An Infrastructure for Multiprocessor Run-Time Adaptation

Jonathan Appavoo, Kevin
Hui, and Michael Stumm
University of Toronto
jonathan,khui,
stumm@eecg.toronto.edu

Robert W. Wisniewski,
Dilma Da Silva, and
Orran Krieger
IBM T. J. Watson Research
Center

Craig A. N. Soules
Carnegie Mellon University
soules@cmu.edu

bob,dilma,okrieg@watson.ibm.com

1. INTRODUCTION

Runtime adaptation and dynamic reconfiguration allow a
system to dynamically swap in the most appropriate imple-
mentation of its components based on current or expected
use, and to selectively upgrade components with bug, secu-
rity, or performance fixes without down-time. Hot-swapping
is the act of replacing an active system component’s im-
plementation with a new or different implementation while
maintaining availability of the component’s functionality.
This paper describes a mechanism to hot-swap software com-
ponents within the K42' operating system. We have used
this capability to improve performance under a variety of
conditions.

K42 is a research operating system for cache-coherent
shared memory multiprocessors designed to achieve good
scalability on a wide range of workloads. In K42, each vir-
tual and physical resource, e.g., open file, memory region,
page table, is managed by separate, fine-granularity, object
instances. Each object instance may be customized (differ-
ent sub-class). This model provides the standard software
engineering benefits, but more importantly: 1) allows per-
formance customization on an object-by-object basis and
2) allows, on a multiprocessor, independent accesses to be
directed to independent instances and proceed in parallel
thus eliminating shared memory accesses and synchroniza-
tion, which are fundamental barriers to multiprocessor per-
formance.

An operating system is a particularly demanding envi-
ronment as it needs to satisfy multiple concurrent clients
whose resource demands may be at odds. For example,
multiple clients may simultaneously access a file with dif-
ferent usage patterns. Supporting multiprocessors presents
additional challenges for operating systems, and often imple-
mentations that are required for scalable performance have
worse uniprocessor behavior.

To provide both uniprocessor and multiprocessor compo-
nents within a single object model, K42’s objects are im-

"http://www.research.ibm.com /K42

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM 1-58113-609-9/02/0011 ...$5.00.

plemented using a novel design called Clustered Objects. A
Clustered Object can be internally decomposed into a group
of cooperating constituent subparts that implement a uni-
form interface, but use distributed structures and algorithms
to avoid shared memory and synchronization on its frequent
and critical operations. Clustered Objects provide an infras-
tructure to implement both shared and distributed (across
shared-memory multiprocessor) objects, and use, transpar-
ently to the client, the implementation appropriate for the
access pattern of the object.

This research work applies to shared memory multiproces-
sors. Our use of the word distributed throughout this paper
refers to the division of data across a multiprocessor com-
plex. Distribution does not imply message passing rather,
distributed data is accessed via hardware supported shared
memory. We distribute objects in order to: (i) optimize
cache line access, (i7) increase concurrency and (ii7) exploit
local memory on NUMA multiprocessors.

To hot swap code, the system must be able to identify and
encapsulate the code and data for a swappable component.
An object-oriented model provides this. Clustered objects
add efficient multiprocessor capability to this model. By
providing both a shared implementation and a scalable im-
plementation for objects, and hot swapping between them,
K42 can obtain the best performance characteristics of both
implementations depending on usage.

To perform a successful hot swap, it is necessary to get
the target object into a quiescent state, a point when it is
safe to swap implementations. Then all external references
(both data and code pointers) to the swapped object need
to be modified. In a scalable system, such as K42, com-
ponents are implemented with a high degree of concurrency.
This makes hot swapping more difficult than in a traditional
system because it is necessary to coordinate all processors
running parts of the to-be-swapped object.

This paper focuses on mechanisms, describing Clustered
Objects and an algorithm performing hot-swapping. The
important issue of policy, namely the control of when and
what objects to hot swap are the subject of future papers.

The remainder of this paper is organized as follows. Sec-
tion 2 describes K42’s Clustered Object implementation.
Section 3 describes K42’s hot-swapping support. Section
4 provides an example of an existing performance improve-
ment implemented by hot-swapping Clustered Objects and
describes the current status of K42’s implementation.

2. K42 COMPONENT MODEL

One of K42’s primary goals is to realize near perfect scala-
bility on a diverse set of workloads. This goal has fundamen-
tally influenced its design. A key to achieving high perfor-
mance on a multiprocessor is to use per-processor data struc-
tures whenever possible, so as to minimize inter-processor
coordination and shared memory access. An example is a
simple performance counter where the predominant action
on the counter is to increment it. On a multiprocessor, there
is a large benefit to using a distributed counter rather than a
single shared one. In the distributed case, each processor in-
crements a per-processor sub-counter that does not require
synchronization or shared memory access. When the value
of the counter is required, the per-processor sub-counters
are summed.

When implementing a distributed counter, there are a
number of aspects that are desirable. The distributed nature
of the counter should be hidden behind its interface, preserv-
ing clean component boundaries and isolating client code
from the distribution. An instance of the counter should
have a single, unique, processor-independent identifier, that
transparently directs the caller to the correct processor spe-
cific sub-counter. Care must be used to ensure that the pro-
cess for directing an access to a sub-counter in the common
case does not require shared structures or incur significant
costs. Using shared structures to access a per-processor sub-
counter would defeat the purpose of trying to eliminate shar-
ing. Further, if the costs to direct an access to the correct
sub-counter are too expensive, then the use of this approach
becomes questionable when the counter is only accessed on
a single processor. To ensure scalability on systems with a
large number of processors, a lazy approach to allocating
the sub-counters is necessary. This ensures that the costs
of allocating and initializing the sub-counter only occur on
processors that access the counter.

One of the key features of K42’s scalability is a unique
distributed component model that facilitates the develop-
ment of distributed components and addresses the issues of
the previous paragraph. These components, called Clus-
tered Objects, support distributed designs while preserving
the benefits of a component based approach. Collections of
C++ classes are used to define a Clustered Object and run-
time mechanisms are used to support the dynamic aspects
of the model. Clustered Objects are conceptually similar
to design patterns such as facade, however, they have been
carefully constructed to avoid any shared front end, and are
primarily used for achieving data distribution. Some dis-
tributed systems [2, 5] have explored similar object models.

Each Clustered Object is identified by a unique interface
that every implementation conforms to. We use a C++ pure
virtual base class to express a component interface. An im-
plementation of a component consists of two portions: a
Representative definition and a Root definition, expressed
as separate C++ classes. The Representative definition of
a Clustered Object defines the per-processor portion of the
Clustered Object. In the case of the performance counter,
it would be the definition of the sub-counters. An instance
of a Clustered Object Representative class is called a Rep
of the Clustered Object instance. The Representative class
implements the interface of the Clustered Object, inheriting
from the Clustered Object’s interface class. The Root class
defines the global portions of an instance of the Clustered
Object. Every instance of a Clustered Object has exactly

one instance of its Root class that serves as the internal cen-
tral anchor or “root” of the instance. Each Rep has a pointer
to the Root of the Clustered Object instance it belongs to.
As such, the methods of a Rep can access the shared data
and methods of the Clustered Object via its root pointer.

At runtime, an instance of a given Clustered Object is cre-
ated by instantiating an instance of the desired Root class.?
Instantiating the Root establishes a unique Clustered Object
Identifier (COID), that is used by clients to access the newly
created instance. To the client code, a COID appears to be
a pointer to an instance of the Rep Class. To provide better
code isolation, this fact is hidden from the client code with
the macro: #define DREF(coid) (*(coid)). For example,
if c is a variable holding the COID of an instance of a clus-
tered performance counter, that has a method inc, a call
would look like: DREF (c)->inc().

A set of tables and protocols are used to translate calls
on a COID in order to achieve the unique runtime features
of Clustered Objects. There is a single shared table of Root
pointers called the Global Translation Table and a set of
Rep pointer tables called Local Translation Tables, one per
processor. The virtual memory map for each processor is
set up so that a Local Translation Table appears at address
vbase on each processor but is backed by different physi-
cal pages®. This allows the entries of the Local Translation
Tables, which are at the same virtual address on each pro-
cessor, to have on different values on each processor. Hence,
the entries of the Local Translation Tables are per-processor
despite only occupying a single range of fixed addresses.
When a Clustered Object is allocated, its root is instan-
tiated and installed into a free entry in the Global Transla-
tion Table. The Translation Table entries are managed on
a per-processor basis by splitting the global table into per-
processor regions of which each processor maintains a free
list and only allocates from its range, avoiding synchroniza-
tion or sharing. The address of the corresponding location
in the Local Translation Tables address range is the COID
for the new Clustered Object. The sizes of the global and
local entries and tables are kept the same, allowing sim-
ple pointer arithmetic to convert either a local to global or
global to local table pointer. Figure 1 illustrates a Clustered
Object instance and the translation tables.

To achieve the lazy creation of the Reps of a Clustered Ob-
ject, Reps are not created or installed into the Local Transla-
tion Tables when then Clustered Object is created. Instead,
the entries of the Local Translation Table that have not been
accessed on a processor are initialized with a pointer to a
special object called the Default Object. The Default Ob-
ject leverages the fact that every call to a Clustered Object
goes through a virtual function table?. The Default Object
overloads the method pointers in its virtual function table to
point at a single trampoline method. The trampoline code
saves the current register state on the stack, looks up the
Root installed in the Global Translation Table entry cor-

>The client code is not actually aware of this fact. Rather,
a static Create method of the Rep class is used to allocate
the root. Because we do not have direct language support,
this is a programmer enforced protocol.

%In K42, a page table is maintained per-processor per-
address space, and thus each processor can have its own
view of the address space.

4As noted above, a virtual base class is used to define the
interface for a Clustered Object

Global Translation Table

(table of Root pointers)

Clustered Object Instance

1 per processor Local Translation Tables
all mapped to
the same address

vbase

(tables of Rep pointers)

I
I
i
| £
I
vbase COID=vbase+(i * sizeof(table entry))

Figure 1: A Clustered Object Instance and Translation
Tables.

responding to the COID that was accessed, and invokes a
well-known method that all Roots must implement called
handleMiss. This method is responsible for installing a Rep
on the processor into the Local Translation Table entry cor-
responding to the COID that was accessed. This is done
either by instantiating a new Rep or identifying a preexist-
ing Rep and storing its address into the address pointed to
by the COID. On return from the handleMiss method, the
trampoline code restarts the call on the correct method of
the newly installed Rep. The above process is called a Miss
and its resolution Miss-Handling. Note that after the first
Miss on a Clustered Object instance, on a given processor,
all subsequent calls on that processor will proceed as stan-
dard C++ method invocations via two pointer dereferences.
Thus, in the common case, methods of the installed Rep
will be called directly with no involvement of the Default
Object.

The map of processors to Reps is controlled by the Root
Object. A shared implementation can be achieved with a
Root that maintains one Rep and uses it for every proces-
sor that accesses the Clustered Object instance. Distributed
implementations can be realized with a Root that allocates
a new Rep for some number (or Cluster) of processors and
complete distribution is achieved by a Root that allocates a
new Rep for every accessing processor. There are standard
K42 Root classes that handle these scenarios. In the case of
the distributed versions, the Clustered Object implementor
defines a new Root class by inheriting from one of the stan-
dard distributed Root classes, adding any shared data and
methods to it as necessary.

3. HOT-SWAPPING

There are a number of challenges in the design of hot-
swapping infrastructure capable of dynamically switching a
“live” or “hot” software component: 1) avoid adding over-
head to normal method invocations, 2) avoid complicating
the design of the objects that have switch capabilities, 3) en-
sure the switching code is scalable, 4) correctly handle in-
flight requests to the object being switched, 5) avoid dead-
lock during the switch, and 6) guarantee integrity when
transferring state from the old to the new object. The
distributed nature of Clustered Objects further exacerbates
these challenges as it can mean having to swap the multiple
constituents of a component across multiple processors in a
coordinated way.

3.1 Overview

Our swapping mechanism allows any Clustered Object
instance to be hot-swapped with any other Clustered Ob-
ject instance that implements the same interface. Moreover,
swapping is transparent to the clients of the component and
thus no support or code changes are needed in the clients.

3.1.1 Algorithm Overview

The outline of our algorithm is as follows (and described
in more detail further below):
(¢) instantiate the replacement Clustered Object instance;

(71) establish a quiescent state for the instance to be re-
placed so that it is temporarily idle;

(7i7) transfer state from the old instance to the new in-
stance;

(iv) swap the new instance for the old, adjusting all refer-
ences to the instance; and

(v) deallocate the old instance.

There are three key issues that need to be addressed in
this design. The first, and most challenging issue, is how
to establish a quiescent state so that it is safe to transfer
state and swap references. The swap can only be done when
the instance state is not currently being accessed by any
thread in the system. Perhaps the most straightforward way
to achieve a quiescent state would be to require all clients
of the Clustered Object instance to acquire a reader-writer
lock in read mode before any call to the object (as done
in the re-plugging mechanism described in [7]). Acquiring
this external lock in write mode would thus establish that
the object is safe for swapping. However, this approach
adds overhead for the common case and can cause locality
problems, defeating the scalability advantages of Clustered
Objects. Further, the lock could not be part of the compo-
nent itself and the calling code would require changes. Our
solution avoids these problems and is presented in the next
section.

The second issue is deciding what state needs to be trans-
ferred and how to transfer the state from the old component
to the new one, both safely and efficiently. We provide a
protocol that Clustered Objects developers can use to nego-
tiate and carry out the state transfer. Although the state
could be converted to some canonical, serialized form, one
would like to preserve as much context as possible during
the switch, and handle the transfer efficiently.

The final issue is how to swap all of the references held
by the clients of the component so that the references point
to the new instance. In a system built using a fully-typed
language such as Java, this could be done using the same
infrastructure as used by garbage collection systems. How-
ever, this would be prohibitively expensive for a single com-
ponent switch, and would be overly restrictive in terms of
systems language choice. An alternative would be to parti-
tion a hot-swappable component into a front-end component
and a back-end component, where the front-end component
is referenced (and invoked) by the component clients and is
used only to forward requests to the back-end component.
Then there would be only a single reference (in the front-end
component) to the back-end component that would need to
be changed when a component is swapped, but this adds
extra overhead to the common call path. Given that all
accesses to a Clustered Object in K42 already go through
a level of indirection, namely the Local Translation Table,
the more natural way to swap references in our system is to

overwrite the entry pointers in a coordinated fashion. Sev-
eral distributed systems have examined ways to dynamically
configure the location of components, requiring much of the
same support [4].

3.2 Details

To implement the swapping algorithm outlined above, a
specialized Clustered Object called the Mediator Object is
used during the swap. It coordinates the switch between
the old and new objects, leveraging the Clustered Object
infrastructure to implement the swapping algorithm. To
handle then swapping of distributed Clustered Object in-
stances with many parallel threads accessing it, the Media-
tor is itself a distributed Clustered Object that implements
the swapping algorithm in a distributed manner by utilizing
a set of worker threads.

The Mediator establishes a worker thread and Rep on
each processor that the original Clustered Object instance
has been accessed on® . The Mediator instance is interposed
in front of the target Clustered Object instance and inter-
cepts all calls to the original object for the duration of the
swapping operation. The details of how the interposition is
achieved will be described later. The worker threads and
Mediator Reps transit through a sequence of phases in or-
der to coordinate the swap between the old Clustered Object
instance and the new one replacing it. The Mediator Reps
function independently, only synchronizing when necessary
in order to accomplish the swap. Figure 3 illustrates the
phases that a Mediator Rep goes through while swapping a
Clustered Object. The remainder of this section describes
how the Mediator Reps and worker threads accomplish the
swap. We present the actions that occur on a single proces-
sor but in the general case these actions proceed in parallel
on multiple processors.

Prior to initiating the swap (figure 3a) the old object’s
Reps are invoked as normal. The first step of hot-swapping is
to instantiate the new Clustered Object instance, specifying
that it not be assigned a COID, and that the installation
of its root into the Global Translation Table be skipped.
Second, a new Mediator instance is created and passed both
the COID of the old instance and a pointer to the Root of
the new instance. The Mediator then proceeds to interpose
itself in front of the old instance.

Interposing a Mediator instance in front of the old Clus-
tered Object instance ensures that future calls temporarily
go through the Mediator. To accomplish this, the Mediator
instance must override both the Global Translation Table
entry root pointer and all the active Local Translation Ta-
ble entries’ Rep pointers. To swing the Global Translation
Table entry Root pointer, it must ensure that no misses
to the old object are in progress. As part of the standard
Miss-Handling infrastructure, there is a reader-writer lock
associated with each Global Translation Table entry and all
misses to the entry acquire this lock in read mode. In or-
der to atomically swing the Global Translation pointer, the
associated reader-writer lock is acquired for write access,
ensuring that no misses are in progress. When the lock has
been successfully acquired, the Root pointer of the entry is
changed to point to the Root of the Mediator and all future

50ur current implementation, as described in this paper,
uses per-processor worker threads. We are currently ex-
ploring a new implementation that does not require worker
threads.

Mediator

vtable I
vtable ptr Trampoline | £0de Jumy o
- - Trampoline -~""| Common
Switch phase variable Trampoiine | - < -~ mediation
- Trampoline |-~ routine
Inflight call counter

Hash Table

Figure 2: Mediator Rep implementation

misses will be directed to it. The Mediator remembers the
old Object’s Root in order to communicate with it. During
this process there may be calls that are in flight to the old
Clustered Object, and they proceed normally.

Swinging the Root is not sufficient to direct all calls to the
Mediator instance. This is because some Rep pointers may
already established in the Local Translation Table entry as-
sociated with the old instance casuing some calls to proceed
directly to the Reps of the old instance. To handle this, the
Mediator spawns a worker thread on all the processors that
have accessed the old object. These threads have a number
of responsibilities, but their first action is to reset the Lo-
cal Translation entry on each processor back to the Default
Object. This ensures that future accesses will be directed
to the Mediator Object via the standard Miss-Handling pro-
cess. Because the Root maintains the set of processors it has
suffered a Miss on, the Mediator can query the old object’s
Root to determine what processors to spawn threads on.

On each Mediator miss, the Mediator Root installs a new
Mediator Rep into the Local Translation Table for the pro-
cessor on which the Miss occurred. The Mediator Reps are
specialized C++ objects similar to the Default Object. They
are designed to handle hot-swapping of any Clustered Ob-
ject transparently. To do so, the Mediator Rep intercepts
all calls and takes action based on the current phase of the
Rep(figure 3).

Figure 3, parts b, c, d and e, illustrate a single Mediator
Rep in the different phases of a swap. Once the Mediator
Rep has been installed into the Local Translation Table en-
try, virtual method calls that would normally call one of
the functions in the original object end up calling the cor-
responding method in the mediator. A small amount of as-
sembly glue captures the low-level state of the call, including
the parameter passing registers and return address. The ac-
tions that the Mediator Rep has to take on calls during the
various phases of swapping include: forwarding and keeping
a count of active calls (increment prior to forwarding the call
and decrement after the forwarded call returns), selectively
blocking calls, and releasing previously blocked calls. To
be transparent to the clients and the target Rep when the
call is being forwarded, the Mediator Rep may not alter the
stack layout and hence it must only use Rep-local storage to
achieve the appropriate actions. As can be seen in figure 2,
the Mediator Rep utilizes three other data members other
than its vtable pointer.

The vtable of the Mediator Rep, like that of the Default
Object, is constructed to direct all calls regardless of its sig-
nature to a single common mediation routine. When a phase
requires that new calls be tracked and forwarded, the Medi-
ator Rep uses an in-flight call counter to track the number
of live calls. Because the counter needs to be decremented
when the call completes, the Mediator must ensure that the
forwarded call returns to the mediation routine prior to re-

New New
Mediator Mediator

Thread
oid Threads PR

Threads a D H i
2 :4 | b
4 < ol » o

(a) Prior. (b) Forward. (c) Block.

Figure 3: Component hot-swapping.

Threads
a e |

£

New New

Mediator ¢ Mediator
Threads New
L y a Threads
L. e 2
i £ old r

i o

(d) Transfer. (e) Complete. (f) Post.

This figure shows the phases of hot-swapping with respect to a single processor and

the Reps: prior, forward, block, transfer, complete, and post. In the forward phase, new calls are tracked and forwarded while

the system waits for untracked calls to complete. Although this phase must wait for all old threads in the system to complete,

all threads are allowed to make forward progress.

In the block phase, new calls are blocked while the system waits for the

tracked calls to complete. By blocking only tracked calls into the component, this phase minimizes the blocking time. In the

transfer phase, all calls to the component have been blocked, and state transfer can take place. Once the transfer is complete,

the blocked threads can proceed to the new component and the old component can be garbage collected.

turning to the original caller. This means that the Mediator
Rep must keep track of where to return to after decrement-
ing its in-flight call counter on a per-thread basis. To main-
tain transparency it avoids using the stack by maintaining
a hash table indexed by thread id to record the return ad-
dress for a given thread. The Mediator Rep also uses a data
member to track the phase it is currently in. The phases are
detailed in the following paragraphs.

3.2.1 Forward

This initial phase is illustrated in figure 3b. The Media-
tor stays in this phase until it determines that there are no
longer any threads that were started prior to the swap ini-
tiation still accessing the object. To detect this, the worker
thread utilizes services of K42’s Read-Copy-Update[6] mech-
anism. Specifically, it is possible to determine when all
threads in existence on a processor at a specific instance
in time have terminated. K42’s threads are assigned to one
of two generations.® Each generation records the number
of threads that are active and assigned to it. At any given
time, one of the generations is identified as the current gen-
eration and all new threads are assigned to it. To determine
when all the current threads have terminated, the following
algorithm is used:

i=0
while (i<2)
if the non-current generation’s count is zero
make it the current generation
else

wait until it is zero and make it the current

generation
i=i+l

In K42, the process of switching the current generation is
called a generation swap. The above algorithm illustrates
that two swaps are required to establish that the current set
of threads have terminated. This mechanism is timely and
accurate even in the face of preemption. K42’s design does
not use long-lived system threads nor does it rely on blocking
system-level threads[6]. Note that in the actual implemen-
tation, the wait is implemented via a call back mechanism
avoiding a busy wait.

By waiting for all threads that were in existence when the
swap was initiated to terminate, we are sure that all threads
accessing the old object have terminated. However, to en-
sure system responsiveness while waiting for these threads
to terminate, new calls to the object are tracked and for-
warded by Mediator Rep using its in-flight call counter and

6The design supports an arbitrary number of generations
but only two are used currently.

hash table. The thread descriptors are also marked as be-
ing in a forwarded call in order to simplify deadlock avoid-
ance as described in the next paragraph. Once the worker
thread, using the generation mechanism, determines that all
the untracked threads have terminated, the Mediator Rep
switches to the Block phase. Note that the Forward phase,
and transition to the Block phase, happen independently
and in parallel on each processor, and no synchronization
across processors is required.

3.2.2 Block

In this phase, the Mediator establishes a quiescent state,
guaranteeing no threads are accessing the old Clustered Ob-
ject on any processor. To do this, each Mediator Rep estab-
lishes a quiescent state on its processor by blocking all new
calls while waiting for any remaining tracked calls to com-
plete. However, because a call currently accessing the ob-
ject might itself call a method of the object again, care must
be taken not to cause a deadlock by blocking any tracked
threads. This is achieved by checking the thread descrip-
tor to determine if the thread is in a forwarded call. This
also ensures that concurrent swaps of multiple Clustered Ob-
jects do not deadlock. If a forwarded thread, during the
blocked phase in one object, calls another object that is in
the blocked phase it will be forwarded rather than blocked,
thus avoiding the potential for inter-object deadlocks. To
ensure a quiescent state across all processors, the worker
threads must synchronize at this point prior to proceeding.
A shared data member in the Mediator root is used for this
purpose.

3.2.3 Transfer

Once the Blocked phase has completed, the Transfer phase
begins. In this phase the worker threads are used to export
the state of the old object and import it into the new ob-
ject. To assist state transfer, a transfer negotiation protocol
is provided. For each set of functionally compatible compo-
nents, there must be a set of state transfer protocols that
form the union of all possible state transfers between these
components. For each component, the developers create a
prioritized list of the state transfer protocols that the com-
ponent supports. For example, it may be best to pass inter-
nal structures by memory reference, rather than marshaling
the entire structure; however, both components must un-
derstand the same structure for this to be possible. Before
initiating a hot-swap, a list is obtained from both the old
and new component instances. The most desirable format,

based on the two lists, is recorded by the Mediator instance.
The actual data transfer is carried out in parallel by the
worker threads. The worker threads request the state from
the old object in the format that was recorded in the Medi-
ator instance and pass it to the new object.

3.24 Complete

After the state transfer, the worker threads again synchro-
nize so that one may safely swing the Global Translation
Table entry to the Root of the new Clustered Object. All
the worker threads then cease call interception by storing a
pointer to the new Clustered Object’s Reps into the Local
Translation Table entries so that future calls go directly to
the new Clustered Object. The worker threads then resume
all threads that were suspended during the Block phase and
forward them to the new Object (figure 3e). The worker
threads deallocate the original object and the mediator and
then terminate.

4. STATUS

K42 is under active research and development. It runs
on x86-64 and PowerPC simulators, and runs on PowerPC
multiprocessor hardware. K42 supports a Linux APT; it uses
standard GNU packages as its user-level software base. The
hot-swapping infrastructure is fully functional with key vir-
tual memory and file system components utilizing it to dy-
namically switch between implementations based on run-
time demands. As an example, the File Cache Manager
(FCM) virtual memory component has two implementa-
tions: shared and distributed. For each open file, an in-
stance of an FCM is used to cache the pages of the file’s
data in physical frames. By default, to achieve better per-
formance when a file is opened, a simple, shared implemen-
tation of the FCM is initially instantiated. If the file is
accessed only on one processor, the shared FCM implemen-
tation performs well with little memory overheads. When
the file is accessed by multiple processors concurrently, the
file’s associated FCM is hot-swapped to a distributed im-
plementation. This alleviates any contention and achieves
better scalability, thus ensuring that only the files that ex-
perience contention due to sharing use the more complex
and expensive distributed FCM implementation.

The advantages of hot-swapping the FCM implementa-
tions became visible when measuring the performance of
two different benchmarks: PostMark[3] and Spec SDET[1].
PostMark is a uniprocessor file system benchmark that cre-
ates a large number of small files on which a number of
operations are performed, including reading and append-
ing. SDET is a multiprocessor Unix development workload
that simulates concurrent users running standard Unix com-
mands”. If we disable hot-swapping and run PostMark using
only shared FCMs, and then run it using only distributed
FCMs, there is a 7% drop in performance for the distributed
implementation of the FCM. However, running SDET with
the distributed FCM implementation, yields an 8% perfor-
mance improvement on 4 processors and an order of mag-
nitude improvement on 24 processors. When hot-swapping
is enabled, the best-case performance is achieved automat-
ically for both PostMark and SDET, with the individual
FCM instances choosing the right implementation based on

"We used a slightly modified version that does not include
a compiler or ps.

the demands it experiences.

This experiment demonstrates that our hot-swapping
mechanism is capable of dealing with complex scenarios un-
der load. The experiment also illustrates that by using hot-
swapping we are able to avoid codifying ad hoc and brittle
rules i.e., we did not need to hard code the fact that certain
files, such as program executables, should use the distributed
FCM. Instead, hot-swapping allowed each file to settle on
the right implementation based on how it was dynamically
accessed.

We are still at the early stages of exploring the uses of
runtime adaptation via hot-swapping. At this point we
are using simple triggers such as lock contention to prompt
switches between implementations. There is much work to
be done in the algorithms and in the triggers used to decide
when to hot-swap a component and what the new imple-
mentation should be. Other open issues include:

e How to express the tradeoffs between implementations
in a generic way such that automated methods of choos-
ing the right implementation can be achieved.

e How to coordinate multiple component swaps in order
to achieve a global improvement while maintaining sta-
bility.

e What kind of language support would be beneficial?

S. REFERENCES

[1] SPEC SDM suite. http://www.spec.org/osg/sdm91/,
1996.

[2] P. Homburg, L. van Doorn, M. van Steen, A. S.
Tanenbaum, and W. de Jonge. An object model for
flexible distributed systems. In First Annual ASCI
Conference, pages 69-78, Heijen, Netherlands, may
1995.

[3] J. Katcher. Postmark: A new file system benchmark.
Technical Report TR3022, Network Appliance.
PostMark: A New File System Benchmark.

[4] J. Magee, N. Dulay, and J. Kramer. A constructive
development environment for parallel and distributed
programs. In International Workshop on Configurable
Distributed Systems, March 1994.

[6] M. Makpangou, Y. Gourhant, J.-P. L. Narzul, and
M. Shapiro. Fragmented objects for distributed
abstractions. In T. L. Casavant and M. Singhal,
editors, Readings in Distributed Computing Systems,
pages 170-186. IEEE Computer Society Press, Los
Alamitos, California, 1994.

[6] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell. Read copy update. In
Proceedings of the Ottawa Linuz Symposium, 26-29
June 2002.

[7] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic,
A. Goel, P. Wagle, C. Consel, G. Muller, and R. Marlet.
Specialization tools and techniques for systematic
optimization of system software. ACM Transactions on
Computer Systems (TOCS), 19(2):217-251, 2001.

