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Article

A lightweight virtual machine
monitor for Blue Gene/P

Jan Stoess1,3, Udo Steinberg2, Volkmar Uhlig3, Jens Kehne1,
Jonathan Appavoo4 and Amos Waterland5

Abstract
In this paper, we present a lightweight, micro-kernel-based virtual machine monitor (VMM) for the Blue Gene/P
supercomputer. Our VMM comprises a small m-kernel with virtualization capabilities and, atop, a user-level VMM com-
ponent that manages virtual Blue Gene/P cores, memory, and interconnects; we also support running native applications
directly atop the m-kernel. Our design goal is to enable compatibility to standard operating systems such as Linux on BG/P
via virtualization, but to also keep the amount of kernel functionality small enough to facilitate shortening the path to
applications and lowering operating system noise.

Our prototype implementation successfully virtualizes a Blue Gene/P version of Linux with support for Ethernet-based
communication mapped onto Blue Gene/P’s collective and torus network devices. Our first experiences and experiments
show that our VMM still shows a substantial performance hit, and that support for native application environments is a key
requirement towards fully exploiting the capabilities of a supercomputer. Altogether, our approach poses an interesting
operating system alternative for supercomputers, providing the convenience of a fully featured commodity software stack,
while also promising to deliver the scalability and low latency of an HPC operating system.
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1 Introduction

A substantial fraction of supercomputer programmers

today write software using a parallel programming run-

time such as MPI on top of a customized lightweight

kernel. For Blue Gene/P (BG/P) machines in production,

IBM provides such a lightweight kernel called Compute

Node Kernel (CNK) (Giampapa et al., 2010). CNK runs

tasks massively parallel, in a single-thread-per-core fash-

ion. Like other lightweight kernels, CNK supports a subset

of a standardized application interface (POSIX), facilitat-

ing the development of dedicated (POSIX-like) applica-

tions for a supercomputer. However, CNK is not fully

POSIX-compatible: it lacks, for instance, comprehensive

scheduling or memory management as well as standards-

compatible networking or support for standard debugging

tools. CNK also supports I/O only via function-shipping

to I/O nodes.

CNK’s lightweight kernel model is a good choice for

the current set of BG/P HPC applications, providing low

operating system (OS) noise and focusing on performance,

scalability, and extensibility. However, today’s HPC

application space is beginning to scale out towards exascale

systems of truly global dimensions, spanning companies,

institutions, and even countries. The restricted support for

standardized application interfaces of lightweight kernels

in general, and CNK in particular, renders porting the

sprawling diversity of scalable applications to supercompu-

ters more and more a bottleneck in the development path

of HPC applications.

In this paper, we explore an alternative, hybrid OS

design for BG/P: a m-kernel-based virtual machine monitor

(VMM). At the lowest layer, in kernel mode, we run a

m-kernel that provides a small set of basic OS primitives for

constructing customized HPC applications and services at

user level. We then construct a user-level VMM that fully
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virtualizes the BG/P platform and allows arbitrary Blue

Gene OSs to run in virtualized compartments. We finally

construct a native communication library that directly

interfaces with BG/P’s high-performance torus intercon-

nect, demonstrating the benefits of a �-kernel to native

HPC application development.

The benefits of a �-kernel-based VMM architecture are

twofold: on the one hand, it provides compatibility with

BG/P hardware, allowing programmers to ship the OS they

require for their particular applications along with it, like

a library. For instance, our VMM successfully virtualizes

a Blue Gene version of Linux with support for Ethernet-

based communication, allowing virtually any general-

purpose Linux application or service to run on BG/P.

On the other hand, our �-kernel also resembles the light-

weight kernel approach in that it reduces the amount of ker-

nel functionality to basic resource management and

communication. Those mechanisms are available to native

applications running directly on top of the �-kernel, and

programmers can use them to customize their HPC applica-

tions for better efficiency and scalability, and to directly

exploit the features of the tightly interconnected BG/P

hardware. However, �-kernel and VMM architectures also

imply a potential penalty for efficiency, as they increase

kernel-user interaction and add another layer of indirection

to the system software stack. Nevertheless, the need for

standardized application interfaces is becoming more

prevalent, and we expect our work to be an insightful step

towards supporting such standardization on supercomputer

platforms.

Altogether, our architecture strives to facilitate a path

for easy development and porting of applications to the

supercomputer world, where programmers can run a virtua-

lized version of any general-purpose, scalable, and distrib-

uted application on Blue Gene without much hassle; but

where they can also customize those applications for better

efficiency and scalability, with help from the �-kernel’s

native interface.

The idea of a virtualization layer for HPC systems is

not new (Lange et al., 2010), nor is the idea of using a

decomposed VMM architecture to deliver predictable

application performance (Heiser and Leslie, 2010). How-

ever, to our knowledge, this is the first approach to pro-

vide a commodity system software stack and hide the

hardware peculiarities of a highly customized HPC

architecture such as BG/P, while still being able to run

hand-optimized code side-by-side. The initial results are pro-

mising: Our prototype based on the L4 �-kernel fully virtua-

lizes BG/P compute nodes and their high-performance

network interconnects, and successfully runs multiple

instances of a BG/P version of Linux.

The rest of the paper is structured as follows: Section 2

presents the basic architecture of our �-kernel-based virtua-

lization approach for BG/P. Section 3 presents details of the

�-kernel and Section 4 presents details of our user-level

VMM component. Section 5 gives details of native applica-

tion support. Finally, Section 6 presents an initial evalua-

tion of our prototype, followed by related work in

Section 7 and a summary in Section 8.

2 System overview

In this section, we present the design of our decomposed

VMM for BG/P. We start with a very brief overview of the

BG/P supercomputer: The basic building block of BG/P is a

compute node, which is composed of an embedded quad-

core PowerPC, five networks, a DDR2 controller, and either

2 or 4 GB of RAM, integrated into a system-on-a-chip

(Figure 1). One of the largest BG/P configurations is a

256-rack system of two mid-planes each, which, in turn,

comprise 16 node cards with 32 nodes each, totaling over

1 million cores and 1 PB of RAM. BG/P features three key

Figure 1. Blue Gene/P compute node card.
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communication networks, a torus, and a collective intercon-

nect, and an external 10GE Ethernet network on I/O nodes.

The basic architecture that we used is illustrated in

Figure 2. We use an enhanced version of the L4 �-kernel

as the privileged supercomputer kernel (Liedtke, 1995).

Our BG/P implementation uses a recent L4 version named

L4Ka::Pistachio (L4 Development Team, 2009). Tradi-

tional hypervisors such as Xen (Pratt et al., 2005) or

VMware (Agesen et al., 2010) are virtualization-only

approaches in the sense that they provide virtual hardware

– virtual CPUs, memory, disks, networks, etc. – as first

class abstractions. L4 is different in that it offers a limited

set of OS abstractions to enforce safe and secure execution:

threads, address spaces, and inter-process communication

(IPC). These abstractions are at a sufficiently low level to

allow the construction of an efficient virtualization layer

atop, as has been demonstrated on commodity systems

(Härtig et al., 1997; Le Vasseur et al., 2004).

While L4 provides core primitives, the actual VMM func-

tionality is implemented as a user-level application outside

the privileged kernel. The basic mechanics of such an L4-

based VMM is as follows: L4 merely acts as a safe messa-

ging system propagating sensitive guest instructions to a

user-level VMM. That VMM, in turn, decodes each instruc-

tion, emulates it appropriately and then responds with a fault

reply message that instructs L4 to update the guest VM’s

context and then to resume guest VM execution.

Our decomposed, �-kernel-based VMM architecture has

benefits that are particularly interesting on HPC systems:

Since L4 provides a minimal yet sufficiently generic

abstraction, it also supports native applications that can

bypass the complete virtualization stack whenever they need

performance. Hybrid configurations are also possible: An

application can be started within a guest VM, with access

to all legacy services of the guest kernel; for improved effi-

ciency, it can later choose to employ a native HPC library

(e.g. an MPI library running directly atop L4). In the follow-

ing, we will first describe how L4 facilitates running a VMM

atop; we will then describe the user-level VMM part in the

subsequent section.

3 A micro-kernel with
virtualization capabilities

In our architecture, L4 acts as the privileged part of the

VMM, responsible for partitioning processors, memory,

device memory, and interrupts. Our virtualization model

is largely common to L4’s normal execution model. We

use: (a) L4 threads to virtualize the processor; (b) L4

memory-mapping mechanisms to provide and manage

guest-physical memory, and (c) L4 IPC to allow emulation

of sensitive instructions through the user-level VMM.

However, in virtualization mode, threads and address

spaces have access to an extended instruction set architec-

ture (ISA) and memory model (including a virtualized

translation look-aside buffer), and have restricted access

to L4-specific features, as we will describe in the following.

3.1 Virtual PowerPC processor

L4 virtualizes cores by mapping each virtual CPU (vCPU)

to a dedicated thread. Threads are schedulable entities, and

vCPUs are treated equally: They are dispatched regularly

from a CPU-local scheduling queue, and they can be moved

and load-balanced among individual physical processors

through standard L4 mechanisms.

In contrast to recent x86 and PowerPC based archi-

tectures, BG/P’s cores are based on the widely used

embedded 440 architecture, which has no dedicated sup-

port to facilitate or accelerate virtualization. However,

also in contrast to the x86 architecture, PowerPC is much

more virtualization-friendly in the first place: The ISA

supports trap-based virtualization, and fixed instruction

lengths simplify decoding and emulating sensitive

instructions. L4 employs such a trap-and-emulate style

virtualization method by compressing PowerPC privilege

levels. L4 itself runs in supervisor mode, while the guest

kernel and user land both run in user mode (although with

different address space IDs, as described in Section 3.2).

Guest application code runs undisturbed, but whenever

the guest kernel issues a sensitive instruction, the proces-

sor causes a trap into L4.

IPC-based virtualization Unlike traditional VMMs, L4

does not emulate all sensitive instructions itself. Unless an

instruction is related to the virtual translation look-aside

buffer (TLB) or can quickly be handled, like the modifica-

tion of a guest shadow register state, it hands emulation to

the user-level VMM component. Moving the virtualization

service out of the kernel makes a fast guest-VMM interac-

tion mechanism a prerequisite for efficient execution. We

therefore rely on L4 IPCs to implement the virtualization

protocol (i.e. the guest trap – VMM emulation – guest

resume cycle). In effect, L4 handles guest traps the same

way it handles normal page faults and exceptions, by

synthesizing a fault IPC message on behalf of the guest

to a designated per-vCPU exception handler (Figure 3).

During a virtualization fault IPC, the trapping guest

automatically blocks waiting for a reply message. To facil-

itate proper decoding and emulation of sensitive instruc-

tions, the virtualization IPC contains the vCPU’s current

execution state such as instruction and stack pointers and

general-purpose registers. The reply from the VMM may

contain an updated state, which L4 then transparently

Figure 2. A m-kernel based VMM virtualizing BG/P cores and
interconnects.
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installs into the vCPU’s execution frame. To retain the effi-

cient transfer of a guest vCPU state, the kernel allows the

VMM to configure the particular state to be transferred

independently for each class of faults. For instance, a VMM

may choose to always transfer general-purpose registers,

but to only transfer a TLB-related guest state on TLB-

related faults. L4 also offers a separate system call to

inspect and modify all guest states asynchronously from the

VMM. That way, we keep the common virtualization fault

path fast, while deferring loading of additional guest states

to a non-critical path.

3.2 Virtualized memory management

PowerPC 440 avoids die costs for the page table walker and

does not dictate any page table format (or even construc-

tion). Instead, address translation is based solely on a TLB

managed in software (IBM, 2006). On BG/P cores, the TLB

has 64 entries managed by the kernel. Each entry maps 32-

bit logical addresses to their physical counterparts, and can

cover a configurable size ranging from 1 KB to 1 GB. For

translation, the TLB further uses an 8-bit process identifier

(PID) and a 1-bit address space identifier (AS), which can

be freely set by the kernel, effectively implementing a

tagged TLB (Figure 4).

A normal OS only needs to provide a single level of

memory translation – from virtual to physical. A VMM,

in contrast, must support two such translation levels, from

guest-virtual to guest-physical, and from guest-physical to

host-physical memory (details og virtualized translations

can be found, e.g., in Agesen et al. (2010); KVM Team).

As PowerPC 440 hardware only supports a single translation

level, the VMM must merge the two levels when inserting

translations into the hardware TLB, effectively translating

guest-virtual to host-physical addresses. Both L4 and the

user-level VMM are involved in providing a two-level mem-

ory translation: To provide guest-physical memory, we use

L4’s existing memory management abstractions based on

external pagers (Liedtke, 1995). We then provide a second,

in-kernel virtual TLB that provides the additional notion of

guest virtual memory. We will describe the L4-specific

extensions in the following two paragraphs.

Virtual physical memory Providing guest-physical

memory is largely identical to the provisioning of normal

virtual memory: L4 treats a guest VM’s physical address

space like a regular address space and exports establishing

of translations within that address-space to a user-level

pager (which is, in this case, the user-level VMM). When-

ever a guest suffers a TLB miss, L4’s miss handler inspects

its kernel data structures to find out whether the miss

occurred because of a missing guest-physical to host-

physical translation. This is the case if the VMM has not yet

mapped the physical memory into the VM’s guest-physical

address space. If so, L4 synthesizes a page fault IPC mes-

sage to the user-level pager VMM on behalf of the faulting

guest, requesting to service the fault.

When the VMM finds the guest-physical page fault to be

valid, it responds with a mapping message, which will

cause L4 to insert a valid mapping into the TLB and then

to resume guest execution. Otherwise, the VMM may ter-

minate the VM for an invalid access to non-existing phys-

ical memory or inject a hardware exception. To keep track

of a guest’s mappings independent of the actual state of

the hardware TLB, L4 maintains them with an in-kernel

database. Should the user-level VMM revoke a particular

mapping, L4 flushes the corresponding database and hard-

ware TLB entries.

Virtual TLB Emulating virtual address translations and

the TLB is extremely critical for the overall performance of

a VMM. For that reason, most virtualization-enabled hard-

ware platforms have specific support such as recent x86

processors (Bhargava et al., 2008) or embedded PowerPC

processors (IBM, 2009). On BG/P, we lack such support

and reverted to a software solution using a table shadowing

the hardware TLB, which we hence call virtual TLB. In

order to further reduce the cost of TLB updates, we employ

HARDWAREVM

vTLB
GV  GP

VMM

pTLB
GP HP

MSR.DS
MSR.IS

PID

AS1 TID8 Physical Address36

GV HP

Figure 4. Merging two levels of virtualized address translation into a single-level hardware TLB.

PC
EXC

GPRegs

Virtualization Fault IPC IPC Reply

CPUCPU

L4

User
Level

CPUs

VM VMM VMVMM PC’
EXC’

GPRegs’

Figure 3. vCPU exits are propagated to the VMM as IPC messages; the user-level VMM responds by sending back a reply IPC message
resuming the guest.
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a number of heuristics and tracking methods. From a secu-

rity perspective we only need to ensure that the hardware

TLB always contains a subset of the virtual TLB.

L4 provides a virtual TLB, which the guest has access to

via normal (but trapped) hardware instructions for TLB

management. While the management of guest-physical

memory involves the user-level VMM, our solution for

guest-virtual memory is L4-internal: Whenever the guest

kernel accesses the virtual TLB, L4’s internal instruction

emulator stores those entries into a per-VM virtual TLB

data structure. On a hardware TLB miss, L4’s miss handler

parses that data structure to find out whether the guest has

inserted a valid TLB mapping into its virtual TLB for the

given fault address. If not, it injects a TLB miss fault into

the guest VM to have the miss handled by the guest kernel.

If the virtual TLB indeed contains a valid entry, L4 checks

its mapping database to find out whether the miss occured

at the second stage, from guest-physical to host-physical. If

that translation is valid as well, L4 inserts the resulting

guest-virtual to host-physical mapping into the hardware

TLB and resumes the VM; if it turns out to be missing,

L4 synthesizes a page fault IPC to the VMM, as discussed

in the previous paragraph.

Virtual address space protection Finally, a VMM

must virtualize not only the translation engine of the TLB

but also its protection features. Again, the virtualization

logically requires two levels, allowing the guest to use the

virtual TLB’s protection bits and identifiers in the same

manner as on native hardware, but, at the second level, also

permitting L4 and its user-level address spaces to shield

their data from being accessed by guest kernel and applica-

tions. The TLB of the PowerPC 440 is very useful. The 440

can hold up to 256 address space mappings in the TLB (via

the TID field, see Figure 4). The particular mapping is cho-

sen through a processor register (TID). Address space

translation 0 is always accessible independent of which

particular mapping is active. The 440 additionally features

a 1-bit translation space, with the active translation space

being selected via processor register bits, one for instruc-

tion fetches and one for data fetches (MSR.IS,MSR.DS).

To facilitate trap-and-emulate virtualization, both guest

kernel and applications run in user mode. L4 puts the guest

kernel and user into the second translation space, and

reserves the first translation space for itself, the VMM and

native L4 applications. The processor automatically

switches to the first translation space when an interrupt or

trap occurs, directly entering L4 with trap and interrupt

handlers in place. To read guest memory when decoding

sensitive instructions, L4 temporarily switches the transla-

tion space for data fetches, while retaining the space for

instructions. Altogether, our solution allows the guest to

receive a completely empty address space, but on any

exception, the processor switches to a hypervisor-owned

address space. That way, we keep virtualization address

spaces clean without the need for ring compression as done

on x86 systems lacking hardware virtualization (Uhlig

et al., 2005).

Our ultimate goal is to reduce the number of TLB

flushes to enforce protection on user-to-kernel switches.

We observed the following usage scenario for standard OSs

(e.g. Linux) and implemented our algorithm to mimic the

behavior: Common OSs map application code and data as

user and kernel accessible, while kernel code and data is

only accessible in privileged mode. We strive to make the

transition from user to kernel and back fast to achieve good

system call performance; we therefore disable the address

space mappings completely and flush the hardware TLB

on each guest address space switch (Figure 5). We then use

address space 0 for mappings that are accessible to guest

user and guest kernel. We use address space 1 for mappings

that are only guest-user accessible and address space 2 for

mappings that are only guest-kernel accessible. A privilege

level switch from guest-user to guest-kernel mode therefore

solely requires updating the address space identifier from 1

(user-mode mappings) to 2 (kernel-mode mappings).

Our virtual TLB effectively compresses guest user/ker-

nel protection bits into address space identifiers; as a result,

it requires hardware TLB entries to be flushed whenever

the guest kernel switches guest application address spaces.

Also, our scheme requires that TLB entries are flushed dur-

ing world switches between different guests. It does not

require, however, any TLB flushes during guest system

calls or other switches from guest user to kernel, or during

virtualization traps and resumes within the same VM. Thus,

we optimize for frequent kernel/user and kernel/VMM

switches rather than for address space or world switches,

as the former occur more frequently.

3.3 Interrupt virtualization

BG/P provides a custom interrupt controller called the Blue

Gene Interrupt Controller (BIC), which gathers and deli-

vers device signals to the cores as interrupts or machine

check exceptions. The BIC supports a large number (sev-

eral hundreds) of interrupts, which are organized in groups

and have different types for prioritization and routing pur-

poses. The BIC supports steering interrupts among differ-

ent cores as well as core-to-core interrupt delivery.

The original L4 version provided support for user-level

interrupt management, mapping interrupt messages and

acknowledgments onto IPC. L4 further permits user soft-

ware to migrate interrupts to different cores. Our user-level

VMM uses those L4 interrupt features to receive and

acknowledge interrupts for BG/P devices. To inject virtual

User 

Kernel L4

S U K

TID0 TID1 TID2

vTLB hwTLB

Figure 5. Virtualized TLB Protection. vTLB protection bits are
mapped to TID in the hardware TLB, with TID¼0 for shared pages.
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interrupts into the guest, the VMM modifies the guest vCPU

state accordingly, either using L4’s state modification sys-

tem call (Section 3.1), or by piggybacking the state update

onto a virtualization fault reply, in case the guest VM is

already waiting for the VMM when the interrupt occurs.

4 User-level VMM

Our user-level VMM component runs as a native L4 program,

and provides the virtualization service based on L4’s core

abstractions. It can be described as an interface layer that

translates virtualization API invocations (i.e. sensitive instruc-

tions) into API invocations of the underlying L4 architecture.

As described, L4 facilitates virtualization by means of virtua-

lization fault IPC. The user-level VMM mainly consists of a

server executing an IPC loop, waiting for any incoming

IPC message from a faulting guest VM. Upon reception, it

retrieves the VM register context that L4 has sent along,

emulates the sensitive instruction accordingly, and finally

responds with a reply IPC containing an updated vCPU state

such as result registers of the given sensitive instruction and

an incremented program counter. Before resuming the VM,

L4 installs the updated context transparently into the VM,

while the VMM waits for the next message to arrive.

4.1 Emulating sensitive instructions

Our user-level VMM largely resembles other typical VMMs

such as VMware or Xen: It contains a virtual CPU object and a

map translating guest physical memory pages into memory

pages owned by the VMM. To emulate sensitive instructions

upon a virtualization fault IPC, the VMM decodes the instruc-

tion and its parameters based on the program counter pointer

and general-purpose register file of the guest VM, which are

stored within the IPC message that was sent from L4 on behalf

of the trapping VM. For convenience, L4 also passes on the

value of the program counter, that is, the trapping instruction.

In comparison to x86 processors, which have variable-sized

instructions of lengths up to 15 bytes, fetching and decod-

ing sensitive instructions on embedded PowerPC are rather

trivial tasks, as instructions have a fixed size of 32 bits on

PowerPC. The code listing in Figure 6 illustrates the emu-

lation process by example of a move from device control

register (mfdcrx) instruction loading the value of a

device register into a general-purpose register.

4.2 Virtual physical memory

To the user-level VMM, paging a guest with virtualized

physical memory is similar to regular user-level paging

in L4 systems (Härtig et al., 1997): Whenever the guest

suffers a physical TLB miss, L4 sends a page fault IPC

containing the faulting instruction and address and other

(virtual) TLB states necessary to service the fault. In its

present implementation, the VMM organizes guest-

physical memory in linear segments. Thus, when handling

a fault, the VMM checks whether the accessed guest-

physical address is within the segment limits. If so, it

responds with a mapping IPC message that causes L4 to

insert the corresponding mapping into its database and

into the hardware TLB.

4.3 Device virtualization

Besides virtualization of BG/P cores, the main task of the

user-level VMM is to virtualize BG/P hardware devices.

L4 traps and propagates sensitive device instructions such

as moves to or from system registers (mfdcr, mtdcr),

as well as generic load/store instructions to sensitive device

memory regions. It is up to the VMM to back those trans-

actions with appropriate device models and state machines

that give the guest the illusion of real devices, and to multi-

plex them onto actual physical hardware shared among all

guests. The VMM currently provides virtual models for

Figure 6. The process of emulating device accesses in the VMM. The fixed opcode lengths of PowerPC drastically simplify decoding of
instructions.
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the BIC and for the collective and the torus network

devices. Emulation of the BIC is a rather straightforward

task: The VMM intercepts all accesses to the memory-

mapped BIC device and emulates them using L4’s

mechanisms for external interrupt handling and event

injection. The following paragraphs detail the emulation

of the collective and torus network.

Collective network BG/P’s collective network is an

over-connected binary tree that spans the whole installa-

tion. The collective is a one-to-all medium for broadcast

or reduction operations, with support for node-specific fil-

tering and a complex routing scheme that can sub-partition

the network to increase the total bandwidth. The collective

link bandwidth is 6.8 Gbit/s; hardware latencies are below

6 �s for a 72-rack system (IBM Blue Gene team, 2008).

Software transmits data over the collective network via

packets injected into two memory-mapped virtual channels.

Each packet consists of a header and 16 128-bit data words.

The packet header is written and read via general-purpose

registers, using normal load and store instructions to and

from device memory; the packet data is written and read

through the floating-point unit.

Our VMM provides a fully virtualized version of BG/P’s

collective network device. The VMM leaves device mem-

ory unmapped, so that each device register access leads to a

virtualization trap. The VMM furthermore emulates device

control registers (DCRs) used to configure the collective

network device. The corresponding instructions are sensi-

tive and directly trap to L4 and the VMM. For emulation,

the VMM provides a per-VM shadow collective network

interface model that contains virtual DCRs and, per chan-

nel, virtual injection and reception FIFOs with a virtual

header and 16 virtual FPU words per packet, as the code

snippets in Figure 7 illustrate.

The VMM registers itself to L4 as an interrupt handler for

all collective network device interrupts, which will cause L4

to emit an interrupt IPC message to the VMM whenever the

physical device fires one of its hardware interrupts. When-

ever the guest causes a packet to be sent on its virtual collec-

tive network interface, the VMM loads the corresponding

Figure 7. Storing the contents of a general-purpose or floating-point register into the respective device registers of the virtualized
collective device.
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virtual registers into the physical collective network device

(Figure 8).

Receiving data is slightly more complex: Whenever

the VMM receives an interrupt message from L4, it reads

the packet header and data from the physical device into

a private buffer, and then delivers a virtual interrupt to the

corresponding guest VM. Subsequent VM accesses to the

packet header and data are then served out of the private

buffer into the VM’s general-purpose or floating-point reg-

isters. Since copying packets induces substantial a software

overhead for the high-performance collective network path

(Section 6), we are also considering optimized virtual

packet handling by means of device pass-through and/or

para-virtualization techniques.

Torus BG/P’s torus network is the most important data

transport network with respect to bisectional bandwidth,

latency, and software overhead (Adiga et al., 2005). Each

compute node is part of the 3D torus network spanning the

whole installation. On each node, the torus device has input

and output links for each of its six neighbors, each with a

bandwidth of 3.4 Gbit/s, for a total node bandwidth of

40.8 Gbit/s. Worst-case end-to-end latency in a 64 k server

system is below 5 �s. Nodes act as forwarding routers with-

out software intervention.

The torus provides two transmission interfaces, a regular

buffer-based interface and one based on remote direct

memory access (rDMA). For the latter, the torus DMA

engine provides an advanced put/get-based interface to

read or write segments of memory from or to remote nodes,

based on memory descriptors inserted into its injection

and reception FIFOs. Each memory descriptor denotes a

contiguous region in physical memory on the local node.

To facilitate rDMA transactions (e.g. a direct-put opera-

tion copying data directly to a remote node’s memory),

software identifies the corresponding remote memory seg-

ments via a selector/offset tuple that corresponds to a descrip-

tor in the receive FIFO on the remote node (Figure 9). To

transmit data via the torus, software inserts one or more pack-

ets into a torus injection FIFO, with the packet specifying the

destination using its X,Y,Z coordinates. For non-DMA trans-

fer, the payload is embedded in the packet; for DMA transfers

(local as well as remote), the corresponding sender and recei-

ver memory segment descriptors and selectors are instead

appended to the packet.

As with the collective network, our VMM provides a

virtualized version of Blue Gene’s torus device, and traps

and emulates all accesses to torus device registers. Again,

DCR instructions directly trap into L4, while device mem-

ory accesses trap by means of invalid host TLB entries.

Again, the VMM registers itself for physical torus inter-

rupts and delivers them to the guests as needed.

However, in contrast to our virtual version of the collec-

tive network device, our virtual torus device only holds the

DMA descriptor registers, but does not copy the actual data

around during DMA send or receive operations. Instead,

it passes on guest VM memory segment descriptors from

virtual to physical FIFOs, merely validating that they

Figure 8. Sending a packet via the physical collective device; it is called by the VMM whenever the guest issues a send operation on the
virtualized collective device.

VMM
VM

pTORUS FIFO

vTORUS FIFO

OFSGPA 

OFSHPA 

Figure 9. Virtualized torus interconnect. The VMM passes
through guest VM descriptors, translating addresses from guest-
to host-physical.
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reference valid guest-physical memory before translating

them into host-physical addresses. As the VMM currently

uses simple linear segmentation (see Section 4.2), that trans-

lation is merely an offset operation and the descriptors in

physical FIFOs always reference valid guest memory.

In contrast to general-purpose virtualization environ-

ments, which typically provide virtualized Ethernet devices

including virtual MAC addresses and a virtual switch

architecture, our supercomputer VMM presently does not

provide extra naming or multiplexing of multiple virtual

torus devices. Instead, it preserves the naming of the real

world and maps virtual torus coordinates and channel iden-

tifiers idempotently to their physical counterparts. As a

result, our VMM does not fully emulate the torus network,

but merely provides safe and partitioned access to the phys-

ical torus network for individual VMs. As BG/P’s torus fea-

tures four independent DMA send and receive groups, our

VMM can supply up to four VMs with a different DMA

channel holding all its descriptors, without having to multi-

plex descriptors from different VMs onto a single FIFO.

At present, our VMM intercepts all accesses to the vir-

tual DMA groups and multiplexes them among the physical

ones. However, since DMA groups are located on different

physical pages and thus have different TLB entries, we plan,

for future versions, to directly map torus channels into guest

applications, effectively allowing them to bypass the guest

OS and hypervisor. While such a pass-through approach will

require a para-virtual torus driver (to translate guest-physical

to host-physical addresses), it can still be made safe with-

out requiring interception, as BG/P’s torus DMA engine

supports a set of range check registers that enable contain-

ment of valid DMA addresses into the guest’s allowed

allotment of physical memory.

5 Native application support

The field of research on native application frameworks for

�-kernels has been rich (Härtig et al., 2005; Kuz et al.,

2007), and has even been explored for HPC systems (Lange

et al., 2010). To a certain extent, the traditional CNK

approach for BG/P can also be termed a �-kernel effort,

since it also strives to provide a low-footprint core environ-

ment for running HPC applications. In the following

section, we describe how L4 facilitates construction of a

user-level environment that allows the running of HPC

applications as well as controlling their resource demands

and allocations such that they perform well on high-

performance hardware. We do so by means of an example:

we construct a core HPC communication library that can

be used to perform rDMA-based data transfers at the

user level. We then integrate our library into a sample

client-server application running natively atop L4.

Unlike typical HPC lightweight kernels, such as CNK or

Palacios, L4 does not make any effort to preserve Linux or

POSIX compatibility as a first-class abstraction; rather, it

provides a set of primitives that allow constructing arbitrary

OS personalities atop (amongst others, a VMM preserving

POSIX compatibility at the guest OS layer). The whole

design of L4 is centered around the idea of a single, generic,

and efficient local IPC communication primitive.

5.1 A native torus communication library

Our torus communication library is a protocol library that

allows a communication partner to read and write portions

of the memory of another partner via remote DMA. As

described in Section 4.3, the torus supports different rDMA

operations. The two most important for our library are: (a)

the remote-get function copying memory from a remote

node’s memory into the local (or a different) node’s mem-

ory; and (b) the direct-put operation copying data

directly from a local to a remote node’s memory.

The torus hardware features multiple injection and

reception FIFOs that can be used to transfer data; for rDMA

operations, the torus additionally provides four different

DMA groups (one per core) that allow offloading of the

marshaling and packetizing of memory segments to hard-

ware. To denote memory segments, the torus hardware

introduces counters, which are physically contiguous mem-

ory segments between two associated physical addresses

(base and limit); a counter additionally features a coun-

ter variable that is incremented by the data size whenever

data has been transferred via that counter, allowing soft-

ware to keep track of the data transmissions. Our library

directly exposes those functions as its main interface; in

addition, the library provides and manages the contiguous

memory segments necessary for the actual data transfer.

Thus, a typical remote-get operation in our library looks

like the one depicted in Figure 10.

In this example, the invoker instructs the torus to fetch

some data portion from the node specified by from_
coordinates and, on that node, within the memory

segment specified by counter from_ctr_id at offset

from_offset. It further instructs the torus to copy

that data portion to node to_coordinates, and again,

on that node, into the memory segment specified by

Figure 10. Issuing a remote get operation on the torus device and polling for the result.
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counter to_ctr_id at offset to_offset. The destina-

tion node usually is (but does not have to be) the invoker’s

own node. Note that the actual memory layout on the nodes

stays opaque to the user of the torus; only counter identifiers

and relative offsets need to be published to transmit data. As

also illustrated by this example, the transfer can be moni-

tored for completion by polling the receive channel. In order

to overlap torus I/O with other computation, the torus can

alternatively be configured to generate an interrupt after a

certain number of bytes has been transferred.

5.2 Memory management

As with most DMA engines, the torus rDMA engines

operates on physical addresses: As a result, memory seg-

ments used to communicate data between nodes must be

contiguous physical regions.

For our communication library, we therefore employ a

two-level memory provisioning and management scheme:

we first map coarse-grain memory chunks into the address

space where the communication library lives, using stan-

dard L4 recursive mapping primitives. Within that address

space, we then use a standard malloc/free/realloc
implementation to allow library users to further sub-

allocate segments usable for data communication:

User-level allocation of physically contiguous

memory L4’s main memory management primitive is a

mapping operation that allows the invoking thread to trans-

fer its own permissions to access memory to another

address space. The operations leverages L4’s IPC mechan-

ism presented beforehand; that is, an IPC can contain special

message items denoting a memory mapping from the source

to the destination address space. For revocation of memory

rights, L4 provides a separate kernel primitive that does not

require explicit consent from any of the existing right recei-

vers. This recursive mapping starts with a root-level address-

space called sigma0 (Liedtke, 1995), which ‘owns’ all phys-

ical memory in the system, that is, which has all physical

memory mapped idempotently in its own address space.

We use standard L4 mapping semantics to bring

memory into the native applications using our torus com-

munication library. We additionally ensure, by means of

a user protocol, that (a) memory reserved for torus commu-

nication is physically contiguous and the translation from

virtual to physical is known to the library, and (b) that

memory will not be revoked from the library address space

without notice. To ensure the former, we map each chunk

as a whole and communicate the physical base addresses

from the root pager down the mapping chain to the library

addresses space, with each pager hierarchy performing

the translation of its own source to destination mapping

(Figure 11). To ensure the latter, we currently mark the

mappings globally unrevokeable, disallowing each pager

to ever revoke any of those mappings until the application

itself releases the torus memory resources. In other

words, we prevent the memory used for rDMA transac-

tions from being paged out, while still allowing dealloca-

tion at application level.

With the architecture of the embedded PowerPC 440

architecture, it is up to the L4 kernel to maintain active

translations in the TLB. As a result, a memory mapping

from one to the other address space that is never revoked

will cause L4 to store a permanent mapping in its internal

mapping database; however, the translation may still be

evicted from the TLB occasionally due to pressure (and

L4’s TLB handler has to re-insert them on the next access).

While the torus rDMA engine operates on physical memory

and bypasses the TLB, our software library may suffer

performance drawbacks when reading or writing communi-

cation memory regions if they are not present in the TLB.

To avoid the resulting jitter and non-deterministic perfor-

mance variations, we propose to add special flags to the L4

mapping primitive indicating L4 should mark the translations

as pinned in the TLB, such that they never fault. Obviously,

such pinned mappings constitute a scarce resource and their

use needs to be managed. While we currently rely an a coop-

erative scheme to avoid exhaustion, we refer to the literature

for more elaborate scheduling and/or pinning of un-trusted

memory (Liedtke et al., 1999).

Fine-grain allocation within physically contiguous

memory Within each address space where our communica-

tion library is running, we sub-divide coarse-grain memory

chunks into smaller pieces by means of a slab memory allo-

cator (Lea). The memory allocator allows the sub-dividing of

a memory chunk into memory spaces called mspace; when-

ever the torus library needs to set up a new receive or

send memory segment for use by the torus, it creates a new

mspace; subsequent rDMA transactions (such as torus_
remote_get described above) can then conveniently use

malloc and free to acquire buffer space usable for

TORUS

initial address space

physical memory

rDMA buf communication library 
address space

lib

Figure 11. Mapping physically contiguous addresses in native L4 address spaces.
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transmitting data via the torus. Figure 12 illustrates the mem-

ory management by describing the function that sets up a new

receive counter and memory segment for use by the torus.

6 Initial evaluation

Our approach is in a prototypical stage, and we have not yet

optimized any of the frequently executed trap-and-emulate

paths. For evaluation, we thus focused mostly on function-

ality rather than performance. Nevertheless, we have run

some initial performance benchmarks to find out whether

our approach is generally viable and where the most impor-

tant bottlenecks and possibilities for optimization reside.

Guest OS support Our L4-based VMM generally sup-

ports the running of arbitrary guest OSs on BG/P, such as

CNK (Giampapa et al., 2010) or ZeptoOS (Beckman

et al., 2008). With respect to the implementation of the vir-

tualized TLB, L4 is currently limited in that it reserves one

of the two translation spaces. We have verified our imple-

mentation with Kittyhawk Linux, a BG/P version of the

Linux Kernel (Appavoo et al., 2009) with support for

BG/P’s hardware devices. It also provides an overlay that

maps standard Linux Ethernet communication onto Blue

Gene’s high-speed collective and torus interconnects

(Appavoo et al., 2010). Our VMM allows one or more

instances of Kittyhawk Linux to run in a VM. Kittyhawk

Linux runs unmodified, that is, the same Kittyhawk Linux

binary that runs on BG/P also runs on top of our VMM. We

currently support uni-processor guests only; however, as

L4 itself supports multi-processing, individual guest

vCPUs can be scheduled on each of the four physical cores

of the Blue Gene node.

Initial benchmark results For initial evaluation, we ran

three experiments. In the first experiment, we compiled a

small source-code project (about 1000 lines of code) under

virtualized Kittyhawk Linux. We then used a debug build

of L4 with an internal event-tracing facility to find out fre-

quently executed VM-related code paths. In this configura-

tion, compilation took about 126 s compared to 3 s when

running on native Kittyhawk Linux. Table 1 lists the results.

We note that the number of IPCs – that is, the number of

VM exits that involve the user-level VMM – is relatively

low, meaning that L4 handles most guest exits internally.

Also the experiment shows a high number of TLB misses

and TLB-related instructions, indicating that the virtualized

memory subsystem is a bottleneck in our implementation.

In the second experiment, we measured Ethernet

network throughput and latency between two compute

Figure 12. Native library function for allocating a torus receive counter.
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nodes. Packets are delivered to the torus interconnect, by

means of Kittyhawk Linux’s Ethernet driver module. For

comparison, we ran the experiments for both a native and

virtualized Kittyhawk Linux each running on a compute

node. For benchmarking we used netperf’s TCP stream

test for throughput and the TCP request/response test for

latency measurements (Netperf Team). Figure 13 shows

the results.

Our virtualization layer poses a significant overhead on

the Ethernet network performance, which is already less than

the actual performance that the torus and collective hardware

can deliver (Appavoo et al. 2010). We are confident, how-

ever, that optimizations such as para-virtual device support

can render virtualization substantially more efficient. A

recent study reports that VMware’s engineers faced, and

eventually addressed, similarly dismal performance with

prototypical versions of their VMM (Agesen et al., 2010).

Native communication library Finally, in the third

experiment, we compared the throughput of our native

communication library against a version of our library

running within a Linux guest VM. To that end, we ported our

communication library to Kittyhawk Linux, allowing it to

run within a normal Linux application. For measurements,

we developed a simple benchmark that repeatedly fetches

fixed-sized chunks of memory from a remote compute node

via the torus, using our communication library. We ran the

benchmark application natively on L4 and virtualized in a

guest Linux application, and compared the respective times

necessary to fetch the data. In contrast to the second experi-

ment, there is no Ethernet virtualization layer involved, since

the library interfaces directly with the torus (or virtual torus)

to transmit data. Figure 14 shows the results for different

chunk sizes. The first plot shows the transfer time for a single

chunk with a logarithmic scale, while the second plot shows

the total time needed to transfer 100 MB of data.

As can be seen, native rDMA performance is

significantly higher than with the virtualized torus imple-

mentation, clearly showing the potential of L4’s support for
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Table 1. Execution frequency of VMM-related L4 code paths for a compilation job in a VM.

Trace Point Count Trace Point Count Trace Point Count

SYSCALL_IPC 106 K ITLB_MISS 4756 K EMUL_MFMSR 228 K
EXCEPT_DECR 66 K EMUL_RFI 5021 K EMUL_WRTEEI 403 K
EMUL_MTMSR 102 K DTLB_MISS 6514 K EMUL_MFSPR 29964 K
EMUL_WRTEE 117 K EMUL_TLBWE 14745 K EMUL_MTSPR 30036 K
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the native applications stack. For small payloads (1 KB), the

native transmission outperforms the virtualized by far. This

can be attributed to the high performance of the interconnect,

the relatively low speed of the cores, and the resulting high

processing costs for VM exits and entries that are necessary

for each transmit of a chunk. For larger chunk sizes, the vir-

tualization overhead becomes less dominant.

Altogether, we conclude from the preliminary

evaluation and our own experiences: that our L4-based

VMM is a promising approach for successfully deploying,

running, and using virtualized OSs and native applications

on BG/P; that virtualization performance of our prototype

lags substantially compared to more mature or commercial

virtualization efforts from the commodity server space,

warranting further exploration and optimization; and that

native application environments, which execute directly

atop the micro-kernel and have direct access to hardware

facilities, are a key requirement towards fully exploiting

the capabilities of a supercomputer and its cutting-edge,

high-performance interconnects.

7 Related work

There exists a plethora of VMM efforts, including Xen (Pratt

et al., 2005), VMware (Agesen et al., 2010), and, directly

related, micro-hypervisor-based systems (Heiser and

Leslie, 2010; Steinberg and Kauer, 2010: Härtig et al.,

1997); those approaches mostly address the embedded or

server spaces rather than HPC space. The studies in

Engelmann et al.(2007)] and [Mergen et al.(2006)] identified

virtualization as a system-level alternative to address the

development challenges of HPC systems. Gavrilovska

et al. explored virtualized HPC for x86/InfiniBand-based

hardware (Gavrilovska et al., 2007); PROSE explored a

partitioning hypervisor architecture for PowerPC- and

x86-based HPC systems (Van Hensbergen, 2006). How-

ever, both approaches focus mostly on hypervisor infra-

structure rather than on decomposed OS designs or on

support for native applications. Finally, there exists a port

of the KVM monitor to PowerPC Book E cores (KVM

Team); although designed for embedded systems, it shares

some implementation details with our PowerPC version of

L4 and the VMM.

Arguably the work most closely related to our approach

is Palacios and Kitten (Lange et al., 2010), a lightweight

kernel/VMM combination striving to achieve high perfor-

mance and scalability on HPC machines. Palacios and

Kitten are being developed for x86-based HPC systems

rather than for a highly-specialized supercomputer plat-

form such as BG/P. Palacios runs as a module extension

within the Kitten kernel. Like L4, Kitten also provides a

native environment that can be used to develop customiza-

tions. Also, and much akin to the micro-kernel paradigm,

Palacios and Kitten comprise a fairly small kernel code

base of around 120 K lines of code (Lange et al., 2010),

which is comparable to the around 60 K lines of our L4

micro-kernel version (note, however, that L4Ka::Pistachio

supports x86, x86_64, and PowerPC, while Palacios/Kitten

only supports x86 and x86_64).

For effective virtualization of HPC networks, Kitten and

Palacios introduce a scheme that relies on guest coopera-

tion, in order to preserve the high performance of the inter-

connect (Lange et al., 2011). In contrast, we currently fully

intercept guest device accesses, which negatively affects

network performance but preserves exact device semantics

and allows using unmodified interconnect drivers in a VM.

We regard this as a minor difference mostly stemming from

our early research aims to support unmodified guest code,

and are confident that our VMM can be adapted in a straight-

forward manner to support para-virtualized, but more effi-

cient, device drivers in the guest.

The most notable conceptual difference between

Palacios/Kitten and our L4-based VMM approach is that

Palacios runs as a kernel module in Kitten’s privileged

domain, whereas our VMM runs completely decomposed

and deprivileged as a user-level process. We argue that

decomposing the VMM has benefits to system structure,

stability, extensibility, and fault isolation, while the pur-

ported negative effects on overhead can be mitigated by

careful design and implementation. Recent research sub-

stantiates our claim, showing that such a decomposed thin

virtualization layer can indeed be built with negligible per-

formance overhead (Steinberg and Kauer, 2010).

Examples of traditional lightweight kernel approaches for

supercomputers are CNK (Moreira et al., 2006; Giampapa

et al., 2010) and Sandia’s Catamount (Kelly and Brightwell,

2005). Our approach strives to enhance such lightweight ker-

nel approaches in that it provides the ability to virtualize

guest OSs. Finally, research has explored whether a more

fully fledged OS such as Plan9 (Minnich and McKie,

2009) or Linux (Appavoo et al., 2009; Beckman et al.,

2008; Kaplan, 2006) may be a more viable alternative than

lightweight kernels for supercomputers. Our approach com-

plements those efforts with the alternative idea of a decom-

posed OS architecture with support for virtualization.

8 Conclusion

In this paper, we have presented a light-weight operating

system and virtualization architecture for the Blue Gene/

P Supercomputer. �-kernel OS architecture for BG/P. Our

architecture consists of a virtualization-capable �-kernel

and a user-level VMM component running atop. The �-ker-

nel also supports running applications natively. Our L4-

based prototype successfully virtualizes Kittyhawk

Linux with support for virtualized collective and torus

network devices. Our first experiences and experiments

show that our VMM still takes a substantial performance

hit. However, we believe that, pending optimization, our

approach poses an interesting OS alternative for super-

computers, providing the convenience of a fully featured

commodity OS software stack, while also promising to

satisfy the need for low latency and scalability of a HPC

system.
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Besides performance improvements of the VMM, we

consider the main area for future work to be applications

that make use of our approach: we believe there is a broad

range of applications and workloads – whether traditional

supercomputer applications such as large-scale, MPI-style

simulations or performance and scalability demanding

tasks from the commodity systems world such as big data

analytics or stream-processing tools – that could heavily

benefit from our hybrid architecture, since it enables HPC

programmers to employ familiar OS abstractions inside a

VM to quickly develop a general HPC solution and then

gradually roll out scalable, low-latency services running

natively alongside. In particular, future work has to be done

to explore such hybrid programming models on the native

side of L4, where our existing low-level native interface

can serve as a starting point.
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