
MultiLibOS: An OS architecture for Cloud Computing

Dan Schatzberg, James Cadden, Orran Krieger, Jonathan Appavoo
Boston University

1 Introduction

Cloud computing is resulting in fundamental changes
to computing infrastructure:

• Rather than purchasing their own servers, com-
panies are instead leasing capacity in datacenters
provided by Infrastructure as a Service (IaaS)
cloud providers.

• Increasingly, these platforms are created using
fully integrated datacenter scale systems rather
than aggregating commodity network, compute
and storage.

• IaaS providers charge their tenants by usage [6]
which increases demand for highly elastic plat-
forms.

• Usage of IaaS platforms will increasingly be
dominated by scale out applications than can
elastically span many nodes.

These changes in the computing infrastructure
have not resulted in corresponding changes to operat-
ing systems. Are changes required to traditional OSes
or can the challenges be efficiently met by higher level
middleware? Are there system software techniques to
allow applications to efficiently utilize the parallelism
of integrated datacenter scale systems? Are today’s
OSes the right building blocks for constructing elas-
tic applications on IaaS platforms? If new OS tech-
niques, primitives and abstractions are useful, can
they be introduced in a way that allow applications
to be incrementally modified to use them?

In this paper we discuss some key changes we see
in the computing infrastructure and applications of
IaaS systems. We argue that these changes enable

and demand a very different model of operating sys-
tem. We then describe the MulitLibOS architecture
we are exploring and how it helps exploit the scale
and elasticity of integrated systems while still allow-
ing for legacy software run on traditional OSes.

2 Key Changes

In this section we describe important changes that
are happening to IaaS infrastructure and applications
and discuss why they justify a new OS architecture.

Datacenter-scale systems

IaaS providers that need to provision datacenters
will increasingly purchase highly-integrated datacen-
ter scale systems. An integrated system, designed by
a single vendor to operate at scale, can have much
better aggregate price, performance and manageabil-
ity than one composed of commodity network, com-
pute and storage.

The rise of initiatives like vBlock [2] from VMware,
Cisco and EMC, and similar efforts from other con-
sortia illustrate how service providers want to buy an
integrated system even if it consists of an aggregate of
commodity parts. Hardware systems that illustrate
the trend towards more highly integrated datacen-
ter scale systems include HP’s Moonshot [3], IBM’s
BlueGene [9], and SeaMicro [20] systems.

Integrated systems are carefully balanced to ensure
efficient aggregate capacity. To optimized density,
price and power consumption, individual nodes tend
to be less powerful and the network is more tightly
integrated into the individual nodes. To see how
this changes system trade-offs, contrast the mem-
ory to network performance Google cites out of their

1



commodity systems to IBM’s BlueGene/P systems.
Google cites three orders of magnitude increase in
latencies from local DRAM to DRAM on a differ-
ent node in the same rack [8]. Meanwhile, an IBM
Bluegene/P system provides latencies and bandwidth
between two nodes in the system that are less than
an order of magnitude worse than the latencies and
bandwidth to local DRAM [17]. The BlueGene sys-
tem also provides many more communication capa-
bilities, e.g., RDMA, and collective operations; all
while having better price and power efficiency for the
same compute capabilities.

Elasticity

Since tenants pay for capacity from an IaaS provider
on a consumption basis, they are increasingly con-
cerned with the efficiency of their software. Efficiency
is far more visible to a customer that pays for ev-
ery cycle than those that purchased computers large
enough to meet peak demand, especially if those com-
puters are idle much of the time. This increased focus
on efficiency is driving IaaS providers, hardware ar-
chitects, systems software designers to build highly
elastic platforms. Such platforms allow applications
to quickly consume resources when demand increases,
and relinquish those resources when demand drops.
An example of this trend is the exploration of ’power
proportional’[14] systems where the aggregate power
consumption is more directly and smoothly propor-
tional to the use of the system.

Isolation

For security and auditability IaaS providers isolate
their tenants at a very low level (either physically or
virtually.) Individual tenants own and manage their
own ”logical” computers within the IaaS cloud.

This enables the customer to supply a custom soft-
ware stack (including OS and middleware) on which
to implement their applications. This feature is crit-
ical from a business perspective to enable customers
with existing corporate policies and controls to be
supported. From a performance perspective, it means
that the OS can be tuned to the application and plat-
form characteristics. For example, low-level access to

a hypervisor allows the application to add and remove
cores and memory as the demands on the application
changes. Direct interconnect access allows program-
mers to explore the trade off in exploiting the features
and communication models the hardware intercon-
nects provide. In this way, if efficiency is of higher
value than development costs (and/or protocol com-
patibility) custom application level protocols can be
directly implemented to exploit features of the inter-
connect such as RDMA or scatter gather. While we
don’t expect all applications to exploit this kind of
low-level control, high performance datacenter appli-
cations will likely warrant this extra effort [21].

Scale-out Applications

Increasingly, applications deployed in these systems
are designed to be scale-out applications that can
consume many nodes. These distributed applications
require programming models not only for scaling and
elasticity, but also for fault containment and fault
tolerance.

With clusters of commodity hardware, the network
latency is typically high enough that the performance
of todays system software is adequate. However, in
highly-integrated systems, where the relative latency
of the network is typically much lower, the system
software have much more of an impact on application
performance.

The general availability of highly elastic IaaS ser-
vices and the characteristics of highly integrated sys-
tems may well enable new classes of more demanding
scale-out applications. What will happen when a sci-
entist can acquire 1000 nodes for a few seconds to
solve an important computational task at a cost of
only pennies?

Heterogeneity

IaaS datacenters are intrinsically heterogeneous for
a number of reasons: 1) non-uniform latencies and
bandwidth exist between different parts of the dat-
acenter and even parts of large-scale systems in a
datacenter, 2) large datacenters may have many gen-
erations of hardware, each with different quantities
and characteristics of processing, memory, and net-

2



working, 3) different (integrated) systems may have
different properties, e.g., networking properties like
scatter gather and RDMA, or different compute ac-
celerators like GP-GPUs.

Heterogeneity also makes more economic sense in
a large datacenter shared by many customers. Even
if an exotic system gives order of magnitude perfor-
mance advantages for some applications, such sys-
tems are difficult to sell to individual customers that
may have a limited number of such applications and
don’t want to manage an exotic system. On the other
hand, IaaS providers with many tenants are more
likely to drive high utilization of the system and hence
justify acquiring (and managing) heterogeneous sys-
tems.

Application developers will want to span these dif-
ferent types of systems to take advantage of the hard-
ware characteristics and price differences for the ap-
propriate parts of the applications. This, however,
will come with complexity, development and main-
tenances costs. OSes may have a role in mitigating
these costs by providing appropriate abstractions and
primitives.

3 The Role of the OS

Traditionally we have looked to operating systems to
help cope with the complexity associated with hard-
ware – alleviating the burden from applications and
middle-ware. Cloud computing, however, has made
this very challenging and, to a large extent, OS tech-
nologies have failed to provide primitives that help
applications scale across the diverse levels while mit-
igating subtleties of the hardware. Perhaps the best
indication of this is the trend of virtualization to
make all hardware look like a 1980’s flat-network clus-
ter in which an individual OS only manages a small
static amount of resources – providing parallel appli-
cations with nothing more than traditional processes,
threads and LAN based communication primitives.

Most scale-out applications rely on middleware
that run on top of legacy operating systems. If per-
formance is important, the developer must discover,
adapt, and exploit the system’s underlying features
and characteristics despite the properties imposed by

the hypervisor, legacy OS and middle that the appli-
cation is implemented on top of.

We believe that much greater efficiency will be
achieved if the enablement is done at the operating
system level. Changes in our model of an OS will
be critical if we want to rapidly grow and shrink re-
sources, exploit very low latency communication be-
tween nodes, and enable complex heterogeneous sys-
tems.

In this section we first describe the requirements
we believe that future datacenter scale system soft-
ware should meet. We then discuss some of the non-
requirements; requirements that existing OSes have
that are not necessary in these systems.

Scale: System software will need to be distributed
and able to scale across thousands of nodes.
It will need to provide services to applications
to simplify the task of developing scalable dis-
tributed applications.

Elastic: It will be necessary for operating systems
to grow and shrink the cores, memory and net-
working resources used as demands on the ap-
plication changes. Applications wishing to take
advantage of fine grained elasticity will require
operating systems that are able to boot on new
hardware in milliseconds.

Fault tolerance: If the operating system is able to
run on thousands of nodes, the mean time to fail-
ure implications will make it important for many
applications to have an OS that is resilient to
failures. In addition, the OS should provide ser-
vices to applications to allow them to be resilient
to those failures.

Heterogeneity: An application should be able to
exploit different accelerators and exotic systems
for different parts of the application. This
will include support for multiple ISAs as well
as low level optimizations that depend on dif-
ferent hardware characteristics such as latency,
bandwidth of different resources, and networking
characteristics.

Customizability: Our experience in building high-
performance system software for large-scale

3



shared memory multiprocessors [13, 16] is that
there is no right answer for parallel applications.
To achieve high performance, the operating sys-
tem needs to be customized to meet the needs
of that application. As the performance charac-
teristics of networking improves, those optimiza-
tions will need to happen at very low levels, e.g.,
in the exception path of a network packet.

Legacy support: A model that requires wholesale
changes to existing software will cover only a tiny
fraction of the relevant applications. Hence, it is
critical to support existing software while pro-
viding a path for those applications to be in-
crementally modified to exploit more features of
the underlying platform. The operating system
should allow existing applications to run unmod-
ified. Only those parts of the application that are
likely to benefit should be modified to exploit the
new capabilities of the cloud.

While the OSes for datacenter scale systems have
many challenges, it turns out that three of the ma-
jor objectives that existing legacy operating systems
were designed to meet are either relaxed or elimi-
nated.

Firstly, distributed applications that run across
many nodes do not need to fully support traditional
OS functionality on all the nodes. These applications
can instead partition some nodes to run full legacy
operating systems while designating other nodes to
run low-level computational tasks that only require
basic OS functionality.

Secondly, much of the burden to support multi-
tenant applications is alleviated. Existing operating
systems need to support many tenants on a single
instance of the operating system. In this new envi-
ronment, security is provided outside of the operating
system, isolating applications on different nodes each
running their own instances of the operating system.
This eliminates the need for many low level checks
and accounting in the software, and reduces the re-
quirement for internal barriers between trusted and
untrusted code, since the entire system is isolated.
As we will see, this has both complexity and perfor-
mance advantages.

Thirdly, much of the burden associated with bal-
ancing and arbitrating competitive use of resources
across multiple applications is removed from the op-
erating system. We expect many nodes to be ded-
icated to a single application/OS, rather than run-
ning many applications on a single instance of the OS.
Much of the complexity of existing operating systems
in scheduling, memory management, etc. are hence
eliminated. This, again, results in both complexity
and performance advantages.

These three simplifications: 1) not having to sup-
port full OS functionality on every node, 2) not hav-
ing to support multiple tenants on a node, and 3) not
having to support multiple applications on a node,
make it possible to adopt a vastly different architec-
ture for a datacenter scale operating system that can
meet the major challenges/requirements of a modern
hardware platform.

Traditional concerns about competition and fair-
ness are largely eliminated while optimizing the op-
eration per dollar cost of a single critical application
run on an IaaS platform.

4 The MultiLibOS

A MultiLibOS is a single tenant, single application
distributed operating system composed of per-node
library operating systems. We call the component of
the application/OS that runs on a node a shard. Nor-
mally, most of the application code runs just on one
or more master shards; slave shards act as accelera-
tors for application code that needs to be executed in
a distributed fashion. Shards may be process based,
where they run as a process on an existing OS. They
may also execute bare-metal, where they control a
node without any underlying legacy OS.

In this section we discuss each part of MultiLibOS
architecture, then discuss how they help us meet our
requirements of datacenter scale system software.

The Library OS model

The per-shard system functionality is provided as a
library or set of libraries directly linked into the per
shared application code address space. That is, the

4



Application

Application Application

Node NodeNode

Shard Shard Shard Shard

ApplicationCustomizable 
System 
Libraries

Shard-specific 
Hardware 

Abstraction 
Layer

Application 
Specific 
Software

...

...Heterogeneous 
Hardware

MultiLibOS

SlaveSlaveRole

Node

System Libraries

HAL

System Libraries

HAL

System Libraries

HAL

LegacyOS

HAL

System 
Libraries

SlaveMaster

Figure 1: The MultiLibOS Architecture

5



operating system on a node is really just part of the
application.

Just as with previous library OSes, the applica-
tion can customize the OS functionality by selecting
libraries, extending libraries, or parameterizing the
OS libraries it is linked to. Also, just like with previ-
ous library OSes, the operating system functionality
supports just a single tenant and a single application
on a node.

In contrast with some previous library OSes [11],
we don’t depend on a specialized exokernel to allow
multiple applications with their own library OSes to
share a machine. We either: 1) assume that a node
is dedicated to executing the shard and no sharing
beyond low level partitioning is enabled, or 2) the
shard is running as a process on an existing legacy
OS.

Much like legacy OSes, the lowest layer of a shard is
a hardware abstraction layer (HAL), which provides a
consistent interface that most of the OS library func-
tionality depends on. Also, just as with existing OS
HALs, a specialized library can reach past the HAL
interface to exploit unique features of a platform.

It is possible that over time the library OSes em-
bedded in shards may grow to be very sophisticated.
For example, Microsoft Research recently demon-
strated a library OS that can support unmodified
windows applications [19]. However, our expectation
is that the library OSes will typically be very simple;
more on the order of toy operating system function-
ality than fully functional OSes. There are a number
of reasons why we believe that simplicity will be pos-
sible, three are discussed below.

Firstly, as demonstrated in our previous work [5] a
very simple library OS is sufficient to support com-
plex middleware like a JVM. We expect that we will
find this to be the case for other managed code en-
vironments and for middleware services, like MPI li-
braries, that are designed to be highly portable as
has been illustrated in the MPI Compute Node Ker-
nel software environment[22] that IBM provides for
Blue Gene.

Secondly, as we will discuss below, the MultiLibOS
model augments rather than replaces existing legacy
OSes. Hence, the application functionality that de-
pends on the library OS is typically a small part of

the whole application.

Thirdly, our experience is that it is much simpler
to write efficient special purpose code to solve a spe-
cific problem than it is to write general purpose OS
code [4]. The choice of libraries to execute a specific
application computation on a specific hardware plat-
form can all be made when a library OS is composed.

Process based shards

A HAL can be written to support a shard running as
a process within a legacy operating system. The ap-
plication code in a process based shard can directly
interact both with the interfaces defined by the li-
brary OS, and with the interfaces exposed by the un-
derlying OS. For example, it can access the native
file system, use the native networking stack, and use
the rich set of libraries and middleware provided by
a fully functional OS.

While we say that the MultiLibOS model is single-
tenant and single-application, with a process-based
shard, the shard can directly interact with other ap-
plications (of other tenants) on the same node using
the interfaces provided by the underlying operating
system. This shard is also protected by the security
and isolation provided by the legacy OS.

The use of process based shards provides us with
a model that is very different from previous library
OSes. Rather than providing an alternative OS ar-
chitecture to implement the same functionality, we
are developing a OS model that augments the ex-
isting legacy OSes. The application only uses the
shard specific library OS for that functionality not
done better by the underlying general purpose OS.
In this fashion process shards provide a path for han-
dling legacy function and a gateway to acceleration
function of bare-metal shards.

Bare-metal shards

Some shards may run on bare-metal HALs, that runs
directly on a physical (or virtual) node. A bare-
metal shard is designed to be highly elastic. A shard
may grow or shrink in memory or cores as demands

6



on the application changes.1 More importantly, the
bare-metal shards can be created and destroyed very
quickly to increase or decrease the number of nodes
being used by the application.

While the HAL in a bare-metal shard will allow
much of the library OS code to be re-used across dif-
ferent types of shards, a library OS can be customized
with libraries that exploit specific characteristics of
the hardware. This means, for example, that a bare-
metal shard can allow low level networking capabili-
ties of the hardware to be exploited by an application.
The barrier to introducing such functionality in a toy
library OS is much smaller than modifying a complex
fully functional multi-tenancy multi application OS.

Master slave relationship

While it is not fundamental to the MultiLibOS
model, our current exploration assumes a master
slave relationship. The slave shards (typically bare-
metal) are composed by the master shard (typically
process based), on the fly, to meet its computational
requirements, or to match the characteristics of the
available nodes.

The master/slave pattern we exploit has become
common in many domains. For example, IBM’s Cell
Broadband Engine [1] has a general purpose core that
acts a master to SIMD SPU slaves. Similarly GP-
GPUs are used as accelerator’s to x86 cores. In other
contexts special purpose accelerators have been used
for executing Java (e.g., from Azul Systems [15])).
Much like how we don’t have a general purpose OS
on a Cell processor SPU, a GP-GPU, or a Java accel-
erator, there is no need to have a general purpose OS
running on the accelerator nodes. All the complex
control, coordination, forking, synchronization with
other processes, authentication, process management
happens on the master shard. We can exploit ex-
tremely simple OS functionality on the slave shards
to scale out a computation to other nodes.

The simplicity of the functionality of slaves makes
it possible for us to relatively quickly introduce new

1While today not all hypervisors support elastic character-
istics, nor does all hardware support partitioning, we believe
this functionality will be ubiquitous as elasticity becomes in-
creasingly important.

OS functionality that is relevant to real applications.
It is much easier for us to introduce new, low level
code specific to applications or node hardware.

5 Example Application

The following is a hypothetical scenario in which the
computational capacity of a HPC system is exploited
in a novel way using the MultiLibOS architecture.

Using the facilities of an IBM Blue Gene/P
system[9] and the commodity apache[12] web-server
the neuro-cgi MultiLibOS provides a building block
for an online high-performance neural imaging ser-
vice that allows for complex image analysis programs
(that are today only used by researchers) to exist as
part of a regular clinical work flow.

The neuro-cgi MultiLibOS is run across the nodes
of a IBM Blue Gene/P system. The master shard is
a process shards on a Linux (legacy) OS. In this way,
the legacy OS acts as a platform for a front-end web
server as well as a gateway to communicate onto the
Blue Gene interconnects.

This master shard has been written to conform to
apache’s CGI module specification such that it can
be invoked in response to a html request serviced by
the apache server running on the front-end. Slave
shards run as bare-metal on additional nodes.

On the arrival of a particular http request, the
master-shard spools image data (submitted via http)
to the associated storage system of the Blue Gene
system2. Based on the size of the image data and re-
quested operation the master shard launches an anal-
ysis work by allocating the required number of slave
shards.

The slave shards are constructed elastically and
consist of general MultiLibOS functionality libraries,
a Blue Gene specific HAL, and custom Blue Gene

2Blue-Gene systems typically are configured with an exter-
nal IBM GPFS storage system that provides high-bandwidth
file I/O to the applications run on the Blue Gene system along
with any other commodity hosts of the installation. In our
example we assume our front-end is one such host with access
to the GPFS storage and Blue Gene control system. In this
way it can both store data and launch jobs on the Blue Gene
system.

7



implementations of neuro-imaging functions that ex-
ploit the extensive Blue Gene matrix libraries and
hardware functions. The slave shards spool results
back to a file in the storage system of the master
process shard. Using this data that master shard
composes an html response that contains the results
of the operation and feeds it back to the Apache pro-
cess according to the CGI specification.

In this way, a html request sent from a client ap-
plication can utilize the power of a supercomputer.
In our example we can imagine that this application
is run on a tablet computer operated by a doctor
who has requested a test to be run on the scans of
a patient. Once submitted to the neuro-cgi MultiLi-
bOS, the job is scaled across many nodes of the Blue
Gene/P system. Instead of having to wait days, the
doctor could hypothetically receive the patient’s test
results within minutes.

6 Concluding remarks

Technology trends and the economics of providers ac-
quiring datacenter-scale computers are changing the
computing platform in fundamental ways. The as-
sumptions that legacy operating systems where de-
signed for are no longer valid. These operating sys-
tem do not provide critical services that large scale
distributed applications require. Although some of
these services can be provided by middleware, we
believe that this comes at the cost of performance
as fully integrated datacenter scale systems become
more common. Moreover, the legacy operating sys-
tem architecture imposes high overhead and makes
performance optimization difficult.

We have proposed a new architecture for operating
systems that can be used to address the challenges of
the cloud. A operating system constructed using this
architecture would have library operating systems,
i.e., shards, running on both legacy operating sys-
tems and bare hardware. The process shards would
normally be used as master nodes. The bare-metal
shards would be used as slaves to accelerate perfor-
mance critical operations.

Other’s have also argued that new operating sys-
tems are required [24, 6] for the cloud. These re-

searchers are generally trying to solve a much tougher
problem than we are addressing with the MultiLibOS
architecture; they are generally trying to meeting the
scalability, elasticity, availability... challenges of the
cloud, while also having to reproduce the full func-
tionality of legacy operating systems. With our ar-
chitecture all the issues of multi-tenancy and resource
management across applications are side stepped by
exploiting the fine grain elastic abilities of the un-
derlying platforms that OSes have not been exploit-
ing. Also, we have separated the requirement of sup-
porting legacy interfaces (i.e., process shards) from
the need to address new hardware challenges includ-
ing heterogeneity, elasticity and scalability (i.e., bare-
metal shards). This allows for systems programmers
to innovate in cloud environments without the bur-
den of supporting the legacy functionality. The per-
formance sensitive parts of the application can be in-
crementally ported to use the library code.

Innovation has been much more rapid in applica-
tion level libraries than it has in lower level system
software for a number of reasons. First, a library
can be focused on the needs of a specific set of ap-
plications rather than having to be general purpose.
Second, an application devleoper can often modify
or extend a library. Third, an application program-
mer can choose libraries to meet their needs. Fourth,
anyone can distribute a library which other’s can then
use, there is no need to dedicate hardware or other
resources to that library except when the application
is actually using it.

With the MultiLibOS architecture we believe that
that operating systems will have as much room for
innovation as application level libraries do today. In
contrast to todays world, where there is a small num-
ber of operating systems, we believe that the MultiLi-
bOS architecture, if adopted will result in many fami-
lies of libraries, each addressing different concerns for
different classes of applications and systems.

We are exploring one particular operating system,
EbbOS, that adopts this architecture and targets a
particular class of application and some of the chal-
lenges of cloud computing. While the architecture
is important to the design of this OS, equally im-
portant are other ideas borrowed from the rich dis-
tributed OS research literature [10, 23, 18, 7]. In de-

8



veloping this OS we have discovered that the Multi-
LibOS architecture simplifies our design and provides
a model that usefully frames our discussion and rea-
soning. A number of the observations we have made
in this paper where actually discoveries in pursuing
this work rather than something we realized a-priori.
We believe that other system programmers will find
this architecture equally applicable. EbbOS has pro-
cess shards GNU/Linux and MacOS, and bare-metal
shards for AMD64 and PowerPC32, and is available
from:

https://github.com/SESA/EBBlib.

References

[1] The Design and Implementation of a First-
Generation CELL Processor, 2005.

[2] Vblock powered solution for vmware view. 2010.

[3] Hp project moonshot: Changing the game with
extreme low-energy computing. 2012.

[4] J. Appavoo, K. Hui, C. A. N. Soules, R. W.
Wisniewski, D. M. Da Silva, O. Krieger, M. A.
Auslander, D. J. Edelsohn, B. Gamsa, G. R.
Ganger, P. McKenney, M. Ostrowski, B. Rosen-
burg, M. Stumm, and J. Xenidis. Enabling au-
tonomic behavior in systems software with hot
swapping. IBM Syst. J., 42(1):60–76, January
2003.

[5] J. Appavoo, K. Hui, C. A. N. Soules, R. W.
Wisniewski, D. M. Da Silva, O. Krieger, M. A.
Auslander, D. J. Edelsohn, B. Gamsa, G. R.
Ganger, P. McKenney, M. Ostrowski, B. Rosen-
burg, M. Stumm, and J. Xenidis. Libra : A
Library Operating System for a JVM in a Virtu-
alized Execution Environment Libra Libra Hy-
pervisor. System, 2007.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia. Above
the clouds: A berkeley view of cloud computing.
(UCB/EECS-2009-28), Feb 2009.

[7] Amnon Barak and Ami Litman. Mos: a multi-
computer distributed operating system. Softw.
Pract. Exper., 15(8):725–737, August 1985.

[8] L.A. Barroso and U. Hlzle. The Datacenter as
a Computer: An Introduction to the Design of
Warehouse-Scale Machines. 2009.

[9] D. Chen, J. J. Parker, N. A. Eisley, P. Hei-
delberger, R. M. Senger, Y. Sugawara, S. Ku-
mar, V. Salapura, D. L. Satterfield, and
B. Steinmacher-Burow. The IBM Blue Gene/Q
Interconnection Network and Message Unit.
Proceedings of 2011 International Conference
for High Performance Computing, Networking,
Storage and Analysis on - SC ’11, page 1, 2011.

[10] D. R. Cheriton. The v kernel: A software base
for distributed systems. IEEE Softw., 1(2):19–
42, April 1984.

[11] D. R. Engler, M. F. Kaashoek, and J. O’Toole,
Jr. Exokernel: an operating system architecture
for application-level resource management. In
Proceedings of the fifteenth ACM symposium on
Operating systems principles, 1995.

[12] R. T. Fielding and G. E. Kaiser. The apache
http server project. IEEE Internet Computing,
pages 88–90, 1997.

[13] B. Gamsa, O. Krieger, J. Appavoo, and
M. Stumm. Tornado: Maximizing Locality and
Concurrency in a Shared Memory Multiproces-
sor Operating System. In Proceedings of the third
symposium on Operating systems design and im-
plementation, OSDI ’99, pages 87–100, Berkeley,
1999. USENIX Association.

[14] J. Hamilton. Cost of power in large-scale data
centers. 2008.

[15] Azul Systems Inc. Supercharging the java run-
time. 2011.

[16] O. Krieger, M. Mergen, A. Waterland, V. Uh-
lig, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski,
J. Appavoo, M. Butrico, D. Da, S. Michal, and

9



O. Jonathan. K42: Building a Complete Oper-
ating System. ACM SIGOPS Operating Systems
Review, 40(4):133, October 2006.

[17] V. Morozov. Blue gene/p architecture.

[18] J. K. Ousterhout, A. R. Cherenson, F. Douglis,
M. N. Nelson, and B. B. Welch. The sprite net-
work operating system. Computer, 21(2):23–36,
February 1988.

[19] D. E. Porter, S. Boyd-Wickizer, J. Howell,
R. Olinsky, and G. C. Hunt. Rethinking the
library os from the top down. In Proceedings of
the sixteenth international conference on Archi-
tectural support for programming languages and
operating systems, ASPLOS ’11, pages 291–304,
New York, NY, USA, 2011. ACM.

[20] A. Rao. Seamicro technology overview. 2010.

[21] B. Rhoden, K. Klues, D. Zhu, and E. Brewer.
Improving per-node efficiency in the datacen-
ter with new os abstractions. In Proceedings
of the 2nd ACM Symposium on Cloud Comput-
ing, SOCC ’11, pages 25:1–25:8, New York, NY,
USA, 2011. ACM.

[22] C. Sosa and B. Knudson. Blue gene/p applica-
tion development. 2009.

[23] A. S. Tanenbaum and S. J. Mullender. An
overview of the amoeba distributed operating
system. SIGOPS Oper. Syst. Rev., 15(3):51–64,
July 1981.

[24] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller,
and A. Agarwal. An operating system for multi-
core and clouds: Mechanisms and implementa-
tion. In Proceedings of the 1st ACM symposium
on Cloud computing, SoCC ’10, pages 3–14, New
York, NY, USA, 2010. ACM.

10


