All applications, including servers, are

free to reach past the Linux interfaces and call the K42 interfaces directly. Programming against

the native interfaces allows the application to take advantage of K42 optimizations. The transla-

tion of standard Linux system calls is done by intercepting glibc system calls and implementing

themwith K42 code.While Linux is the first and currently only personality we support, the base

facilities of K42 are designed to be personality-independent.

We also support a Linux-kernel “internal personality”. We are developing a set of libraries that

will allow Linux-kernel components such as device drivers, file systems, and network protocols

to run inside the kernel or in user mode. These libraries will provide the run-time environment

that Linux-kernel components expect. This infrastructure will allow K42 to use the large code

base of hardware drivers available for Linux.

The rest of the paper contains more details on the motivation behind the structure we have

outlined here, as well as other technologies and mechanisms utilized in K42.
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3. K42 Technology
To engineer an operating system to perform and otherwise behave well, a number of technolo-

gies are needed. These often act in concert, supporting each other. We list some of the notable

examples used in K42. Many of them are explored in greater detail in other white papers.

• In K42 much of the functionality traditionally implemented in the kernel or servers is imple-

mented in libraries in the application’s own address space. This provides for a large degree

of customizability because applications can implement system functionality using libraries

customized to their needs. Overhead is reduced in many cases by avoiding crossing address

spaces to invoke system services. Also, space and time overhead is consumed in the applica-

tion and not in the kernel or servers. This is described in more detail in Section 4.

• We have applied an object-oriented technology to the entire system, where each virtual (e.g.

virtual memory region, network connection, file, process) and physical (e.g. memory bank,

network card, processor, disk) resource is managed by a different set of object instances[Auslander97,Gamsa99,Krieger97

Each object encapsulates all the meta-data necessary to manage the resource as well as all the

locks necessary to manipulate the meta data. We avoid global locks, data structures, and poli-

cies. Key aspects of this technology (described in more detail in Section 5) include:

• To achieve good performance, the objects used to implement a service can be customized

(by the application or OS) to the demands on that service.Moreover (and for high-availability),

objects can be swapped to new implementations without taking the system down andwhile

they are in use.

• Good multiprocessor performance is achieved because: 1) independent requests to differ-

ent resources proceed independently; no shared data structures are traversed and no shared

locks are accessed, and 2) good locality is achieved for resources accessed by a small number

of processors, and 3) our clustered-object technology [Gamsa99] lets widely accessed objects

be implemented in a distributed fashion.

• The modular nature of the system makes it maintainable. Also, programmers can con-

tribute code back to the K42 base affecting only applications that choose to use those con-

tributions.

• All interaction between applications and servers are directed to objects. Stub-compiler tech-

nology we have developed allows new interfaces to be easily added (for clients that are

aware of them) and allows servers full freedom in the implementation of an object interface

(i.e., there is no need to derive two implementations of an interface from a common C++

class). A capability like authentication service is provided by the stub-compiled code.

• To support Linux applications and kernel components, we support the external and internal

(device driver/file system/IP stack) interfaces and execution models. We expect to run Linux

application binaries without re-compilation. We have also developed technology that allows

Linux components and libraries to be used without modification; this is critical to be able to

maintain compatibility. Also, we do this without for the most part compromising K42 goals.

For example, we support the Linux device driver model which assumes a non-preemptable

kernel, while still being fully preemptable. 2

2. For an explanation of support of Linux drivers in the K42, see the Utilizing Linux Kernel Components in K42 white

paper..
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• K42 is designed to be easily ported to new hardware, and then subsequently tuned to exploit

architecture-specific features of the target hardware platform. For easy portability, default im-

plementations of services are provided in a machine-independent fashion. The default im-

plementations depend on a small number of primitives. Machine specific implementations

of these services can be provided to tune the system to an architecture. Because there are no

machine-independent data structures that machine-specific code must support (e.g., Linux’s

two-level page table), few constraints are imposed on the machine-specific implementation.

For example, we are able to exploit such machine features such as the PowerPC inverted page

table, and the MIPS software-controlled TLB, without compromising the overall design or the

other machine implementations.

• Much of the system functionality is implemented in user-level servers[Liedtke96]. Along

with systems such as L4 [Liedtke95], K42 maintains good performance via an efficient IPC

mechanism that has performance comparable to system calls. This facility requires no ker-

nel storage for messages or authentication. In addition to fast IPC, K42 uses shared memory

communications between clients, servers, and the kernel to further reduce communications

cost.The strategy for moving function from the kernel to servers is pragmatic and respects

performance.

• We have focused the design of K42 on the needs of multiprocessors, and more specifically

NUMA multiprocessors. NUMA multiprocessors can scale up to thousands of processors re-

quiring that system software take into account memory locality to achieve good performance.

Our scalability goal is not only to support large systems, and applications that may span the

entire system, but also to run sequential and small-scale parallel applications as efficiently as

they run on a small scale multiprocessor. A major investment has been made in IPC, locking,

and memory allocation infrastructure to enable the system to exploit locality in application

requests. In many cases our mechanisms have fundamentally different designs from facilities

designed for uniprocessor operating systems, but perform just as well on a single processor

as these other facilities, and achieve better scalability. To accomplish this, we make extensive

use of processor specific memory, which is memory where the same virtual range maps to dif-

ferent physical addresses on different processors. This allows us to efficiently address local

resources.

• K42 was designed to run on 64-bit processors. The dependence on 64 bits enables pervasive

implementation optimizations. Examples include the use of large virtual arrays rather than

hash functions, the allocation of memory bits for distinguishing classes of allocated memory,

and exploiting the fact that we can atomically manipulate 64-bit quantities efficiently.

• K42 is fully preemptable and most of the kernel data is pageable. Except for low-level inter-

rupt handling and code for dispatching real-time applications, K42’s threading model allows

the kernel to be preempted at any point. This provides for low-latency interrupt handling.

Only the kernel code and the data of low-level objects is pinned. This significantly reduces

the kernel’s footprint and provides more physical memory for applications.

• We are developing a scheduling infrastructure that can provide quality-of-service guaran-

tees for processors, memory, and I/O, and that simultaneously supports real-time, gang-

scheduled, regular (time-shared), and backgroundwork. K42 uses synchronized clocks (hard-

ware or software) on different processors to allow work to be scheduled simultaneously
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for short periods of time on multiple processors. This ability to support fine-grained gang-

scheduled applications simplifies the task of scientific programmers and game developers.

This is because they can write their applications to use a fixed set of resources and still deploy

those applications in a general purpose system running interactive and real-time applications.

• Traditionally, the error of using a "stale" pointer to deleted storage is avoided by using "ex-

istence locks" or use counts to protect pointers. Full-scale garbage collection can also solve

this problem, but is not appropriate for low-level OS code. K42 uses a new mechanism,

in which deletion of K42 objects is deferred until all currently running threads have fin-

ished[McKenney01,Gamsa99] . This allows a programming style whereby an object releases

its own lock before making a call on another object, thus improving base system performance,

increasing scalability, and eliminating the need for complex lock hierarchies and the resulting

complex deadlock avoidance algorithms. This last point is critical, because it means that a

high level of sophistication is not needed to develop core OS code. The technique used is re-

lated to type safememory [Greenwald96], but minimizes the amount of time during which the

memory is guaranteed to be type safe.

4. User-Level Implementation of System Services
In K42 much of the functionality traditionally implemented in the kernel or servers is moved to

libraries in the application’s own address space. This work has a similar flavor to the Exoker-

nel [Engler95], Psyche [Marsh91], and Scheduler Activations [Anderson91] work. This change

allows for a large degree of customization because applications can implement traditional sys-

tem functionality using libraries customized to their needs. For example, applications with spe-

cialized needs (e.g., games, subsystems, scientific applications) can provide their own libraries,

replacing much of the OS functionaity that would traditionally be implemented in the kernel

or system servers, without sacrificing security and without impacting the performance of other

applications. Overhead is reduced in many cases because crossing address space boundaries to

invoke system services can be avoided. Also, space and time overhead is consumed in the ap-

plication and not in the kernel or servers. For example, an application can have a large number

of threads without consuming any additional kernel pinned memory. In many cases, we are

able to handle common-case critical paths (e.g., for a non-shared file) efficiently at user-level,

while handling more complex situations (e.g., multiple applications accessing the same file) in

the kernel or a system server.

Implementation in the application’s address space impacts the design of many operating sys-

tem services. The implementation is not necessarily more difficult, but it is different. So far,

we have been able to develop implementations for these services that are as efficient as those

of other operating systems. Moreover, in some cases we have found implementations that are

more efficient. In this section we review some of the services that we have implemented largely

at user-level, and discuss our experience.

4.1. Thread Scheduling
All thread scheduling has been moved to user level. The kernel is aware only of user processes
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and maintains one kernel-level entity, which we call a dispatcher, representing that process. 3 All

threads are multiplexed at user level on this dispatcher. Events that would ordinarily block the

process are instead reflected back to the scheduler library code running in the application. This

scheduler code can then take the appropriate action, for example blocking the current thread and

running another thread. In this way, any number of threads can be multiplexed on a dispatcher

without negative consequences for the user application. This ties up fewer kernel resources,

makes the scheduling more efficient, and most importantly, allows flexibility for optimizations

at user level. This user-level scheduling facility provides a framework that has allowed other

services to be moved to user level.

4.2. Timer interrupts
If an application has thousands of threads, many of those threads may be waiting for timer

events (e.g., timeouts on socket operations). With K42, the dispatcher has a single timer request

outstanding, for its next timeout, and all subsequent timeouts are maintained in the applica-

tion’s address space. This in fact results in better performance because most timeouts are to

handle exceptional events, and are canceled without ever occurring. By keeping the state in the

application address space, we avoid interaction with the kernel when a timeout is canceled,

providing an inexpensive mechanism for the common-path timer operation.

When a timer event for a dispatcher actually occurs, it is passed up to the dispatcher as an

asynchronous notification. The dispatcher code can unblock any thread or threads that were

waiting for event and can then make an informed decision as to whether to resume whatever it

was doing or to instead switch to one of the newly-enabled threads. User-level code, rather than

the kernel, makes that decision.

4.3. Page Fault Handling
On a page fault, we maintain the state of the faulting thread in the kernel only long enough

to determine if the fault was in-core (i.e., the page is already resident in the page cache or just

needs to be zero filled, etc.). If it is in-core, the kernel handles the fault directly. Otherwise, the

fault is reflected back to the dispatcher, the dispatcher schedules another runnable thread or

yields. This contrasts with existing systems that use an M on N thread model (having M user

level threads multiplexed on N kernel threads), where another kernel-level thread is scheduled

when a page fault occurs, and not another user-level thread within the same kernel thread.

As with timer events, page-fault completions are passed up to the dispatcher as asynchronous

notifications, and the dispatcher code can decidewhether or not to switch threadswhen faulting

threads become runnable.

The cost of saving the state in user level is only incrementally greater than the cost of a kernel

state save. This is because we carefully avoid saving or copying registers unnecessarily.

The user-level functionality provided for page-faults enables customizations.[Hand99]. For ex-

ample, applications that don’t use floating point registers can avoid saving that state. More im-

3. In reality, there is a dispatcher for each processor on which the application runs, and for each level of service

required by the application. See white-paper on scheduling in K42.
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portantly, specialized applications, e.g., work-queue-based scientific applications, can be written

efficiently because kernel threads are not blocked without notification.

4.4. IPC Services

The IPC services implemented in the K42 kernel are very basic; the kernel hands the processor

from the sender to the receiver address space, keeping most registers intact, and giving the

receiver an unforgeable identifier for the sender 4 . Most of the work of IPC is done in user-level

libraries that are responsible for marshaling and de-marshaling arguments into registers, setting

up shared regions for transferring bulk data, and authenticating requests.

The K42 IPC facility is as efficient as the best kernel IPC facilities in the literature [Liedtke95,Haeberlen00].

However, because the implementation is in user-level, it can be customized to, for example, use

problem domain specific transports for efficiency, minimize authentication overhead, and/or

minimize state saving when communicating between trusted parties.

4.5. I/O Servers

In most client/server operating systems, servers maintain state for every outstanding request

from a client thread (often, this state is maintained by blocking a server thread). In K42, as a

general policy, if the resources necessary to handle a request are unavailable, the server returns

an error, the application blocks the thread in its own address space, and the server notifies the

client when a request can be re-issued. For example, servers that provide services such as sock-

ets, ptys, and pipes maintain information about all the applications attached to a communication

port, and notify the applications when new data becomes available. While we first introduced

this scheme in order to avoid using up server resources, it turns out that it has two other ben-

efits. First, complete state about the file descriptors an application is accessing is available in

its own address space space. This means that operations like the Posix select() call can be effi-

ciently implemented without any communication with the kernel or servers. Second, and more

importantly, it allows us to use an event rather than a polling (e.g., select() ) model for han-

dling I/O requests. This allows more efficient implementations of, for example, web servers

[Banga99], because there is no need to block threads for long periods of time. Also, we plan on

using event interfaces to better enable real-time tasks by avoiding implicit blocking semantics

on I/O requests.

5. Object Model
K42 uses a modular structure with independent object instances managing each physical and

virtual resource in the system. This building-block technology is our solution to providing cus-

tomizability and to avoiding global code paths, data structure, and policies. Related work by

others includes [Kohler00.Mosberger96Reid00]. In this section we discuss this aspect of our sys-

tem, providing motivation for using an object-oriented design and describing its advantages

from the application writer’s perspective.

4. Note, we only discuss here the standard synchronous IPC services that are the fast critical operations, other services

are discussed in the scheduling white paper.
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When most existing commercial operating systems were designed, object-oriented program-

ming was less mature than it is today. For these and many other reasons, many operating sys-

tems are implemented with global code paths that traverse global data structures and imple-

ment global policies. For example, the memory management of many systems have a critical

page fault path that traverses a global page cache and implements the global clock algorithm

for controlling paging to disk. Problems with global policies, code paths, and data structures

include:

• The policies implemented by the operating system apply to all applications including those

with specialized needs such as subsystems like databases or web servers.

• Every resource instance is treated the same regardless of how it is used or its structure. For

example, all files are implemented in the same way irrespective of their size or if they are

being accessed in a read-only fashion.

• Applications with special needs are more complex because they must work around the limi-

tations of the OS policies, e.g., databases often perform their ownmemory/disk management.

• Applications with special needs get worse performance than they would if the OS directly

implemented policies that matched their requirements.

• The addition of special-purpose code or policies for specific critical programs (e.g., scien-

tific applications, databases) typically adds extra conditional branches to critical code paths,

negatively impacting the performance of other applications, and requireing full system test.

• Global data structures make it difficult to retain the state needed for special-purpose policies.

• A single implementation of any critical code path implies that a small team must control it.

• Global code paths encourage developers to violate the modularity between different parts

of the system for short term performance gains resulting in long term maintainability prob-

lems. For example, many systems entangle the memory management and file system code

to achieve better performance for paging. While in the short term this may improve perfor-

mance, it makes code more difficult to maintain, and in the longer term the performance

degrades because of the difficulty of modifying the code to meet new constraints.

• It is difficult to scale global data structures, e.g., a global hash table results in poor multipro-

cessor performance. Global data structures many times also imply global locks.

• Poor locality causes sequential and small-scale parallel applications to perform poorly on

a large-scale multiprocessor because any overhead needed to make the OS implementation

scale impacts all applications.

An alternative to global code paths, data structures, and policies is to structure an operating

system in an object-oriented fashion. The Unix Vnode interface [Kleiman86], streams facility

[Ritchie84], and device driver interface are all good examples of this. In each of these cases,

a well-defined interface behind which different implementations can be provided has enabled

flexibility and innovation, for example there are many Linux file systems that have explored

various possible designs.

In K42 we have applied an object-oriented design to the entire system, where each virtual (e.g.

virtual memory region, network connection, file, process) and physical (e.g. memory bank, net-

work card, processor, disk) resource is implemented by a different set of object instances. For

example, instead of having a global page cache, K42 maintains an independent page cache for
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every file being accessed. For each resource unit, an object instance of the desired type is instan-

tiated to manage that unit.

5.1. Customizability

Per-resource object instances allow multiple policies and implementations to be supported by

the system. Because each resource instance is implemented by an independent object instance,

resource management policies and implementations can be controlled on a per virtual resource

basis. This allows, for example, every open file to have a different pre-fetching policy, every

memory region to have a different page size, and every process to have a different exception

handling policy.

In specifying building-block compositions, applications choose from a set of building blocks

provided by the operating system and (trusted) third party building-block providers, and spec-

ify how they are to be connected. Application writers need not be system programming experts;

they do not need to write code, but only need to compose a set of predefined modules. Safety is

not an issue for the same reason and because the building blocks verify type constraints when

they are connected. The modularity of building-block compositions makes the system easy to

maintain and extend because building-block compositions are expected to cover the vast ma-

jority of customization needs, it is only infrequently necessary to add new building blocks, and

such extensions can then be restricted to trusted agents. From a security perspective, this can be

viewed as similar to, for example, the installation of new dynamically-loadable device drivers

in conventional systems [Rubini01].

Building blocks can be hot-swapped to new implementations without taking the system down

and while they are in use. This allows K42’s implementation of resources to be tuned to the

dynamic characteristics of the applications using them without bringing the system down. This

could be used, for example, to change the implementation of a file when it grows, from one

optimized for small files to one optimized for large files.

5.2. Multiprocessor performance
K42’s per-resource object instances result in good scalability on multiprocessors. An object en-

capsulates all the data necessary tomanage a resource, as well as all the locks necessary to access

that data; there are no global locks or global data structures in the system. As long as application

requests are to different resources, they are handled by the system entirely in parallel. Moreover,

objects accessed on just a single processor have good temporal and spatial locality.

Although an object-oriented design can help scalability, some objects, such as the file cache for

a widely shared file, may be widely accessed on a large multiprocessor. We have developed a

technology called clustered objects [Gamsa99] that allows the implementation of such objects to

be partitioned or replicated across the multiprocessor. Clustered objects are a partitioned object

model similar to [Homburg00,Makpangou94]. The distribution of an object incurs no overhead

on common-case requests to the object, and is entirely transparent to clients of the object. More

details of this approach can be found in the Clustered Objects in K42 white paper.

The customizability and hot-swapping described above is critical for our goals of scalability. For

sequential and small-scale parallel applications, implementations of resources can be used that

have low overhead but do not scale. As an application creates more threads, the system can
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swap in implementations that can handle the new demands. Hence, the system can on a large

scale multiprocessor support both large-scale and sequential applications efficiently.

5.3. Client/Server interaction

All interaction between applications and servers are directed to objects. We use stub-compiler

technology, where interfaces are declared via decorations to our actual C++ class definitions,

thus binding our IPC mechanisms to the C++ interfaces. The interfaces are polymorphic in that

the user need not be aware of the exact object instance/implementation when a call is made on

a given object. For example, a FileObject could be instantiated as a SmallFileObject instance or

a BigFileObject instance. This polymorphism is provided by the C++ method invocation rather

than by C function tables. The stub compiler generated code marshals and de-marshals argu-

ments for the method calls. For efficiency, it can take advantage of registers on architectures that

have enough registers. New services can be easily added with interfaces specific to the service.

This mechanism provides the ability to download new objects that extend existing interfaces.

The stub compiler in essence creates two objects for each interface. The first of these objects,

the "Stub" object, presents the targeted interface to the client application and marshals calls to

the interface over the IPC mechanism. The second object, the "X" object, receives IPC messages

and de-marshals them into calls on the actual object that is exporting the given interface. The

binding between the X object and the target is resolved at compile time and is based on method

signatures, that is, the X object expects the target to have a set of methods conforming to a

specified interface. Thus, there is no need for the target object to be related by inheritance to the

X object and consequently any object can export any stub-compiled interface that it conforms

to. This provides a level of polymorphism beyond that offered by C++; an object can export

multiple un-related interfaces without being derived from any of them.

The stub-compiled interface technology includes a model for performing authentication. Calls

across our IPC interface are tagged with a caller identification by the kernel. Associated with

each call is a set of access rights that are verified by the stub-compiler generated code on the

callee side of the IPC call prior to the IPC mechanism invoking the method of the class that was

called. A capability-like mechanism is implemented above this service, allowing a client with

the correct access rights to provide other clients with access to that same object independent of

the type of the specific object.

5.4. Other aspects of object-oriented technology
Aswith other object-oriented operating systems [Campbell93,Hamilton93,Yokote93,Shapiro89],

object-oriented technology provides K42 with a high degree of modularity. Programmers with

expertise in an area of operating systems can more easily contribute code without needing to

intimately know all areas of the system. For example, a programmer with file system expertise

can contribute code to the file system module without having to be familiar with all the mem-

ory management code paths (it still will be valuable to understand the workings of the memory

management system at a white paper level). The modular structure enforced by the underlying

infrastructure reduces the need to have only a small team that controls the code. As with ker-

nel development, the barrier for programmers writing major sub-systems or problem-domain

specific code such as data bases, web servers, and scientific programs, is reduced because they

don’t require as much OS expertise to make contributions.
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Groups with specialized needs can develop specialized objects, contribute them back to the sys-

tem, and have them used by a larger community that has the same needs. With K42, an object

with a different implementation or policy can be introduced without any penalty for applica-

tions that don’t use it. With Linux, many interesting policies that have been prototyped have not

made it into distributions because they entail extra overhead (e.g., conditional branches) in an

operating system structured with global code paths traversing global data structures.

The modular structure will facilitate researchers because competing policies can be applied to

solve specific problems (rather than impacting all applications), and because multiple policies

can be investigated at the same time in the same OS. This will enable a more quantitative ap-

proach to OS research. We believe K42 can be attractive as a teaching vehicle, allowing students

to rapidly gain skills in OS development.

The hot-swapping technology mentioned above is not only useful for customization, it also

enables high availability. Bug patches, security patches, and performance enhancements can be

installed without bringing the system down.

5.5. Challenges
Object-oriented technology, because of the additional costs associated with the extra level of in-

direction, typically results in poor performance. While it may seem counter-intuitive, in K42 we

have used object-oriented technology to achieve better performance.We buy back the extra costs

of an object-oriented design by the ability the extra level of indirection gives us to customize the

objects to the application and, on a multiprocessor, by the locality individual object instances

provide. However, we have also found that a pragmatic approach is needed when using C++,

for example, using large-grained objects to amortize the overhead, and examining the assembly

code generated to discover performance bugs in the compiler.

Another challenge is that it can be difficult to achieve a global state if all the data for achieving

that understanding is scattered throughout many object instances. For example, we have many

objects each managing the pages for many small files. However, to effectively use a working

set algorithm, a certain minimum number of pages are needed, therefore we can’t run such an

algorithm on what might be a natural granularity (i.e., that of each object). As another example,

it is difficult to run the globally next highest priority thread when the priorities of threads are

distributed throughout a series of user-level schedulers. Moving to instances of objects for each

resource in the system has had tremendous advantages but has also opened interesting research

issues that we have had to address.

6. Concluding Remarks
We have outlined some of the core K42 technology. This technology involves fundamental struc-

tural changes, and as a result we were not able to incrementally modify the vanilla Linux ker-

nel. On the other hand, K42 is not a new operating system. It provides a Linux personality and

supports Linux applications and kernel modules without modification. That is, it provides an

alternative implementation of some of the core Linux-kernel technology, and depends on the

much larger remaining Linux code for everything else.

We have made K42 available under a LGPL license to enable experimentation and to aid in tech-

nology exchange between K42 and vanilla Linux. The modular structure of the system makes it
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a great teaching, research, and prototyping vehicle, and we expect that policies and implemen-

tations studied in this framework will be transferred into vanilla Linux. Also, in the long term,

we expect that the kind of technologies we are exploring with K42 will be important to Linux.

We have developed and validated much of the core infrastructure of K42 and are approach-

ing full functionality. K42 currently runs on 64-bit Mips (NUMA) and PowerPC (SMP) plat-

forms and is being ported to x86-64 and IA64 systems. We expect in the near future to achieve

self-hosting, demonstrate better base performance for real applications than existing kernels,

demonstrate better scalability, and demonstrate that specialized subsystems can customize the

OS to achieve better performance at reduced complexity. However, many of the edge conditions

are not yet addressed, with many simplistic object implementations. Many of the features de-

scribed above, such as the resource management infrastructure, the gang-scheduling feature,

and hot swapping are available only in prototype form.

References

[Anderson91] Scheduler Activations: effective kernel support for the user-level management of paral-

lelism, Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy,

October, 1991, Proceedings of 13th ACM Symposium on Operating Systems Principles,

95-109.

[Auslander97]Customization Lite, M. Auslander, H. Franke, B. Gamsa, O. Krieger, andM. Stumm,

Proceedings of the 6th Workshop of Hot Topics in Operating Systems, 1997, 43-48.

[Banga99] A Scalable and Explicit Event Delivery Mechanism for UNIX, Gauruv Banag, Jeffrey C.

Mogul, and Peter Druschel, 1999, Usenix Annual Technical Conference, 253-265.

[Campbell93]Designing and Implementing Choices: An Object-Oriented System in C++, Roy Camp-

bell, Nayeem Islam, Peter Madany, and David Raila, 36(9), 117-126, September, 1993, Com-

munications of the ACM.

[Engler95]Exokernel: An operating system architecture for application-level resource management, Daw-

son R. Engler, M. Frans Kaashoek, and James O’Toole, Jr., 1995, Proceedings 15th Sympo-

sium on Operating Systems Principles, 251-267.

[Gamsa99] Tornado: Maximizing Locality and Concurrency in a Shared Memory Multiprocessor Op-

erating System, Ben Gamsa, Orran Krieger, Jonathan Appavoo, and Micheal Stumm, 1999,

ACM Symposium on Operating Systems Design and Implementation.

[Greenwald96] The synergy between non-blocking synchronization and operating system structure,

Michael Greenwald and David Cheriton, October, 1999, In 2nd Symposium on Operating

Systems Design and Implementation (OSDI ’96), 123-136.

[Haeberlen00] Stub-Code Performance is Becoming Important, Andreas Haeberlen, Jochen Liedtke,

Yoonho Park, Lars Reuther, and Volkmar Uhlig, October 2000 , First Workshop on Indus-

trial Experiences with Systems Software (WIESS-00), 31-38.

[Hamilton93] The Spring Nucleus: A Microkernel for Objects, Graham Hamilton and Panos Kou-

giouris, June, 1993, 1993 Summer USENIX Conference, 147-160.

13



K42 Overview

[Hand99] Self-Paging in the Nemesis Operating System, Steven Hand, 1999, ACM Symposium on

Operating Systems Design and Implementation.

[Homburg00] An Object Model for Flexible Distributed Systems, P. Homburg, L. van Doorn, M.

van Steen, A. S. Tanenbaum, and W. de Jonge, May, 1995 , First Annual ASCI Conference,

69-78.

[K42 LKIntern]Utilizing Linux Kernel Components in K42, Jonathan Appavoo , Marc Auslander ,

Dilma DaSilva , David Edelsohn , Orran Krieger , Michal Ostrowski , Bryan Rosenburg

, Robert W. Wisniewski , and Jimi Xenidis , October 2001, www.research.ibm.com/K42.

[K42 Linux Environment] K42 Linux Environment, Jonathan Appavoo , Marc Auslander , Dilma

DaSilva , David Edelsohn , Orran Krieger , Michal Ostrowski , Bryan Rosenburg , Robert

W. Wisniewski , and Jimi Xenidis , October 2001, www.research.ibm.com/K42.

[K42 Overview] K42 Overview, Jonathan Appavoo , Marc Auslander , Dilma DaSilva , David

Edelsohn , Orran Krieger , Michal Ostrowski , Bryan Rosenburg , Robert W. Wisniewski

, and Jimi Xenidis , October 2001, www.research.ibm.com/K42.

[Kleiman86] Vnodes: An Architecture for Multiple File System Types in Sun UNIX, S. R. Kleiman,

October, 1986, Proceedings of the Summer 1986 USENIX Technical Conference, 207-218.

[Kohler00] The click modular router, Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and

M. Frans Kaashoek, 2000, ACM Transactions on Computer Systems, vol 18:3 , 263-297.

[Krieger97] HFS: A performance-oriented flexible file system based on building block composition, O.

Krieger and M. Stumm, 15(3), 286-321, August, 1997, ACM Trans. on Computer Systems.

[Liedtke95]On micro-kernel construction, J. Liedtke, 1995, Proceedings 15th ACM Symposium on

Operating System Principles, 237-250.

[Liedtke96] Toward Real Microkernels, Jochen Liedtke, 1996, Communications of the ACM, vol

39:9 , 70-77.

[Makpangou94] Fragmented objects for distributed abstractions, MesaacMakpangou, YvonGourhant,

Jean-Pierre Le Narzul, andMarc Shapiro, Readings in distributed computing systems, 170-

186, July, 1994, IEEE Computer Society Press.

[Marsh91] First-Class User-Level Threads, Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc,

and Evangelos P. Markatos, October, 1991, Proceedings of 13th ACM Symposium on Op-

erating Systems Principles, 110-121.

[McKenney01]Read CopyUpdate, PaulMcKenney, JonathanAppavoo, Andi Kleen, OrranKrieger,

Rusty Russell, Dipankar Sarma, and Maneesh Soni, July 2001, Ottawa Linux Symposium.

[Mosberger96]Making Paths Explicit in the Scout Operating System, DavidMosberger and Larry L.

Peterson, October, 1996, ACM Symposium on Operating Systems Design and Implemen-

tation.

14



K42 Overview

[Pike93] The Use of Name spaces in Plan 9, Rob Pike, Dave Presotto, Ken Thompson, Howard

Trickey, and Phil Winterbottom, 27(2), 72-76, April 1993, Operating Systems Review.

[Reid00] Knit: Component Composition for Systems Software, Alastair Reid, Matthew Flatt, Leigh

Stroller, Jay Lepreau, and Eric Eide, October, 2000, 4th Symposium on Operating Systems

Design and Implementation (OSDI 2000), 347-360.

[Ritchie84] A Stream Input-Output System, D. M. Ritchie, October, 1984, AT&T Bell Laboratories

Technical Journal, 63(8), 1897-1910.

[Rubini01] Linux Device Drivers, Alessandro Rubini and Jonathan Corbet, 2001, O’Reilly.

[Shapiro89] SOS: An Object-Oriented Operating system— Assessment and Perspectives, M. Shapiro,

Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot, 2(4), 287-337, 1989, Computing

Systems.

[Yokote93] Kernel Structuring for Object-Oriented Systems: The Apertos Approach, Yasuhiko Yokote,

1993, Proceedings of the 1st International Symmposium on Object Technologies for Ad-

vanced Software, 145-162.

15


