
EbbRT: Elastic Building Block Runtime - Overview

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo
Boston University

1 Introduction
Infrastructure as a Service (IaaS) provides a developer the
ability to construct applications that dynamically acquire
and release potentially large numbers of raw virtual or
physical machines (nodes). The Elastic Building Block
Runtime (EbbRT) is a new runtime for constructing and
retro-fitting applications to take advantage of this oppor-
tunity.

EbbRT is a realization of the MultiLibOS model[?].
This model is based on the simple idea that not all IaaS
nodes, used by a single application, need a general pur-
pose OS. Rather, an asymmetric system software struc-
ture can be adopted where an application is distributed
across a mix of general purpose OSs and specialized li-
brary OSs. The general purpose OS nodes support com-
plete OS functionality and legacy compatibility. The rest
of the nodes execute simple, customized, library operating
systems that support a single application operation.

EbbRT provides a lightweight runtime that enables the
construction of reusable, low-level system software which
can integrate with existing, general purpose systems. It
achieves this by providing a library that can be linked into
a process on an existing OS, and as a small library OS that
can be booted directly on an IaaS node.

The two core primitives that EbbRT provides are:

Events: A lightweight, non-preemptive execution model
that allows for an event-driven programming style to
map directly to hardware interrupts.

Elastic Building Blocks: An object oriented program-
ming model that separates interface design from dis-
tributed implementation which enables the construc-
tion of composable and reusable software.

Context for EbbRT and our choice of primitives is pre-
sented in section 2. Section 3 provides an overview of
EbbRT’s architecture and describe our prototype. Sec-
tion 4 evaluates the prototype using three use cases,
namely: 1) an EbbRT implementation of memcached[15],
2) a port of the V8[17] javascript engine and node.js[20],
and 3) the integration of an elastically allocated dis-

tributed matrix object into the Sage[1] environment.
These use cases demonstrate that EbbRT:

A. enables applications to achieve high per-
formance by customizing low-level system
software,

B. can support rich complex applications and
run times, and

C. allows an application to be modified incre-
mentally to exploit the elasticity and scale
of an IaaS.

2 EbbRT Context

EbbRT’s value and novelty lies in its unique combination
of ideas from prior work. Specifically, EbbRT draws from
work on library OSs, event driven software, and the use
of partitioned object models in both multiprocessor and
distributed systems software construction. In this section
we provide the context for each and state how it is realized
in EbbRT.

2.1 Library OSes

Library operating systems[14] organize a single applica-
tion and the OS functionality it requires into a single ad-
dress space and protection domain. The application code
directly links to the OS code and invokes it via a stan-
dard function call. Library OSs enable reductions in over-
heads and the opportunity to specialize and tailor system
functionality and interfaces for a particular application’s
needs.

In recent years, several efforts have explored how virtu-
alization can be leveraged to provide benefits by directly
executing applications in their own VMs linked with a li-
brary OS [9, 8, 10, 26, 32, 22, 11, 30, 25, 29, 3]. These
benefits range from improved security to higher perfor-
mance. The basic approach is to extract out a particular
function of an application and run it along with a library
OS in its own virtual machine.

1



Generally, library OSs provide some level of ABI[32,
10] or API[26, 22, 25, 30, 3] compatibility. This has been
done in three ways; 1) supporting C and C++ standard
libraries, 2) porting of managed language runtimes such
as Java[3, 22] and Ocaml[26] and/or 3) using a shim layer
to forward system calls to a instance of a standard OS
running in a different VM.

EbbRT: EbbRT provides a distributed runtime which
allows processes of general purpose systems to launch
back-end nodes running a lightweight library OS. The
runtime allows for function offloading from the library
OS to the general purpose system and vice-versa. From
a users perspective an EbbRT application appears like any
other process that is launched, owned and managed by the
user. This front-end process serves both as the user’s ac-
cess point to the application, and also as the access point
for the back-end nodes to the front-end OS’s resources
such as files and external I/O channels. There are cases
under which an EbbRT application might exploit more
than one front-end node to reduce contention and improve
fault tolerance. Our current work, however, focuses on the
case of an application having a single front-end and front-
end process.

EbbRT exploits library OSs for the back-ends to allow
application and hardware specific optimizations. In par-
ticular, the event and Ebb primitives described in the next
sections can interact with the hardware at a very low level.
All services implemented in the library OS can be tuned
to the specific needs of the application.

The EbbRT library OS is distributed with a port of the C
and C++ standard libraries. OS functionality is provided
to these libraries by a set of manually constructed func-
tions that invoke methods of EbbRT components. These
components can be implemented to communicate with the
front-end to alleviate the burden for native local imple-
mentation where appropriate. While labor intensive, this
approach to compatibility is tractable for supporting man-
aged runtime environments as demonstrated by our port
to the node.js runtime.

Other library OSs [3, 26] have been developed to be
deployed on a cloud, but EbbRT is the first distributed li-
brary OS we are aware of. Other research groups explor-
ing new operating systems for the cloud [34, 39] are not
focused on a library OS model. We believe that the asym-
metric model adopted by EbbRT, that includes both gen-
eral purpose and library OSs, is both unique and critical
to allowing us to aggressively explore new technologies
while supporting real applications.

2.2 Event Driven Software

Event driven architectures and associated programming
models are designed to reflect and enable applications that
must respond to asynchronous actions. Typically, this is
done with a callback model such that when an action oc-
curs, a programmer specified routine is invoked by the
system in response.

Hardware inherently supports an event driven model
through its interrupt and exception support. As such, the
lowest level software of most operating systems is written
in an event driven manner directly on top of the hardware
mechanisms. Operating system research has also explored
how systems software can be better structured to directly
support network based application processing which is in-
herently event driven[38, 23, 28].

The suitability of event driven programming to network
application programming has made it popular for cloud
and internet applications, so much so that the legacy pro-
cess and thread models of commodity OSs are often aban-
doned in favor of lighter weight user-level primitives for
supporting event driven programming via some form of
explicit stack switching. Similarly, many user-level li-
braries such as Boost.ASIO and libuv have been devel-
oped to ease the burden of writing portable event driven
applications on top of commodity OS features. Fur-
ther, web application runtimes and languages have widely
embraced event driven models and incorporated features
such as promises and anonymous functions to better facil-
itate the use of continuations that are often required when
programming in an event driven fashion.

EbbRT: EbbRT supports a non-preemptive event
driven execution model. Not only does this match the
trends of IaaS application programming, but also, it al-
lows for a lightweight implementation which maps di-
rectly to hardware mechanisms. Hardware interrupts
cause application event handlers to be invoked. Event
handlers run to completion with interrupts disabled. This
allows application software to execute directly off of hard-
ware interrupts without the need for thread scheduling and
context switches. In order to support blocking program-
ming interfaces, software can voluntarily yield the proces-
sor, saving its state, in order to dispatch further events. In
contrast to other event driven operating systems [37, 2],
where continuations required by an event driven system
added tremendous programmer complexity, we make ex-
tensive use of C++11 language features, such as lambdas,
to reduce programmer complexity.

This execution model allows for a number of optimiza-
tions. Per-core data structures can be reused across many
events without the need to synchronize due to the lack
of pre-emption. Additionally, because interrupts are only

2



enabled at the termination of an event-handler, state does
not need to be saved when an interrupt occurs. At a larger
level, much of the complexity of a scheduling infrastruc-
ture is avoided, allowing applications to easily control
event execution.

The lack of preemption means that a long running event
will make the system non-responsive to new events. Soft-
ware developed directly to the base event model needs to
be carefully designed to avoid this. We have so far found it
natural to implement the core system software under this
constraint. In scenarios where a more complex execution
model is required, the event infrastructure can serve as a
natural foundation for threads and schedulers to be con-
structed [4].

2.3 Partitioned Object Models

The development of high-performance, parallel software
is non-trivial. The concurrency and locality management
needed for good performance can add considerable com-
plexity. Prior work has demonstrated that a partitioned
object model can facilitate the construction of parallel sys-
tem software, both for distributed and shared memory sys-
tems. In a partitioned object model, an object is internally
composed of a set of distributed representatives. Each
representative locally services requests, possibly collabo-
rating with one or more other representatives of the same
partitioned object instance. Cooperatively, all the repre-
sentatives of the partitioned object implement the com-
plete functionality of the object. To the clients of a parti-
tioned object, the object appears and behaves like a tradi-
tional object.

The distributed nature of partitioned object models
make them ideally suited for the design of both multi-
processor and distributed system software, which often
requires a high degree of modularity and yet benefits from
the sharing, replicating and partitioning of data on a per-
resource (object) basis. Fragmented Objects(FOs) [12, 27,
35] and Distributed Shared Objects(DSOs) [7, 18] both
explore the use of a partitioned object model as a pro-
gramming abstraction for coping with the latencies in a
distributed network environment, LAN and WAN respec-
tively. Clustered Objects[16, 24, 5] demonstrated the ef-
fectiveness of a partitioned object model in the construc-
tion of multi-processor operating systems.

EbbRT: Core to EbbRT is a partitioned object model
called Elastic Building Blocks (Ebbs) that provide a model
for software components to independently and elastically
expand to react to system-wide demand. An Ebb is associ-
ated with its EbbId, a system wide unique identifier. When
a client invokes an interface of an Ebb, the request is di-

rected to a per-core representative which may communi-
cate with other representatives on other cores or nodes
within the system to fulfill the request. EbbRT puts no
restrictions on how the representatives of an object must
communicate or organize themselves; allowing Ebbs to be
used for a wide range of different software components.

Object invocations are directed efficiently to a repre-
sentative by exploiting a virtual memory region backed
by different physical pages on each core. Representatives
are created on demand. When a request is made to a non-
existent representative a programmer specified fault han-
dler is invoked in order to construct it.

3 Architecture and Prototype
In this section we present the architecture of EbbRT and
our prototype of it. The final subsection discusses an ex-
ample code fragment from our prototype to clarify and
illustrate salient concepts and features.

3.1 Architecture
As discussed, EbbRT is structured as a MultiLibOS and
supports a single instance of an application distributed
across a set of IaaS provided nodes. Figure 1 illustrates
the three layers of the EbbRT software architecture. The

System Base Ebbs

Global Id 
Map

Node 
Allocator

Ebb 
Allocator

Network
Manager

Event 
Manager

Local Id 
Map

Memory 
Allocator

Messenger

Back End 
Base SW Mechanisms 

EbbRT Library OSStandard OS -- Linux
Front End 

Single Protection Domain 
& Virtual Address Space

A Standard User Process 
linked with EbbLib-Linux 

Application Specific Ebbs
Device Driver

Stream
FileSystem

Matrix
Scheduler
Memcached

Figure 1: EbbRT Architecture
lowest layer provides the base software mechanisms for
constructing the address spaces that the Ebb application
will run within. The rest of the EbbRT software, illus-
trated in the top two layers, takes the form of Ebbs and
execution occurs on light-weight non-preemptive events.
The system base Ebb layer is mandatory and provides
the support for Ebbs, events and off-node communica-
tion. While the Ebbs in this layer are mandatory, the im-
plementations themselves can be customized for any par-

3



ticular application’s needs or hardware features. Collec-
tively, these Ebbs define the base interfaces and function
of EbbRT, everything else is specific to an application and
linked in as necessary. While implementations may dif-
fer, the same interfaces are provided on the front and back
ends.

3.1.1 Base Software mechanisms

In the case of a front-end, a standard user process, linked
to the EbbRT library, serves as the EbbRT address space
on the node. Back-ends, however, use custom boot im-
ages that contain the base EbbRT Library OS software that
bootstraps the node and maps all the nodes resources to a
single virtual address space running with ring zero priv-
ilege. All physical memory is identity mapped into this
address space.

The base software mechanisms include interfaces for
establishing flexible virtual mappings. This includes, for
example, arbitrarily large virtual memory regions to be
used for stacks, core-specific memory regions, and the
ability for applications to specify their own fault handler
for these regions. A full discussion of the base software
mechanisms is out of scope for this paper

3.1.2 System Base Ebbs

The EbbRT system is fundamentally composed of a set of
Ebb instances that provide interfaces that additional Ebbs
can be developed to. A single well known static instance
of each of these Ebbs is provided when the application is
initialized. In general, they are fully replicated and their
internal representative construction happens on demand
as nodes are added to the application and the instances
themselves are accessed on a particular node. Below we
briefly describe the role of each.

Memory Allocator: On back-end nodes after the base
EbbRT Library OS initializes the virtual memory subsys-
tem the Memory Allocator is initialized to serve as the
general purpose memory allocator. The C and C++ run-
times are configured to use it.

Event Manager: This Ebb is responsible for provid-
ing the event interfaces and implementing a basic non-
preemptive event loop per-core. It does not provide
threads but rather a set of interfaces for specifying call-
backs to execute in response to hardware events, in the
form of interrupts, and software events. Software events
are function calls that can, but do not have to, execute
asynchronously with the caller. Events run to comple-
tion unless they manually switch stacks via calls to Event
Manager methods.

Ebb Allocator and Local Id Map: These two Ebbs
provide the base support for additional Ebbs to be created.
On each node the the Ebb Allocator manages a range of
EbbIds that are known to be unique and can be used to
identify a single instance of an Ebb. The Local Id Map
can be used by an Ebb instance to store common data to
all of its representatives on a node.

Network Manager and Messenger: These two Ebbs
provide a basic set of communication facilities so that
cross node communication is possible. In particular, the
Network Manager provides an event driven interface to
the networking facilities of the local node. The Messen-
ger uses the Network Manager to provide an interface for
sending a message to an Ebb on a particular node. The ar-
rival of a message can cause a representative to be created
on that node.

Global Id Map: This Ebb provides an application wide
table that serves as a place for Ebb instances to store data
accessible across all nodes of the system. When an Ebb
is instantiated, it can place data into the Global Id Map
that can be used to construct representatives on an arbi-
trary node. In particular when an Ebb is first accessed on
a node and it can not find information in the Local Id Map,
the Ebb can then consult the Global Id Map. The data ob-
tained can be used to populate the accessing node’s Local
Id Map which in turn can be used to construct representa-
tives of the Ebb on that node as needed.

Node Allocator: This Ebb provides an interface to the
rest of the Ebb software for acquiring and booting a node.
Its implementation is specific to a particular IaaS’s inter-
faces and performance characteristics. While on a com-
modity IaaS it can take tens of minutes to provide a node
to a client, at least one IaaS is capable of providing hun-
dreds of physical nodes to a client in sub-second time
frames[6]. The Node Allocator can bridge this gap by in-
ternally creating a free pool of pre-allocated nodes loaded
with a special image that puts the node into a dormant
state waiting to be released for application use.

3.1.3 Application Specific Ebbs

Above the base EbbRT layer, arbitrary application spe-
cific Ebbs can be constructed. A critical goal of the ar-
chitecture is to permit a high degree of specialization and
customization for an application’s needs through compo-
sition and configuration.

EbbRT’s component architecture was chosen to make
it viable to construct reusable libraries of Ebbs and its
fine grain decomposition provides many degrees of free-
dom to customize even its most basic functionality such as
the event processing loop and interrupt dispatch by imple-
menting an application customized implementation of the

4



Event Manager. Keeping with this compositional theme,
EbbRT expects many traditional features of a library OS
to be provided as independent libraries of Ebbs. This in-
cludes things like additional device support, files, network
protocols and abstractions. Similarly, the enablement of
libraries of application Ebbs that provide application spe-
cific Ebbs such as scalable and elastic matrices, are a core
value of the architecture. The final runtime structure of an
Ebb application should be a composition of Ebb instances
that are solely focused and necessary for the application
specific processing that is to be done.

3.2 Prototype

Our EbbRT prototype consists of a main body of C++
software from which two libraries are generated. The
source is composed of approximately 9600 lines of C++
and 330 lines of assembly code. One library generated
is a standard Linux library. This front-end library can be
linked either statically or dynamically to a Linux applica-
tion. The other library is a x86-64 custom EbbRT back-
end library that can be used to create a boot image that
contains the EbbRT library OS and can be launched in a
KVM virtual machine. All software targeting the EbbRT
library OS is built using a port of the GNU C++ toolchain.
This tool chain includes a version of the C and C++ stan-
dard libraries.

In order to explore EbbRT, we have constructed a sim-
ple synthetic IaaS that launches KVM instances. Using
our IaaS interface, a user can dynamically acquire nodes
and boot them with arbitrary images. All nodes of a par-
ticular user are placed on a user specific private virtual
network. In our prototype, the Node Allocator is a sim-
ple implementation that just calls out to our IaaS dae-
mon. This daemon launches KVM virtual machines to
boot with the specified image and set of arguments.

The Global Id Map of our prototype is a very simple
centralized implementation where the representative on
the launching front-end maintains the entire hash table.
We expect other implementations of the Global Id Map
to take on a much more robust and complex structure. In
some scenarios a Chord [36] or Zookeeper [19] based im-
plementation is likely to be appropriate.

The Memory Allocator implementation has been imple-
mented based on the SLQB design[31]. It is naturally re-
alized as an Ebb given its per-core design. We choose
SLQB for its multi-core and NUMA friendliness and ex-
pect it to be a good match for multi-core optimized Ebbs.
It is perfectly reasonable, however, for alternative Memory
Allocator implementations to be developed as the need
arises.

As illustrated by our case studies (see 4.1) our pro-
totype Event Manager is simple but effective. We ex-
pect that a wide range of Event Manager variants be use-
ful in tightly tailoring the event loop to an application’s
specific needs beyond the ones that we have explored so
far. While our prototype implementation lacks preemp-
tion and threading, our design allows for the Event Man-
ager implementation to be evolved to serve as the foun-
dation layer for scheduler activation[4] inspired Ebb li-
braries that provide pre-emption and threading as needed.

The Network Manager and Messenger implementation
in our prototype have been deeply influenced by our cur-
rent use of traditional Ethernet and IP based communica-
tion.

Finally, the prototype, as stated above, is realized on
KVM. Nothing precludes EbbRT from running on a phys-
ical host and we expect that as IaaS providers evolve to
hardware systems that make physical provisioning viable,
our prototype can be modified and provide even greater
value.

3.3 Example
We conclude our discussion of the EbbRT architecture
and our prototype with an example. The top of Figure 2
ebbrt::event_mgr+>Spawn(2
222222//2anonymous2function2as2argument
222222[](){2
222222222222ebbrt::kprintf("%lld2%lld2%lld\n",2
22222222222222222222222222222event_mgr+>GetNum(),2
22222222222222222222222222222event_mgr+>GetNumNode(),2
22222222222222222222222222222event_mgr+>GetNumCore());
2222222222}
22222);2//2close2bracket2of2Spawn2call

Event Manager Logical Structure

Global Id Map

...

Event Manager internal realization in Ebb Infrastructure

id:home node

cores

...
Per-Core Representatives

...
Node 0

Count
Other Data 
Structures

Count
Other Data 
Structures

Per-Core Representatives

...
Node 0

Count
Other Data 
Structures

Count
Other Data 
Structures

id:replist
id:nodelist

Local Id Map

0 p

per-core 
translation 
memory

Node 0

...rep rep

Local Id Map

0 p

Node n

...rep rep

Figure 2: EbbRT Example
presents a fragment of code that spawns a new software

5



event to be executed. To do so, the Spawn method of the
Event Manager Ebb is invoked. This code fragment can
be run in any EbbRT address space, front or back end, of
an application.

The Event Manager is accessible via the global sym-
bol ebbrt::event mgr. Its value is the EbbID of the
single statically provided Event Manager instance. Every
Ebb instance must have a unique EbbID that is obtained
either statically or dynamically from the Ebb Allocator.
The Ebb Allocator manages the EbbId values to ensure
uniqueness. In our prototype, we utilize the C++ support
to override the dereference operator (→) to invoke logic
that translates the EbbID to a representative pointer.

The middle of Figure 2 illustrates the logical structure
of the Event Manager. It is a fully replicated Ebb having
one representative per-core, per-node. When the Spawn
method is invoked the Ebb’s dereference operator auto-
matically invokes it on the representative associated with
the core executing the call. The bottom of Figure 2 illus-
trates how this structure is realized by the Event Manager
implementation using the Ebb infrastructure.

Within each EbbRT address space is a region of per-
core translation memory that appears at the same virtual
address but is backed by per-core physical memory1. An
EbbId translates to an offset in the translation memory re-
gion. On each core, the location in the translation mem-
ory associated with the Event Manager’s EbbID caches
a pointer to the core specific representative. The Event
Manager uses the Local Id Map to map it’s EbbID to a
single instance of a node specific data structure. In the
case of the Event Manager the data structure contains two
maps, a replist and a nodelist. The former is a
master list of representatives that exist on a node and the
cores they map to. And the latter records the network ad-
dresses of all the nodes on which the Event Manager has
representatives. Finally, the Event Manager, during ini-
tialization of the application, places in the Global Id Map
the network address of a node that serves as the home
node. The home is responsible for maintaining the master
nodelistwhich is cached as needed on the other nodes.

Using this logical structure and layout in the Ebb in-
frastructure, the representatives of the prototype Event
Manager implement the Event Manager interfaces. In
the code fragment, we see the Spawn interface being in-
voked. This method specifies a function to be dispatched
as an event. The default Event Manager behavior is for
this function to be synchronously invoked on its own stack
while the caller’s stack is placed aside. If this function
or any of its subsequent functions attempt to block via

1On front-ends thread local storage (TLS) is exploited to provide
similar function albeit with greater overhead.

other methods provided by the Event Manager, the call-
ing stack will be reinstated and execution of the caller
will be resumed at the return of Spawn. In this fashion,
the Event Manager implements a form of manual handoff
scheduling to spawned events. From the programmer’s
perspective, however, spawned functions should be as-
sumed to be asynchronous with respect to the caller of
Spawn. Explicit spawn interfaces are provided that allow
the programmer to force the function to be asynchronous
in which case the Event Manager will place it on a list to
be dispatched from the Event Managers event loop when
execution returns to it.

In the case of the example code listed, the function to
be executed is an anonymous function or more precisely
a C++11 lambda. The syntax allows the code for the
function to be specified in-line and provides the ability
to create a closure that captures values that are in scope
when the Spawn method is invoked. The EbbRT pro-
totype makes frequent use of lambdas to simplify con-
tinuation based programming. In this case the function
to be invoked calls three methods of the Event Manager;
GetNum, GetNumNode and GetNumCore, these re-
spectively return the number of functions that have been
dispatched across the entire application, on this node and
on this core by the Event Manager.

By exploiting a fully replicated structure, the Event
Manager representatives by default implement the
Spawn and event loop on a per-core basis using its own
member data structures. As part of dispatching func-
tions, the representative maintains a counter that it incre-
ments and thus tracks the number of functions called on
this core. Given the non-preemptive nature of execution
and per-core representative structure operations on these
counters do not need to synchronized. Additionally fea-
tures of the memory allocator are used to ensure that the
data structures of each representative are on distinct cache
lines. This ensures that there is no false sharing between
the counters, and thus good performance and scalability
will be achieved on event dispatch while accurate counts
are maintained. To implement the various GetNum op-
erations the representatives do gathers as necessary using
the replist and nodelist maintained on each node,
and sending messages as necessary.

There are of course several alternative approaches to
organizing representatives in the infrastructure. For ex-
ample rather than, or in addition to, maintaining master
replists and a master nodelist, the representatives
could contain pointers that link them in to a ring and simi-
larly the nodes could contain network addresses of neigh-
bors to also form a ring. This flexibility exists to allow
Ebbs to utilize the infrastructure in a manner that is most

6



appropriate for its needs, the application it designed to
serve, and features of IaaS interconnection networks.

4 Evaluation

We evaluate and explore the EbbRT prototype through
three case studies that evaluate and demonstrate different
aspects of the system. The first use case, memcached,
demonstrates the performance potential possible with our
approach. The second, node.js, discusses our experience
porting a rich managed runtime and demonstrates the vi-
ability of supporting rich unmodified applications. The
third, Sage, demonstrates the value of the asymmetric
model, allowing software packages to be incrementally
modified to exploit the elasticity and scale of IaaS envi-
ronments.

4.1 Memcached

This case study describes a memcached[15] server, imple-
mented with EbbRT, to produce a bootable image. This
use case demonstrates that EbbRT can be used to enable
very simple application code to fully exploit the (virtual-
ized) hardware and illustrates the use of the event driven
execution model for a supporting a cloud application.

Memcached implements a simple key-value store. It
is designed to be highly performant, and has become a
common benchmark in the examination and optimisation
of networked systems. It has also been shown by previous
work to incur significant OS overhead [21], and hence is
a natural target for a library OS.

4.1.1 Implementation

The back-end EbbRT memcached server is a simple
single-core application that supports the standard mem-
cached binary protocol. Our implementation is only 277
lines of original C++ code [40]. To a developer with
knowledge of the EbbRT interfaces, this basic application
can be developed in a single afternoon.

The upper portion of Figure 3, above the dashed line,
illustrates the logic of our application and its primary
data structures. The application is constructed around two
events, Accept and Receive, denoted by the two up arrows
entering the memcached portion). These are registered
with and invoked by the Network Manager. The applica-
tion code also uses one call down into the Network Man-
ager to send responses (illustrated with the downward ar-
row exiting the memcached portion). Given that only a
single core is used by the application and EbbRT’s non-

Accept Up Call

Session

 Receive Up Call

Hash Table 

Data Data DataData Data Data

header

Send Down Call 

Accept 
Logic Allocate 

Session
Structure

Allocate 
response

header

Put: Data in 
Hash Table

Get: Link To Data 
From Hash Table

Get:
Link Data
to Header

Memory 
Allocator

Data Data Data

Network
Manager

Data

...

Data

VirtIO Net
Driver

VirtIO In VirtIO Out

LWIP In/Out

LWIP

Buffers Read and Written By VirtIO Net Device

Receive Queue Direct Transmit

Data

Memcached

Figure 3: EbbRT Memcached Application
preemptive event model all the call backs are executed se-
quentially and run to completion.

The memcached code registers a function to be invoked
when a new connection is accepted. For each connection
the memcached logic creates a session object to process
requests on the connection. The application registers to
receive up calls when data is received on the associated
connection.

The lower portion of Figure 3 illustrates how the EbbRT
library OS internals interact with the memcached applica-
tion. At the bottom the Network Interface Card (The Vir-
tIO Net paravirtualized device) deposits Ethernet frames
into memory buffers. When a buffer is written to, the de-
vice marks an associated descriptor as dirty. When all
buffers are used, the device will drop new Ethernet frames
received.

In the steady higher load states the EbbRT network de-
vice driver Ebb (shown at the bottom of the diagram) use
a re-occurring idle event, this event runs when no other
events exist. This poll event inspects the device state to
check for used buffers. If none are found, interrupts are
enabled on the device and the idle event handler is unreg-
istered. If a used buffer is found, a descriptor to the buffer
is passed to the Network Manager for further processing.

7



The memory containing the payload is never copied, a de-
scriptor is passed through the networking stack all the way
to the application.

The Network Manager wraps the Light Weight IP
(lwIP) [13] networking stack that is linked and ported to
the EbbRT Library OS. This software processes the frame
and identifies it with a TCP connection. The Network
Manager then invokes the application registered callback
for data reception on that connection.

The memcached application logic will then run to com-
pletion (including any network sends) and return back to
this point. This code will continue to return back until the
top frame of the event is exited. At this point, the Event
Manager’s event loop logic will briefly enable interrupts
to process any pending interrupts. In the memcached sce-
nario, the only interrupts that might occur are timer inter-
rupts associated with network processing. The event loop
will disable interrupts and then execute the idle handler.

Jointly the upper and lower portions of Figure 3 illus-
trates the entire path of input processing. What’s crit-
ical to note is how packet data and memory moves up
from the NIC to the application on a single event with
no preemption and no memory copies. This creates a run
to completion packet processing model that encompasses
all software logic, device, protocol stack and application.
So much so that the application hash table directly stores
buffers that were originally allocated by the device driver
when a put is invoked. And when get is invoked this same
memory can be chained along with a newly allocated mes-
sage header for direct transmission by the device.

4.1.2 Evaluation

Environment Experimental measurements were gath-
ered on a single Dell PowerEdge R620 server, equipped
with two 10-core Intel Xeon EV-2670v2 processors, the
Intel C6202 chipset, and 32GB of DDR3 RAM. The host
system ran CentOS 6.5 with Linux 2.6.32. Guest Linux
VMs ran Debian 7.4 with Linux 3.2.0. Our IaaS sim-
ulation daemon, that ran on the host, was configured to
deploy qemu-kvm (version 1.7.5) instances. Each KVM
guest (EbbRT or Linux) was each given a single VCPU,
pinned explicitly to an inactive physical core, and 4GB of
memory. The guests were connected to the physical net-
work via an Ethernet bridge on the host machine, and used
KVM vhost-net 2.

To evaluate the performance of our memcached imple-
mentation we ran the memaslap benchmark included with
memcached. Memaslap is run on a remote machine con-

2The vhost-net kernel module provides improved network perfor-
mance through in-kernel network packet hand-off.

nected to the host machine via a switch and a gigabit Eth-
ernet link. In this way, each test accounts for the round trip
latencies of a single network hop ( 0.10 ms). Memaslap is
configured to do a 9:1 ratio of Get operations to Set opera-
tions. We run the same experiments on the standard Linux
memcached implementation to provide a comparison.

Figure 4 shows the throughput of memcached for a
small payload as we increase the number of concurrent
requests from the client. We see that the EbbRT imple-
mentation’s throughput peaks at around 64 connections,
with about 1.7 times the throughput of the Linux imple-
mentation with the same concurrency.

With more than 64 connections, we then see that
Linux’s throughput maintains the same rate, while
EbbRT’s gradually degrades. The source of degradation
for EbbRT is shown in Figure 5. We see that the main
degradation is in the performance of the LWIP receive
performance. Examining the code, we find that each re-
ceive ends up traversing a linked list of all the connec-
tions. Moreover, LWIP moves the most recently used con-
nection to the front of the list, causing most accesses for
this benchmark to need to traverse the entire list. We be-
lieve that this degradation stops once we hit a concurrency
of 256, because the number of concurrent packets exceeds
the ring buffer of the device, resulting in TCP retries, and
slowing down some clients resulting in the LWIP opti-
mization having less of a negative consequence.

This figure also demonstrates another important point.
Even in our highly optimized environment, at low con-
currency, the total time spent in application code is only
around 15% of the total execution time for a single mem-
cached operation. This demonstrates the importance of
optimizing system software for this kind of application.

Figure 6 shows the performance of memcached, with a
fixed concurrency of 64 sockets (our peak) as we increase
the payload size. We see that EbbRT is able to process
packets at a high enough rate to saturate the network at
around 800 bytes, while the implementation on Linux is
not able to saturate the network until packets are around
2 kilobytes. Note, the dip in performance for both im-
plementations occurs when they segment packets across
multiple ethernet frames. We are investigating the source
of the sawtooth shown in EbbRT’s throughput as payload
sizes become large.

Discussion We see from the performance data above
that we are able to achieve major performance gains over
the linux based implementation. Under peak conditions,
with small payloads the EbbRT memcached implementa-
tion is able to handle 1.7 times as many requests as the
Linux implementation and saturate the network at a much

8



100 200 300 400 500

Connections

50k

100k

150k

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

EbbRT memcached 
Linux memcached 

Figure 4: Memcached throughput as a function of number
of concurrent clients

32 64 128 256 512
Connections

1

2

3

4

5

6

7

8

Ti
m

e 
(m

ic
ro

se
co

nd
s)

VirtIO Out
VirtIO In

Memcached
lwIP Out

lwIP In

Figure 5: Per-request latency breakdown of EbbRT mem-
cached

smaller packet size. The current performance degrada-
tion is due to the LWIP library we use for TCP/IP. While
LWIP is small and simple to port it is not designed or opti-
mized for high-performance compared to Linux’s mature
and server grade protocol stack. Not only is its perfor-
mance under load problematic, but it does not have sup-
port for hardware optimizations like segmentation offload.
As with other systems [26], we expect to need to imple-
ment/port a more performant TCP implementation over
time.

To understand why performance is so much better with
the EbbRT implementation, its worthwhile to compare
what has to happen with the Linux implementation to the
EbbRT based one. With Linux, the application calls epoll
(a context switch), the kernel wakes it up when a packet
arrives (context switch), the application then reads the
data (context switch and copy) and then writes a reply (an-
other context switch and copy). In contrast with EbbRT all
these system calls and copies are avoided; EbbRT results
in fewer context switches and buffer copies than Linux on

0 500 1000 1500 2000 2500 3000

Payload Size (KB)

50

100

150

Ra
te

 (M
B/

s)

EbbRT memcached 
Linux memcached 

Figure 6: Memcached throughput as a function of payload
size

every client request.
One option with an EbbRT implementation is to make

optimizations that are brittle in that they are application
specific and perform poorly for other applications. For
example, we found that under extremely heavy load a mi-
nor performance improvement resulted when we handled
packets in reverse order, since starving some clients under
very heavy load limited the number of TCP timeouts ob-
served. This same change resulted in orders of magnitude
degradation on a simple tcp streaming benchmark. While
this optimization is not that significant (and was not used
while gathering the earlier results), it demonstrates how
a very brittle change, that only performs well for just one
application, is a reasonable option in a system like EbbRT.

The results we have obtained are consistent with
Chronos[21], which achieved similar performance on top
of Linux by bypassing the operating system. The two
projects have adopted very different approaches to achieve
the same goal. It is certainly possible to provide functions
on a general purpose OS that allow applications to be de-
veloped that bypass any specific OS functionality. How-
ever, doing so results in significant OS complexity. Now
that we can easily provision nodes on an IaaS cloud, we
believe the EbbRT design provides a natural alternative to
supporting the performance demanding applications that
are a poor match for our general purpose systems, and
alleviate the burden on commodity OSs to be simultane-
ously general purpose and robust while also needing to be
special purpose and customized for a single application.

Perhaps the most important result of this memcached
experiment is that the application took only 277 lines
of original code to implement. The effort of developing
EbbRT has made it possible for very simple applications
to be written very close to the hardware.

Our experience developing memcached also demon-

9



strates that EbbRT is a natural match for the intrinsic event
driven nature of this kind of application. Applications like
memcached, which are fundamentally about handling net-
working events, are a mismatch for general purpose OSes,
on which they have to construct an event model on top of
threads within a protection domain isolated from the de-
vice.

It should be noted that our current implementation of
memcached is limited to one core. While EbbRT is de-
signed to efficiently support multi-core applications, the
LWIP library we are using limit our multicore perfor-
mance. Removing this barrier is, for now, future work.

4.2 NodeJS

This case study describes the port of node.js, a javascript
environment for server-side applications, to EbbRT. It il-
lustrates three points: 1) That EbbRT can support com-
plex managed code environments, allowing existing soft-
ware to run unmodified on the library OS back ends.
2) How EbbRT’s non-preemptive, event-driven execution
environment is suitable for even large, complex applica-
tions such as node.js. 3) That OS functionality can be
offloaded to a general purpose OS, easing the effort of
porting to the EbbRT library OS.

Node.js links with several libraries to provide its event-
driven environment. In particular, the two libraries
which involved the most effort to port were V8, Google’s
javascript engine written in C++, and libuv, a library writ-
ten in C which abstracts OS functionality and callback
based event-driven execution. Porting V8 was relatively
straightforward as EbbRT supports the C++ standard li-
brary which V8 depends on. Additional OS dependent
functionality such as clocks, timers and virtual memory
are provided by the base Ebbs of the system.

Porting libuv required significantly more effort. There
are over one hundred functions in the libuv interface
which have OS specific implementations. We did not im-
plement all of these functions, only those we reached in
the process of running various Node.js applications.

Libuv manages an event loop which dispatches call-
backs installed by the application. The application must
execute the uv run function to begin dispatching events.
In the Linux implementation, installing a callback for
reading data from a tcp socket is implemented by inform-
ing Linux of the desire to be notified when the tcp socket
is available for reading, this is done via the epoll sys-
tem call. In contrast, the EbbRT implementation installs a
callback to be invoked by the Network Manager when tcp
data arrives. The implementation of uv run must then
save its context (stack and a few general purpose regis-

ters) to be woken up when the callback is invoked. How-
ever, this callback executes on a separate stack from the
uv run stack. The callback can synchronously activate
the previously saved context to execute the callback han-
dler installed by the application. These context switches
are much simpler than equivalent context switches on gen-
eral purpose OSs because they do not involve a protection
domain crossing and due to the lack of pre-emption, do
not have to save many registers (only those that are callee
saved as mandated by the ABI). This allows the libuv call-
backs to be invoked synchronously from the hardware in-
terrupt that caused it in much the same way that the mem-
cached application was able to.

We were able to implement the networking interfaces
provided by libuv in this fashion by installing callbacks
to reactivate the uv run context and invoke the appli-
cation callbacks. This was sufficient to allow us to run
node.js applications including tcp stream processors and
web servers.

Filesystem access was implemented by invoking a
FileSystem Ebb linked into the application. Rather than
implement a file system and hard disk driver, our imple-
mentation offloaded calls to a representative running in a
Linux process. Specifically our implementation of Libuv
invokes the FileSystem Ebb which performs the offload
by sending messages between its representatives. Our im-
plementation of the FileSystem Ebb is naı̈ve, sending mes-
sages and incurring round trip costs for every access rather
than caching data. This allowed us to quickly get the rich
functionality provided by the Linux filesystem with min-
imal development effort. Implementing a caching layer
would require only changes to the FileSystem Ebb, with-
out modifications to libuv.

Offloading allows us to execute node.js by launching a
Linux process linked into the EbbRT library which then
allocates a node loaded with the EbbRT library OS linked
to node.js. Node.js can, via an Ebb, read the command
line arguments that were originally passed to the Linux
process. This then indicates the filename of the node.js
script which is fetched from the Linux process and then
loaded. This model allows us to rapidly spawn node.js
instances on their own machine with integration via the
frontend file system.

4.2.1 Discussion

In the memcached scenario, we demonstrated that EbbRT
benefits applications by allowing them to map more
closely to the hardware. Our memcached implementa-
tion was written directly to our base interfaces. Many ap-
plications, however, are too large to consider completely
rewriting to target EbbRT, despite potential performance

10



improvements. Node.js offers us a number of different
layers to consider for porting. One could have ported
at the system call layer and emulated Linux and linked
directly to the Linux libuv implementation. The Linux
libuv implementation in many cases uses a thread pool to
make blocking system calls in cases where Linux has poor
support for non-blocking interfaces. EbbRT can support
the libuv interfaces more directly and so we opted to do
the port at that layer. This illustrates EbbRT’s suitabil-
ity for an increasingly popular programming paradigm.
Many cloud applications such as nginx [33], memcached,
node.js, are designed to be event driven and depend on
various event libraries to abstract the OS interfaces de-
signed for event dispatch. EbbRT natively provides these
interfaces and provides natural mappings for these appli-
cations.

The port of node.js (including V8 and libuv) is 1585
lines of code of which the majority (1237) is in the port of
libuv. The port took a single graduate student two weeks
to bring to level of completion where we were able to
run node.js webservers capable of serving files (exercis-
ing both networking and file access interfaces). The final
boot image which is generated is 5.76 megabytes in total
size.

A key result of this port is the ability to run complex ap-
plications without requiring modification to the system’s
base layers. The node.js application uses the same Event
Manager and Networking Manager as the memcached ap-
plication. We found no need for pre-emption while port-
ing this application. This provides evidence that our ap-
proach leads to constructing reusable software, without
which the effort to port applications to EbbRT would be
daunting.

Had we needed to construct an execution environment
for node.js which was orthogonal to the environment used
by memcached, it would be difficult to argue that our ap-
proach is practical. The software written for one environ-
ment would not be able to interact with the software in
another. The primitives provided by EbbRT are simple
and lightweight, allowing for the optimizations exploited
in the memcached application, yet the same primitives are
also expressive enough to be suitable for a wide range of
different applications.

From a networking perspective, node.js running on
EbbRT has the same kind of performance advantages as
in the memcached use case described above. This work
also opens up the door for other performance advantages
in optimizing the managed runtime to take full advantage
of direct control of the page table and event dispatching
for sake of improved garbage collection, memory man-
agement, and thread management [3, ?].

4.3 Sage

In this case study we extend Sage (mathematics
software)[1] with EbbRT. This study demonstrates how
a process running on a general purpose OS can elastically
exploit an IaaS by offloading functionality to specialized
library OSs.

Sage is an open source mathematics environment sim-
ilar to Matlab. It provides many common math library
routines and objects through a Python interface (typically
accessed via an interactive shell). One limitation of Sage
is that all of its standard routines and objects are designed
to execute on a single machine and do not scale. Sage does
support MPI interfaces but this puts the burden on a math-
ematical user to write explicit parallel code and requires
users to setup a dedicated static MPI cluster. EbbRT inte-
gration into Sage provides a path for using IaaS resources
to transparently enable a user to do large scale parallel
computation with no additional burden.

EbbRT EbbRT EbbRT

EbbRTEbbRTEbbRT

SAGE

LINUX

EbbRT MatrixEbb

Figure 7: EbbRT Sage Matrix Integration.

Sage incorporates many software libraries; porting the
entire Sage environment would be a significant investment
in developer time. We instead, explore the ability to use
EbbRT to incrementally modify existing applications.

We created a Python module which can be dynamically
loaded into the Sage environment. This module links with
the EbbRT Linux library and provides a python matrix ob-
ject which wraps a matrix Ebb. When this python matrix
is instantiated at the command line an instance of the ma-
trix Ebb is constructed to back it. When calls are made
to the python matrix object they are forwarded to the ma-
trix Ebb which may internally distribute its functionality
to satisfy its interface. Figure 7 illustrates the realized
runtime structure.

In our particular matrix Ebb implementation, the rep-
resentative running within the Sage process on Linux al-
locates nodes from the Node Allocator booted with the
EbbRT Library OS to hold a fixed tile of the matrix val-
ues and perform the core computations on that matrix
tile. The matrix Ebb links with the Boost uBLAS library
to provide local matrix operations. Nodes are allocated
lazily, when an operation requires a particular portion of

11



the matrix for the first time. This structure allows for ma-
trix operations to be done both lazily and in parallel. For
example, as matrix elements are set, the Linux represen-
tative will allocate nodes as necessary to store the tile of
the matrix that the element belongs to. Operations of the
matrix Ebb such as element-wise randomization can nat-
urally be done in parallel across the tiles. Our matrix Ebb
implements a number of matrix operations such as sum-
mation, multiplication, element-wise randomization, and
element access.

The EbbRT Library OS is well suited for offloading
computationally expensive functionality because it allows
the application complete control of the hardware. For
example, interrupts are disabled which prevents context
switches from causing cache pollution to slow down the
computation. Additionally, complete control over mem-
ory allows the use of large pages to reduce TLB con-
tention.

From the perspective of a user at the Sage console, the
matrix behaves just as any other python object. In fact, if
an instance of the matrix object is garbage collected (per-
haps due to the python variable going out of scope), the
underlying Ebb is destroyed and any nodes that were al-
located are freed to the NodeAllocator. This is a feature
of the particular matrix ebb implementation. A different
implementation may colocate matrices on the same nodes
in which case it’s destruction logic would encapsulate the
dependency. Ebb encapsulation ensures that such differ-
ences in implementation would not impact Sage or the
python module.

4.3.1 Discussion

The performance of the matrix operations that we have
implemented as Ebbs is what one would expect from a dis-
tributed tile oriented matrix implementation. Fundamen-
tally, the point of this exercise was not a demonstration
our particular matrix Ebb’s parallel superiority but rather
in EbbRT’s ability to extend Sage with a distributed ma-
trix Ebb and have it naturally and transparently used.

EbbRT’s MultiLibOS design and implementation en-
able a customized version of a front-end library and back-
end library OS to be developed that targets a core applica-
tion function that can be integrated in to an existing com-
plex application stack. Our implementation was able to
introduce fine grain elasticity into Sage where IaaS node
consumption grows and shrinks with not only the number
of matrix instances but even more finely with the active
tiles of large matrices.

This study illustrates that EbbRT can be an effective
tool for evolving the use of IaaS resources. Novel uses
of an IaaS can be evolved by extending existing applica-

tions with EbbRT. Libraries of reusable Ebbs that target
core primitives such as various types of matrices and as-
sociated operations can be developed. The libraries can
be used to explore the incremental acceleration of many
applications in addition to the wholesale development of
new applications. As IaaS providers evolve support for
higher performance data-center interconnects with fea-
tures such as RDMA and native support for collective and
reduce operators[6], EbbRT libraries can enable direct ap-
plication use.

5 Conclusion
We have introduced a new system software runtime called
EbbRT. EbbRT explores a unique system architecture,
where general purpose OSs are augmented by small li-
brary OSs to exploit the features of an IaaS provider. Our
system adopts a non-preemptive execution model which
allows the event driven nature of modern cloud appli-
cations to take advantage of the hardware directly. We
also explore a new partitioned object model, called Ebbs,
which encapsulate distributed software, allowing compo-
nents to be independently customized and reused.

Our runtime allows applications to run software on
our lightweight library operating system without requir-
ing large investment in porting existing, non-performance
critical functionality. We have demonstrated through our
memcached implementation that by allowing applications
to more directly exploit the hardware, significant perfor-
mance advantages can be realized. Our node.js port shows
that by offloading functionality, we can rapidly port rich
applications to reap the benefits of library operating sys-
tems. Finally, our Sage application shows how we can
integrate our library with existing applications to enable
the use of IaaS resources in a fine-grain fashion.

In contrast to a conventional operating system, which
at some level can be defined to be complete, EbbRT is in-
tended to provide a structure for constantly evolving sys-
tem software to meet new application needs and hardware.
Results presented in this paper give us some confidence
that the architecture will be flexible enough to meet this
challenge.

Serious open questions remain about our system de-
sign. One important assumption of this work is that IaaS
providers will further improve the ability to rapidly provi-
sion hardware on demand. We fear that some value of our
system will be lost if this does not bear true. Another sig-
nificant concern is that the development of different appli-
cations will lead to large vertical stacks of software which
do not compose. Many different implementations of sys-
tem software may also cause a significant configuration

12



challenge. It remains to be seen how these challenges im-
pact the system.

References
[1] Sage.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young. Mach: A
new kernel foundation for unix development. pages
93–112, 1986.

[3] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. Van Hensbergen, and R. W. Wisniewski. Libra: A
Library Operating System for a Jvm in a Virtualized
Execution Environment. In Proceedings of the 3rd
International Conference on Virtual Execution En-
vironments, VEE ’07, pages 44–54, New York, NY,
USA, 2007. ACM.

[4] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: Effective ker-
nel support for the user-level management of paral-
lelism. In Proceedings of the Thirteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’91,
pages 95–109, New York, NY, USA, 1991. ACM.

[5] J. Appavoo, D. D. Silva, O. Krieger, M. Auslander,
M. Ostrowski, B. Rosenburg, A. Waterland, R. W.
Wisniewski, J. Xenidis, M. Stumm, and L. Soares.
Experience distributing objects in an smmp os. ACM
Trans. Comput. Syst., 25(3), Aug. 2007.

[6] J. Appavoo, A. Waterland, and V. Uhlig. Project
Kittyhawk: building a global-scale computer. ACM
SIGOPS Operating Systems Review, 42(1):77, Jan.
2008.

[7] H. Bal, M. F. Kaashoek, and A. S. Tanenbaum. A
distributed implementation of the shared data-object
model. In IN USENIX WORKSHOP ON EXPE-
RIENCES WITH BUILDING DISTRIBUTED AND
MULTIPROCESSOR SYSTEMS, pages 1–19, 1989.

[8] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,
J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt.
Composing os extensions safely and efficiently with
bascule. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, EuroSys
’13, pages 239–252, New York, NY, USA, 2013.
ACM.

[9] A. Baumann, M. Peinado, G. Hunt, K. Zmudzinski,
C. Rozas, and M. Hoekstra. Secure execution of un-
modified applications on an untrusted host. In Work
in Progress - SOSP’13, 2013.

13



[10] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: safe user-
level access to privileged cpu features. In Proceed-
ings of the 10th USENIX conference on Operat-
ing Systems Design and Implementation, OSDI’12,
pages 335–348, Berkeley, CA, USA, 2012. USENIX
Association.

[11] M. Ben-Yehuda, O. Peleg, O. A. Ben-Yehuda,
I. Smolyar, and D. Tsafrir. The nonkernel: A ker-
nel designed for the cloud. In Proceedings of the
4th Asia-Pacific Workshop on Systems, APSys ’13,
pages 4:1–4:7, New York, NY, USA, 2013. ACM.

[12] G. Brun-Cottan and M. Makpangou. Adaptable
Replicated Objects in Distributed Environments.
Research Report RR-2593, 1995. Projet SOR.

[13] A. Dunkels. lwip - a lightweight tcp/ip stack.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An Operating System Architecture for
Application-level Resource Management. In Pro-
ceedings of the Fifteenth ACM Symposium on Oper-
ating Systems Principles, SOSP ’95, pages 251–266,
New York, NY, USA, 1995. ACM.

[15] B. Fitzpatrick. Distributed caching with mem-
cached. Linux J., 2004(124):5–, Aug. 2004.

[16] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm.
Tornado: Maximizing Locality and Concurrency in
a Shared Memory Multiprocessor Operating Sys-
tem. In Proceedings of the third symposium on Op-
erating systems design and implementation, OSDI
’99, pages 87–100, Berkeley, 1999. USENIX Asso-
ciation.

[17] Google. V8 javascript engine.

[18] P. Homburg, M. V. Steen, and A. S. Tanenbaum.
Distributed shared objects as a communication
paradigm. In In Proc. of the Second Annual ASCI
Conference, pages 132–137. University Press, 1996.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-
scale Systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Confer-
ence, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[20] Joyent. Node.js.

[21] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and
A. Vahdat. Chronos: Predictable Low Latency for
Data Center Applications. In Proceedings of the
Third ACM Symposium on Cloud Computing, SoCC
’12, pages 9:1–9:14, New York, NY, USA, 2012.
ACM.

[22] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El,
D. Marti, and V. Zolotarov. OSv—Optimizing the
Operating System for Virtual Machines. In 2014
USENIX Annual Technical Conference (USENIX
ATC 14), pages 61–72, Philadelphia, PA, June 2014.
USENIX Association.

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Trans.
Comput. Syst., 18(3):263–297, Aug. 2000.

[24] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski,
J. Appavoo, M. Butrico, M. Mergen, A. Waterland,
and V. Uhlig. K42: building a complete operating
system. In Proceedings of the 1st ACM SIGOPS/Eu-
roSys European Conference on Computer Systems
2006, EuroSys ’06, pages 133–145, New York, NY,
USA, 2006. ACM.

[25] Y. Li, R. West, and E. Missimer. A virtualized sep-
aration kernel for mixed criticality systems. In Pro-
ceedings of the 10th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environ-
ments, VEE ’14, pages 201–212, New York, NY,
USA, 2014. ACM.

[26] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library Operating Sys-
tems for the Cloud. SIGPLAN Not., 48(4):461–472,
Mar. 2013.

[27] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and
M. Shapiro. Fragmented Objects for Distributed Ab-
stractions. In T. L. Casavant and M. Singhal, editors,
Readings in Distributed Computing Systems, pages
170–186. IEEE Computer Society Press, 1994.

[28] D. Mosberger and L. L. Peterson. Making Paths Ex-
plicit in the Scout Operating System. In Proceed-
ings of the Second USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI ’96,
pages 153–167, New York, NY, USA, 1996. ACM.

[29] R. Nikolaev and G. Back. Virtuos: An operating
system with kernel virtualization. In Proceedings

14



of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 116–132, New
York, NY, USA, 2013. ACM.

[30] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The Operating System is the Control Plane.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–16,
Broomfield, CO, Oct. 2014. USENIX Association.

[31] N. Piggin. Slqb - and then there were four.

[32] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the Library OS from
the Top Down. In Proceedings of the sixteenth in-
ternational conference on Architectural support for
programming languages and operating systems, AS-
PLOS ’11, pages 291–304, New York, NY, USA,
2011. ACM.

[33] W. Reese. Nginx: The high-performance web server
and reverse proxy. Linux J., 2008(173), Sept. 2008.

[34] B. Rhoden, K. Klues, D. Zhu, and E. Brewer. Im-
proving per-node efficiency in the datacenter with
new os abstractions. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, SOCC ’11, pages
25:1–25:8, New York, NY, USA, 2011. ACM.

[35] M. Shapiro. SOS: A Distributed Object-oriented
Operating System. In Proceedings of the 2Nd Work-
shop on Making Distributed Systems Work, EW 2,
pages 1–3, New York, NY, USA, 1986. ACM.

[36] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In Proceed-
ings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer
Communications, SIGCOMM ’01, pages 149–160,
New York, NY, USA, 2001. ACM.

[37] R. C. Unrau, O. Krieger, B. Gamsa, and M. Stumm.
Hierarchical clustering: A structure for scalable
multiprocessor operating system design. J. Super-
comput., 9(1-2):105–134, Mar. 1995.

[38] M. Welsh, D. Culler, and E. Brewer. Seda: An archi-
tecture for well-conditioned, scalable internet ser-
vices. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01,
pages 230–243, New York, NY, USA, 2001. ACM.

[39] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An Operating System for Multicore and
Clouds: Mechanisms and Implementation. In Pro-
ceedings of the 1st ACM symposium on Cloud com-
puting, SoCC ’10, pages 3–14, New York, NY, USA,
2010. ACM.

[40] D. A. Wheeler. generated using david a. wheeler’s
’sloccount’.

15


	Introduction
	EbbRT Context
	Library OSes
	Event Driven Software
	Partitioned Object Models

	Architecture and Prototype
	Architecture
	Base Software mechanisms
	System Base Ebbs
	Application Specific Ebbs

	Prototype
	Example

	Evaluation
	Memcached
	Implementation
	Evaluation

	NodeJS
	Discussion

	Sage
	Discussion


	Conclusion

