
EbbRT Jonathan Appavoo, Dan Schatzberg, James Cadden, Orran Krieger, Boston University, jappavoo@bu.edu

We are building a multi-node library runtime, called EbbRT, to support exascale applications. It provides core system
software functionality, similar to today’s per-node lightweight kernels, yet a single EbbRT instance can be distributed
across many heterogeneous nodes. EbbRT also exposes primitives that we find useful to build scalable software; higher-
level libraries and applications can be built using these primitives. Features of the design were chosen to make the
runtime: 1) customizable so that it can be extended and tuned to adapt to HPC systems and applications, 2) applicable
to a broad set of applications, including emerging high performance applications, 3) scalable across many nodes and
many cores of a single node, and 4) adaptive so that it can grow and shrink in reaction to changes in load and to deal
with contention and failures. At the same time, EbbRT supports applications that require rich legacy OS functionality;
allowing them to be incrementally modified to exploit new EbbRT specific functionality.

Three key elements of the EbbRT architecture are: 1) a distributed library OS architecture, 2) software structured
using objects called Elastic Building Blocks (EBBs), and 3) a system-wide event driven programming model.

Distributed Library OS: EbbRT is a runtime for constructing efficient multi-node software. Rather than having
a fixed interface, the runtime functionality is provided as a library of components. Applications link with selected
components of EbbRT to provide the necessary runtime. Developers can extend, optimize, reimplement, and port
components of the library. The same model is provided for what would be traditionally OS functionality (e.g., a device
driver), library functionality (e.g., distributed hash table), and application functionality (e.g., a diffusion matrix).

Elastic Building Blocks (EBBs): EBBs are the component model adopted by EbbRT. Developers can introduce new
EBBs that conform to an existing interface, or introduce whole new libraries of EBB interfaces and implementations.
An EBB is internally composed of a set of distributed representatives.1 Each representative provides an identical
interface and locally services requests, possibly collaborating with one or more other representatives. The state of the
object can be distributed, cached, replicated, and partitioned to different representatives. To the clients, the EBB
appears and behaves like a traditional object. New representatives are created on demand as an EBB is accessed on
a new core or node.

Event Driven Programming: EBB developers are guided to use an event-driven programming model in which they
bind event occurrences to an invocation on an EBB instance. Events can be tied directly to hardware interrupts
(e.g., network packet arrivals); events can also be created synthetically by software. In this way, all execution occurs
in the context of handling an event rather than a long running thread. Event bindings and EBB instances can be
dynamically changed in response to activity and conditions. In this manner, a developer constructs software that is
reactive in nature.

The library OS model is possible in modern HPC [3, 6] systems because hardware nodes are generally allocated in
their entirety to one application at a time. 2 EbbRT provides us with a much simpler model than previous distributed
operating systems [4, 7, 16, 20]; since EbbRT is only required to support a single application at runtime, it need not
provide traditional OS level scheduling, multiplexing, resource management, or even protection. This lack of complexity
simplifies many system level optimizations, e.g., multi-core scaling, multi-node communication, I/O staging, prefetching,
specialty hardware support, etc.

An EbbRT application may span a heterogeneous mix of nodes running full legacy OSes and other nodes with no
underlying OS. Software running on a legacy OS can exploit the rich functionality of that OS. On a node without
an underlying OS, EBBs providing highly-optimized system-level OS functionality are used. Legacy applications can
be incrementally modified, as needed, to take advantage of highly-optimized nodes. Also, optimized nodes can offload
operations to nodes with full legacy OSes for functionality or compatibility reasons.

One of the key advantages to a library model is that the library functionality can be customized to the application it
is linked to. We want to enable a broad community of system vendors, library developers, and application developers to
all be able to modify, customize and extend EbbRT to better match their needs. The software engineering advantages of
EBBs (objects) are critical to us. They provide us a model for constructing well defined interfaces to enable customization;
a new implementation can be introduced and exploited without change to the clients as long as it conforms to the same
interface. Objects are defined per physical or logical resource (e.g., memory region, matrix, key-value store), allowing each
resource instance’s implementation to be customized separately. We can also hot swap EBBs from one implementation
to another while the system is running to adjust to changing application demands.

EBBs provide developers with a programming model to scale their applications across many cores and nodes, and a
model for programmers to encapsulate and reuse complex parallel optimization. The EbbRT infrastructure provides the
EBB developer with information about where an object is accessed, and provides a framework for the caching, replication,
and distribution that is critical to achieving good performance in parallel systems. Also, the level of indirection afforded

1An EBB is a light-weight construct that can be used without sacrificing performance. The cost of an EBB invocation is one extra pointer
dereference over a traditional object invocation. In our current implementation on AMD64 hardware, the overhead is 6 cycles more than a C
function invocation.

2If network isolation is not available in HW, it can be provided by virtualization.
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by EBBs enables rich tooling to introspect on EBB usage patterns to identify performance problems. Implementations
can then be selected or developed to improve performance.

An event driven programming model enables an application to take over handling of system events, such as power/thermal
alerts, notifications of new packets arriving, disk I/O completing, fault notifications, and other communication and syn-
chronization events. Even the lowest level exception paths of EbbRT are written as event driven EBBs; a customized
application EBB can be invoked in our current prototype within 100 cycles of an interrupt being dispatched.

For core computation, an application could optionally use events much like threads. However, we expect a more
natural use of events in the runtime of applications that adopt data flow and task models of processing. These more
adaptive models are gaining increasing interest for exascale systems, where resource failures will be the common case
rather than an exceptional condition. EbbRT is designed to be a foundation for developers of such adaptive runtimes,
as well as more traditional libraries and runtimes like MPI (or even Java).

Related work and assessment

The event driven model and Elastic Building Blocks of EbbRT borrow heavily from our earlier OS work [10, 12]; in our
current work, we extend these models across multiple nodes and beyond the OS to application level code. Library OSes
have been demonstrated by us and others to be practical, performant, and able to support rich runtimes [2, 9, 17].

This work will borrow heavily from the rich history of HPC system software research. It is complementary to dataflow
and task programming research that is constructing dynamic runtimes in order to cope with asymmetric performance or
potentially failures [8, 15]. We will exploit the extensive work to optimize Linux [13] for our full OS nodes. Conceptually,
our layering of EbbRT on bare hardware is quite similar to LWK work [?, 11, ?, ?, ?]. Further, the approach of using
both legacy and bare hardware nodes is similar to a number of projects [11, ?, ?].

The criteria for assessing the project described in the call for proposal are:

Challenges addressed: The EbbRT research will directly address many parts of the resilience, parallelism (within and
across node), OS structure and Legacy challenges described in the call for proposal. It also provides a framework to
reason about fundamental new challenges, different from those addressed through today’s legacy OSes (e.g., elasticity,
scale, heterogeneity); many of these challenges become much simpler in a single-tenant, single-application library OS
model. We believe that this research will not only be relevant to the broad scientific computing community, but also
to the emerging high-performance commercial computing community. To enable this project to be sustainable, we are
releasing it under an open source license that is compatible with proprietary vendor extension. We are also investing
a large effort to develop well-defined EBB interfaces around which a larger community can innovate.

Maturity: While the synthesis of the library OS approach, event driven programming, and EBBs is new, each of them
have been demonstrated independently. While there are significant research challenges, we are dealing with proven
technologies.

Uniqueness : We believe that it is critical that we pursue this work with a focus on exascale systems and applications.
While it is of broader utility, if the work was focused first on general purpose systems it would be unlikely to meet
the extreme needs of exascale systems. Scalability is very difficult to retrofit into a system.

Novelty : While there is much work going on with event driven systems for cloud systems, it has made little traction
for HPC requirements. The library OS model has been explored by researchers in various institutions [2, 9, 17],
but our focus on multi core/node scalability, and the software engineering use of EBBs is novel. In the past, the
Elastic Building Block approach has been explored in the context of single node, shared memory, and only within an
OS [10, 12]. Distributed objects [?, ?, ?] of various sorts have been explored, but only for performance insensitive
applications on commodity networks. Most importantly, while we are evolving each of these models in novel ways,
the greatest novelty of EbbRT is in how it can combines these approaches for the use in exoscale applications.

Applicability : The model of EbbRT is designed to be general. We believe that commercial data-center scale systems
will increasingly adopt architectures that look more and more like today’s HPC systems [1, 6, 18], and that these
systems will share the same dynamic, fault tolerant and scale requirements of exascale systems. Existing legacy OSes
are increasingly mismatched for the requirements of the next generation of commercial applications.

Effort: We currently have a primitive EbbRT prototype running on Linux and MacOS and on bare-metal for PPC32/PPC64
and x86-64 machines. It will take three more person years to produce a prototype that can handle a couple of inter-
esting application on a large-scale HPC system. Once the model is proven, ongoing refinement as we gain experience
with more applications, and supporting a broader community of vendor and application developers, will require a five
person team.

This material is based upon work supported in part by the Department of Energy Office of Science under its agreement
number DE-SC0005365 and upon work supported in part by National Science Foundation award #1012798.
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