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(7) ABSTRACT

Systems, especially operating systems, are becoming more
complex to the point where maintaining them by humans is
becoming nearly impossible. Many corporations have rec-
ognized this trend and have begun investing in autonomic
technology. Autonomic technology allows a piece of soft-
ware to monitor, diagnose, and repair itself. This can be used
for improved performance, reliability, maintainability, secu-
rity, etc. Disclosed herein is a mechanism to allow operating
systems to hot swap a piece of operating system code, while
continuing to offer to the user the service which that code is

(73) Assignee: INTERNATIONAL BUSINESS providing. This can be yseq, for examples, to increase the
MACHINES CORPORATION, performanc§ of an appl}catlon or to ﬁx a detected security
ARMONK. NY hole live without bringing the machine down. Some auto-
’ nomic ability will be mandatory in next generation operating
(21) Appl. No.: 10/673,587 system for without it they will collapse under their own
complexity. The invention offers a key component of being
(22) Filed: Sep. 29, 2003 able to achieve autonomic computing.
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ACHIEVING AUTONOMIC BEHAVIOR IN AN
OPERATING SYSTEM VIA A HOT-SWAPPING
MECHANISM

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] This invention relates to the field of autonomic
computing and operating systems. More specifically, this
invention relates to a mechanism for hot-swapping code
managing operating systems resources while providing con-
tinuity of that service to applications.

[0003] 2. Background Art

[0004] Operating systems are large and complex, expected
to run across a varied set of hardware platforms, stay up for
long periods of time, stay up to date with the latest fixes, and
serve an increasingly divergent set of application workloads.
In the past, operating systems programmers have used
several approaches to attempt to achieve some of these
goals. Linux, for example, supports the ability to shut down
a driver, load a new one, and start it up without having to
reboot the system. Microsoft Windows created a Hardware
Abstraction Layer to support running across different plat-
forms. Programmers have used adaptive algorithms to
attempt to adjust to varying application workloads. For some
specific applications, programmers have been able to spe-
cially design hot-swapping approaches. None of these solu-
tions address all the issues, and even the issues they do
address are not solved for the general case.

[0005] One approach, mentioned above, is referred to as
hot-swapping, which is to change, or hot-swap, operating
system code while the system is still actively managing the
resources for which the new, hot-swapped code is intended.
In addition to solving the above-mentioned problems,
because of the size and complexity of the state-of-the-art
operating systems, greater maintainability is needed. Hot
swapping not only solves the above-mentioned issues but
addresses the need for maintainability as well.

[0006] Although there is a large body of prior work
focusing on the downloading and dynamic binding of new
components, there has been less work on swapping of
transparent scalable components in an active system. For
instance, “Dynamic C++ Classes: A Lightweight Mecha-
nism to Update Code in a Running Program,” by Gisli
Hjalmtysson and Robert Gray, Annual USENIX Technical
Conference, June 1998, pps 65-76, USENIX Association
(Hjalmtysson and Gray), describes a mechanism for updat-
ing C++ objects in a running program, but, in the disclosed
system, client objects need to be able to recover from broken
bindings due to an object swap and retry the operation, so the
mechanism is not trasparent to client objects. Moreover, this
procedure does not detect quiescent state, and old objects
continue to service prior calls while the new object begins to
service new calls.

[0007] Another procedure is disclosed in “Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System,” by Calton Pu, Tito Autrey, Andrew
Black, Charles Consel, Crispin Cowan, Jon Inouye, Lalshmi
Kethana, Jonathan Walpole and Ke Zhang, ACM Sympo-
sium on Operating System Principles, Copper Mountain
Resort, CO, Dec. 3-6, 1995, Operating Systems Review, vol
29, no 5 (Pu, et al.). This reference describe a replugging
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mechanism for incremental and optimistic specialization,
but the reference assumes there can be at most one thread
executing in a swappable module at a time. In later work,
that constraint is relaxed but does not scale.

[0008] In general, the prior art work described herein can
be viewed as part of widespread research efforts to make
operating systems more adaptive and extensible as in SPIN,
Exokernel, and VINO. These systems are unable to swap
entire components, but rather just provide hooks for cus-
tomization. Several people have also done work on adding
extensibility to both applications and systems. CORBA,
DCE, and RMI are all application architectures that allow
components to be modified during program execution, but
these architectures do not address the performance or com-
plexity concerns present in an operating system.

[0009] There has been work to make operating systems
more extensible. Other work has attempted to add hot-
swapping capability at the application layer. However, no
work provides a generic hot-swapping capability for oper-
ating systems that allows them to activate new code without
stopping the service (and performing effectively under a
varying set of workloads, while ensuring continuous avail-
ability).

SUMMARY OF THE INVENTION

[0010] An object of this invention to provide a mechanism
for hot-swapping active operating system code.

[0011] Another object of the invention is to allow new
code, which is has been downloaded to fix or upgrade a
particular service, to be enabled and activated in a computer
operating system without having to bring down the system
or the service.

[0012] A further object of the invention is to provide a
scalable method for swapping in highly dynamic, multi-
threaded, multiprocessor system.

[0013] Another object of the invention is to provide main-
tainable well-performing code for a divergent set of appli-
cations by enabling a decomposition into individual, simpler
components to be written for each application need which
can be hot-swapped in when needed.

[0014] An object of this invention is to provide an oper-
ating system with the capability of performing autonomic
operations by hot swapping parts of itself that are more
suited to the performance or functional needs of the current
application set.

[0015] These and other objectives are attained with a
method and system for hot swapping code in a computer
system. The computer system uses an operating system to
provide access to hardware resources via a first source code
component, and the method and system of this invention
may be used to replace that first source code component with
a new source code component while the computer operating
system remains active and while that operating system
provides continual availability to applications of the hard-
ware resources. The method comprises the steps of identi-
fying references to the first source code component, and
replacing the identified references to the first source code
with references to the new source code component.

[0016] The preferred embodiment of the invention,
described in detail below, employs a mechanism for per-
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forming a hot-swap, including how to establish a quiescent
state, how to transfer the state between the old component
and the new component safely and efficiently, and how to
swap all of the outstanding references held by the clients to
the old component so that these references now point to the
new component. Efficiently achieving quiescence is accom-
plished by tracking when threads are created and destroyed
and the components they have entered. State transfer occurs
via a best negotiated protocol between the old and new
component. Finally, using an object translation table, all
calls to the old component are rerouted to the new compo-
nent.

[0017] Further benefits and advantages of the invention
will become apparent from a consideration of the following
detailed description, given with reference to the accompa-
nying drawings, which specify and show preferred embodi-
ments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] FIG. 1 illustrates a Clustered Object instance and
associated transaction tables.

[0019] FIGS. 2 through 7 show the phases a Mediator
Representative Passes through in Hot Swapping.

[0020] FIG. 8 shows data members of the Mediator Rep-
resentative.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0021] The present invention is not limited to the follow-
ing described embodiment. This implementation demon-
strates the advantages of using the invention. To hot swap
code, the system must be able to identify and encapsulate the
code and data for a swappable component. There are several
potential ways to achieve this. The preferred embodiment
uses an object-oriented model that facilitates the process of
modularizing the code. In this embodiment, clustered
objects are used for achieving objects with well-defined
code and data boundaries on multiprocessors. Clustered
objects are discussed in “Hierarchical Clustering: A Struc-
ture for Scalable Multiprocessor Operating System Design,”
by R. C. Unrau, O. Krieger, B. Gamsa and M. Stumm,
Journal of Supercomputing, pp 105-134, 1995, vol 9, no. 1,
(Unrau, et al.). Although the preferred implementation of
this invention is in C++ in a modular operating system, these
techniques can be applied to other operating systems and
languages with the appropriate restructuring to isolate the
components that need to be hot-swapped.

[0022] Clustered Object Description

[0023] To facilitate understanding the hot-swapping
method of this invention, it may be helpful to first describe
the basic infrastructure of clustered objects. Clustered
Objects support distributed designs while preserving the
benefits of a component based approach. Collections of C++
classes are used to define a Clustered Object and run-time
mechanisms are used to support the dynamic aspects of the
model. Clustered Objects are conceptually similar to design
patterns such as facade, however, they have been carefully
constructed to avoid any shared front end, and are primarily
used for achieving data distribution. Some distributed sys-
tems have explored similar object models. Such distributed
systems are disclosed, for instance, in “An Object Model for
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Flexible Distributed Systems,” by P. Homburg, L. van
Doom, M. van Steen, A. S. Tanenbaum and W. de Jonge,
Vrije Universiteit, First Annual ASCI Conference, Heijen,
Netherlands, May, 1995, pps 69-78 (Homburg, et al); and
“Fragmented Objects for Distributed Abstractions,” by M.
Makpangou, Y. Gourhant, J.-P. Le Narzu, M Shapiro, Read-
ings in Distributed Computing Systems, IEEE Computer
Society Press, 1994, Thoman L. Casavant and Mukesh
Singhal, pp 170-186, Los Alamitos, Calif. (Makpangou, et
al.).

[0024] Each Clustered Object is identified by a unique
interface that every implementation conforms to. Preferably,
the present invention uses a C++ pure virtual base class to
express a component interface. An implementation of a
component is comprised of two portions: a Representative
definition and a Root definition. These are expressed as
separate C++ classes. The Representative definition of a
Clustered Object defines the per-processor portion of the
Clustered Object. An instance of a Clustered Object Repre-
sentative class is called a Rep of the Clustered Object
instance. The Representative class implements the interface
of the Clustered Object, inheriting from the Clustered
Object’s interface class. The Root class defines the global
portions of an instance of the Clustered Object. Every
instance of a Clustered Object has exactly one instance of its
Root class that serves as the internal central anchor or root
of the instance. Each Rep has a pointer to the Root of the
Clustered Object instance it belongs to. As such, the meth-
ods of a Rep can access the shared data and methods of the
Clustered Object via its root pointer.

[0025] At runtime, an instance of a given Clustered Object
is created by instantiating an instance of the desired Root
class. The client code is not actually aware of this fact.
Rather, a static Create method of the Rep class is used to
allocate the root. Instantiating the Root establishes a unique
Clustered Object Identifier (COID) that is used by clients to
access the newly created instance. To the client code, a
COID appears to be a pointer to an instance of the Rep Class.
To provide better code isolation, this fact is hidden from the
client code with the macro: #define DREF(coid) (*(coid)).
For example, if V is a variable holding the COID of an
instance of a clustered performance counter, that has a
method inc( ), a call would look like: DREF(V)—inc( ).

[0026] A set of tables and protocols are used to translate
calls on a COID in order to achieve the unique runtime
features of Clustered Objects. There is a single shared table
of Root pointers called the Global Translation Table and a
set of Rep pointer tables called Local Translation Tables.
There is one Local Translation Table per processor. The
virtual memory map for each processor is set up so that a
Local Translation Table appears at address vbase on each
processor but is backed by different physical pages. This
allows the entries of the Local Translation Tables, which are
at the same virtual address on each processor, to have
different values on each processor. Hence, the entries of the
Local Translation Tables are per-processor despite only
occupying a single range of fixed addresses.

[0027] When a Clustered Object is allocated, its root is
instantiated and installed into a free entry in the Global
Translation Table. The Translation Table entries are man-
aged on a per-processor basis by splitting the global table
into per-processor regions, of which each processor main-
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tains a free list and only allocates from its range, avoiding
synchronization or sharing. The address of the correspond-
ing location in the Local Translation Tables address range is
the COID for the new Clustered Object. The sizes of the
global and local entries and tables are kept the same,
allowing simple pointer arithmetic to convert either a local
to global or global to local table pointer. FIG. 1 illustrates
a Clustered Object instance 12 and the translation tables 14
and 16. A large focus of the Clustered Object infrastructure
has been multiprocessor performance. Thus, Reps are cre-
ated lazily on a given processor only once a request is made
on that processor.

[0028] The map of processors to Reps 20 is controlled by
the Root Object 22. A shared implementation can be
achieved with a Root that maintains one Rep and uses it for
every processor that accesses the Clustered Object instance.
Distributed implementations can be realized with a Root that
allocates a new Rep for some number, or Cluster, of pro-
cessors and complete distribution is achieved by a Root that
allocates a new Rep for every accessing processor. There are
standard Root classes that handle these scenarios. In the case
of the distributed versions, the Clustered Object implemen-
tor defines a new Root class by inheriting from one of the
standard distributed Root classes, adding any shared data
and methods to it as necessary.

[0029] Hot Swapping

[0030] There are a number of challenges in the design of
hot-swapping infrastructure capable of dynamically switch-
ing a live or hot software component:

[0031] 1. avoid adding overhead to normal method
invocations;

[0032] 2.avoid complicating the design of the objects
that have switch capabilities;

[0033] 3. ensure the switching code is scalable;

[0034] 4. correctly handle in-flight requests to the
object being switched;

[0035] 5. avoid deadlock during the switch; and

[0036] 6. guarantee integrity when transferring state
from the old to the new object.

[0037] Performing a hot swap on a multiprocessor can
further exacerbate these challenges as it can mean having to
swap the multiple constituents of a component across mul-
tiple processors in a coordinated way.

[0038] Hot-Swapping Overview

[0039] The preferred swapping mechanism of this inven-
tion allows any Clustered Object instance to be hot-swapped
with any other Clustered Object instance that implements
the same interface. Moreover, swapping is transparent to the
clients of the component and thus no support or code
changes are needed in the clients.

[0040] The preferred procedure of this invention is as
follows (and described in more detail further below):

[0041] 1. instantiate the replacement Clustered
Object instance;

[0042] 2. establish a quiescent state for the instance
to be replaced so that it is temporarily idle;
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[0043] 3. transfer state from the old instance to the
new instance;

[0044] 4.swap the new instance for the old, adjusting
all references to the instance; and

[0045] 5. deallocate the old instance.

[0046] There are three key issues that need to be addressed
in tins design. The first issue is how to establish a quiescent
state so that it is safe to transfer state and swap references.
The swap can only be done when the instance state is not
currently being accessed by any thread in the system.
Perhaps the most straightforward way to achieve a quiescent
state would be to require all clients of the Clustered Object
instance to acquire a reader-writer lock in read mode before
any call to the object (as done in the re-plugging mechanism
described in “Specialization tools and techniques for sys-
tematic optimization of system software,” by Dylan
McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan,
Charles Krasic, Ashvin Goel, Perry Wagle, Charles Consel,
Gilles Muller and Renauld Marlet, ACM Transactions on
Computer Systems (TOCS), vol 19, no 2, 2001, 217-251,
ACM Press (McNamee, et al.)). Acquiring this external lock
in write mode would thus establish that the object is safe for
swapping. However, this approach adds overhead for the
common case and can cause locality problems, defeating the
scalability advantages of Clustered Objects. Further, the
lock could not be part of the component itself and the calling
code would require changes. The preferred solution pro-
vided by this invention avoids these problems and is pre-
sented below.

[0047] The second issue is deciding what state needs to be
transferred and how to transfer the state from the old
component to the new one, both safely and efficiently. This
invention provides a protocol that Clustered Objects devel-
opers can use to negotiate and carry out the state transfer.
Although the state could be converted to some canonical,
serialized form, one would like to preserve as much context
as possible during the switch, and handle the transfer effi-
ciently.

[0048] The third issue is how to swap all of the references
held by the clients of the component so that the references
point to the new instance. In a system built using a fully-
typed language such as Java, this could be done using the
same infrastructure as used by garbage collection systems.
However, this would be prohibitively expensive for a single
component switch, and would be overly restrictive in terms
of systems language choice. An alternative would be to
partition a hot-swappable component into a front-end com-
ponent and a back-end component, where the front-end
component is referenced (and invoked) by the component
clients and is used only to forward requests to the back-end
component. Then there would be only a single reference (in
the front-end component) to the back-end component that
would need to be changed when a component is swapped,
but this adds extra overhead to the common call path. Given
that all accesses to a Clustered Object go through a level of
indirection, namely the Local Translation Table, the more
natural way to swap references is to overwrite the entry
pointers in a coordinated fashion. Several distributed sys-
tems have examined ways to dynamically configure the
location of components, requiring much of the same support.
One such distributed system is disclosed in “A Constructive
Development Environment for Parallel and Distributed Pro-
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grams,” by Jeff Magee, Naranker Dulay and Jeff Kramer,
International Workshop on Configurable Distributed Sys-
tems, Pittsburgh, Pa., March, 1994 (Magee, et al.).

[0049] Hot-Swapping Details

[0050] To implement the preferred swapping algorithm
outlined above, a specialized Clustered Object called the
Mediator Object is used during the swap. It coordinates the
switch between the old and new objects, leveraging the
Clustered Object infrastructure to implement the swapping
algorithm. To handle the swapping of distributed Clustered
Object instances with many parallel threads accessing it, the
Mediator is itself a distributed Clustered Object that imple-
ments the swapping algorithm in a distributed manner by
utilizing a set of worker threads.

[0051] The Mediator establishes a worker thread and Rep
on each processor that the original Clustered Object instance
has been accessed on. The preferred algorithm in this
embodiment uses per-processor worker threads. It is pos-
sible to avoid worker threads with an event callback mecha-
nism. The advantage of the worker thread model is that it
provides an easy place to collect these operations. The
disadvantage is that there is an extra thread that needs to be
created. To better clarify the description, we describe the
worker thread, allowing us to make easily apparent what
work needs to occur by this portion of the hot-swapping
infrastructure. The Mediator instance is interposed in front
of the target Clustered Object instance and intercepts all
calls to the original object for the duration of the swapping
operation. The details of how the interposition is achieved
are described below. The worker threads and Mediator Reps
transit through a sequence of phases in order to coordinate
the swap between the old Clustered Object instance and the
new one replacing it. The Mediator Reps function indepen-
dently and in parallel, only synchronizing when necessary in
order to accomplish the swap. FIGS. 2-7 illustrate the
phases that a Mediator Rep goes through while swapping a
Clustered Object. The discussion below describes how the
Mediator Reps and worker threads accomplish the swap. It
may be noted that, with the example described below, the
actions occur on a single processor, but in the general case
these actions proceed in parallel on multiple processors.

[0052] As represented in FIG. 2, prior to initiating the
swap, the old object’s Reps are invoked as normal. The first
step of hot-swapping is to instantiate the new Clustered
Object instance, specifying that it not be assigned a COID,
and that its root is not installed into the Global Translation
Table. The second step is to create a new Mediator instance
and to pass both the COID of the old instance and a pointer
to the Root of the new instance. The Mediator then proceeds
to interpose itself in front of the old instance.

[0053] Interposing a Mediator instance in front of the old
Clustered Object instance ensures that future calls tempo-
rarily go through the Mediator. To accomplish this, the
Mediator instance must overwrite both the Global Transla-
tion Table entry root pointer and all the active Local Trans-
lation Table entries’ Rep pointers. To swing the Global
Translation Table entry Root pointer, it must ensure that no
misses to the old object are in progress. As part of the
standard Miss-Handling infrastructure, there is a reader-
writer lock associated with each Global Translation Table
entry and all misses to the entry acquire this lock in read
mode. In order to atomically swing the Global Translation
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pointer, the associated reader-writer lock is acquired for
write access, ensuring that no misses are in progress. When
the lock has been successfully acquired, the Root pointer of
the entry is changed to point to the Root of the Mediator and
all future misses will be directed to it. The Mediator remem-
bers the old Object’s Root in order to communicate with it.
During this process, there may be calls that are in flight to
the old Clustered Object, and they proceed normally.

[0054] Swinging the Root is not sufficient to direct all calls
to the Mediator instance. This is because some Rep pointers
may already be established in the Local Translation Table
entry associated with the old instance causing some calls to
proceed directly to the Reps of the old instance. To handle
this, the Mediator spawns a worker thread on all the pro-
cessors that have accessed the old object. These threads have
a number of responsibilities, but their first action is to reset
the Local Translation entry on each processor back to the
Default Object. This ensures that future accesses will be
directed to the Mediator Object via the standard Miss-
Handling process. Because the Root maintains the set of
processors it has suffered a Miss on, the Mediator can query
the old object’s Root to determine what processors to spawn
threads on.

[0055] On each Mediator miss, the Mediator Root installs
a new Mediator Rep into the Local Translation Table for the
processor on which the Miss occurred. The Mediator Reps
are specialized C++ objects similar to the Default Object.
They are designed to handle hot-swapping of any Clustered
Object transparently. To do so, the Mediator Rep intercepts
all calls and takes action based on the current phase of the
Rep.

[0056] FIGS. 3-6 illustrate a single Mediator Rep 30 in the
different phases of a swap. Once the Mediator Rep has been
installed into the Local Translation Table entry, virtual
method calls that would normally have called one of the
functions in the original object instead call the correspond-
ing method in the mediator. A small amount of assembly
glue captures the low-level state of the call, including the
parameter passing registers and return address. The actions
that the Mediator Rep has to take on calls during the various
phases of swapping include: forwarding and keeping a count
of active calls (increment prior to forwarding the call and
decrement after the forwarded call returns), selectively
blocking calls, and releasing previously blocked calls. To be
transparent to the clients and the target Rep when the call is
being forwarded, the Mediator Rep may not alter the stack
layout and hence it must only use Rep-local storage to
achieve the appropriate actions. As can be seen in FIG. 8,
the Mediator Rep 30 utilizes three other data members,
represented at 42, 44 and 46, other than its vtable pointer 48.

[0057] The vtable 50 of the Mediator Rep, like that of the
Default Object, is constructed to direct any call, regardless
of its signature, to a single common mediation routine.
When a phase requires that new calls be tracked and
forwarded, the Mediator Rep uses an in-flight call counter to
track the number of live calls. Because the counter needs to
be decremented when the call completes, the Mediator must
ensure that the forwarded call returns to the mediation
routine prior to returning to the original caller. This means
that the Mediator Rep must keep track of where to return to
after decrementing its in-flight call counter on a per-thread
basis. To maintain transparency, the Mediator Rep avoids
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using the stack by maintaining a hash table indexed by a
thread id to record the return address for a given thread. The
Mediator Rep also uses a data member to track the phase it
is currently in. The phases are detailed in the following
paragraphs.

[0058] Forward Phase

[0059] This initial phase is illustrated in FIG. 3. The
Mediator 30 stays in this phase until it determines that there
are no longer any threads that were started prior to the swap
initiation still accessing the object. To detect this, the worker
thread utilizes services similar to the Read-Copy-Update
mechanism. Specifically, it is possible to determine when all
threads in existence on a processor at a specific instance in
time have terminated. Threads are assigned to one of two
generations, represented at 52 and 54. The preferred design
of this invention supports an arbitrary number of generations
but only two are required for hot swapping. Each generation
records the number of threads that are active and assigned to
it. At any given time, one of the generations is identified as
the current generation 54 and all new threads are assigned to
it. To determine when all the current threads have termi-
nated, the following algorithm is used:

i=0;

while (i < 2)

if (non current generation’s count == 0)

make it the current generation

else

wait until count is 0 and make it current generation
i=i+1

[0060] The process of switching the current generation is
called a generation swap. The above algorithm illustrates
that two swaps are required to establish that the current set
of threads have terminated. This mechanism is timely and
accurate even in the face of preemption. Preferably, the
invention does not use long-lived system threads nor does it
rely on blocking system-level threads. The “wait until count
is 0” is implemented via a callback mechanism, avoiding a
busy wait.

[0061] By waiting for all threads that were in existence
when the swap was initiated to terminate, the invention may
ensure that all threads accessing the old object have termi-
nated. However, to ensure system responsiveness while
waiting for these threads to terminate, new calls to the object
are tracked and forwarded by Mediator Rep 30 using its
in-flight call counter and hash table. The thread descriptors
are also marked as being in a forwarded call in order to
simplify deadlock avoidance as described below. Once the
worker thread, using the generation mechanism, determines
that all the untracked threads have terminated, the Mediator
Rep switches to the Block phase, represented in FIG. 4. It
may be noted that the Forward phase, and the transition to
the Block phase, happen independently and in parallel on
each processor, and no synchronization across processors is
required.

[0062] Block Phase

[0063] In this phase, the Mediator 30 establishes a quies-
cent state, guaranteeing that no threads are accessing the old
Clustered Object on any processor. To do this, each Mediator
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Rep establishes a quiescent state on its processor by block-
ing all new calls while waiting for any remaining tracked
calls to complete. If all calls were indiscriminately blocked,
deadlock could occur. This is because a call currently
accessing the object might itself call a method of the object
again. To avoid deadlock in this situation, tracked threads
are not blocked. This is achieved by checking the thread
descriptor to determine if the thread is in a forwarded call.
This also ensures that concurrent swaps of multiple Clus-
tered Objects do not deadlock. If a forwarded thread, during
the blocked phase in one object, calls another object that is
in the blocked phase, the thread will be forwarded rather
than blocked, thus avoiding the potential for inter-object
deadlocks. To ensure a quiescent state across all processors,
the worker threads must synchronize at this point prior to
proceeding. A shared data member in the Mediator root is
used for this purpose.

[0064] Transfer Phase

[0065] Once the Blocked phase has completed, the Trans-
fer phase begins. In this phase, represented in FIG. 5, the
worker threads are used to export the state of the old object
and import it into the new object. To assist state transfer, a
transfer negotiation protocol is provided. For each set of
functionally compatible components, there is a set of state
transfer protocols that form the union of all possible state
transfers between these components. For each component,
the developers create a prioritized list of the state transfer
protocols that the component supports. For example, it may
be best to pass internal structures by memory reference,
rather than marshaling the entire structure; however, both
components must understand the same structure for this to
be possible. Before initiating a hot-swap, a list is obtained
from both the old and new component instances. The most
desirable format, based on the two lists, is recorded by the
Mediator instance. Each possible protocol is defined a priori,
and a number value is assigned to the protocol. An object
contains a bit vector with bits set for each of the protocols
it supports. A logical and is performed on the two bit vectors.
The bits remaining on indicate the protocols that both
objects support. The most preferred protocol may now be
easily determined by finding the most significant bit. Once
the protocol is determined, the actual data transfer is carried
out in parallel by the worker threads. The worker threads
request the state from the old object in the format that was
recorded in the Mediator instance and pass it to the new
object.

[0066] Complete Phase

[0067] After the state transfer, the worker threads again
synchronize so that one may safely swing the Global Trans-
lation Table entry to the Root of the new Clustered Object.
All the worker threads then cease call interception by storing
a pointer to the new Clustered Object’s Reps into the Local
Translation Table entries so that future calls go directly to
the new Clustered Object. The worker threads then resume
all threads that were suspended during the Block phase and
forward them to the new Object as shown in FIG. 6. The
worker threads deallocate the original object and the media-
tor and then terminate, as represented in FIG. 7.

[0068] While it is apparent that the invention herein dis-
closed is well calculated to fulfill the objects stated above,
it will be appreciated that numerous modifications and
embodiments may be devised by those skilled in the art, and
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it is intended that the appended claims cover all such
modifications and embodiments as fall within the true spirit
and scope of the present invention.

What is claimed is:

1. In a computer system using an operating system to
provide access to hardware resources, wherein said operat-
ing system provides access to said resources via a first
source code component, a method of replacing said first
source code component with a new source code component
while said operating system remains active and while said
operating system provides continual availability to applica-
tions of the hardware resources, the method comprising:

identifying references to said first source code compo-
nent; and

replacing the identified references to said first source code

with references to said new source code component.

2. A method according to claim 1, wherein the method is
implemented transparently to said applications.

3. A method according to claim 1, wherein the method is
scalable.

4. A method according to claim 1, wherein said mecha-
nism is divided across a multiprocessor system so that each
processor can proceed independently.

5. A method according to claim 1, wherein the replacing
step includes the steps of:

establishing a quiescent state for the first code component;

transferring said quiescent state from the first code com-
ponent to the new code component; and

after transferring said quiescent state, swapping the first
code component with the new code component.
6. A method according to claim 1, wherein the step of
identifying references includes the steps of:

separating the first code component into objects; and

grouping said objects into a table, whereby references to
said objects are entered in the table.
7. A method according to claim 1, wherein the replacing
step includes the steps of:

establishing a quiescent state for the first code component,
without locking the first code component, by tracking
active threads to the first code component;

transferring said quiescent state from the first code com-
ponent to the new code component; and

after transferring said quiescent state, swapping the first
code component with the new code component.
8. A method according to claim 1, wherein the replacing
step includes the steps of:

establishing a quiescent state for the first code component;

transferring the quiescent state from the first code com-
ponent to the new code component by providing an
infrastructure to negotiate a best transfer algorithm; and

after transferring said quiescent state, swapping the first
code component with the new code component.
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9. A method according to claim 1, wherein:
the step of identifying references includes the steps of
separating the first code component into objects, and

grouping said objects into a table, whereby references to
said objects are entered in the table; and

the replacing step includes the steps of
establishing a quiescent state for the first code component;

transferring the quiescent state from the first code com-
ponent to the new code component by providing an
infrastructure to negotiate a best transfer algorithm; and

after transferring said quiescent state, swapping the first

code component with the new code component.

10. A system for swapping source code in a computer
system including an operating system, said operating system
including at least one source code component and providing
continual availability to applications of hardware resources,
the system comprising:

means for identifying, while said operating system is
active and providing continual access to said resources,
references to a first source code component of the
operating system; and

means for replacing the identified references, while said
operating system is active and providing continual
access to said resources, to said first source code with
references to a new source code component for the
operating system.

11. A system according to claim 10, wherein the system
operates transparently to said applications and the system is
scalable.

12. A system according to claim 10, wherein said mecha-
nism is divided across a multiprocessor system so that each
processor can process independently.

13. Asystem according to claim 10, wherein the means for
replacing step includes:

means for establishing a quiescent state for the first code
component;

means for transferring said quiescent state from the first
code component to the new code component; and

means for swapping the first code component with the
new code component after said quiescent state has been
transferred.
14. Asystem according to claim 10, wherein the means for
identifying references includes:

means for separating the first code component into
objects; and

means for grouping said objects into a table, whereby
references to said objects are entered in the table.
15. Asystem according to claim 10, wherein the means for
replacing includes:

means for establishing a quiescent state for the first code
component, without locking the first code component,
by tracking active threads to the first code component;

means for transferring said quiescent state from the first
code component to the new code component; and
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means for swapping the first code component with the
new code component after said quiescent state has been
transferred.
16. Asystem according to claim 10, wherein the means for
replacing includes:

means for establishing a quiescent state for the first code
component;

means for transferring the quiescent state from the first
code component to the new code component by pro-
viding an infrastructure to negotiate a best transfer
algorithm; and

means for swapping the first code component with the
new code component after said quiescent state has been
transferred.

17. A method according to claim 10, wherein:

the means for identifying references includes

i) means for separating the first code component into
objects, and

ii) means for grouping said objects into a table,
whereby references to said objects are entered in the
table; and

the means for replacing includes

i) means for establishing a quiescent state for the first
code component;

ii) means for transferring the quiescent state from the
first code component to the new code component by
providing an infrastructure to negotiate a best trans-
fer algorithm; and

iii) means for swapping the first code component with
the new code component after said quiescent state
has been transferred.

18. A program storage device, for use with a computer
system including an operating system to provide access to
hardware resources, wherein said operating system provides
access to said resources via a first source code component,
said program storage device being readable by machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for replacing said first
source code component with a new source code component
while said operating system remains active and while said
operating system provides continual availability to applica-
tions of said resources, the method steps comprising:

identifying references to said first source code compo-
nent; and

replacing the identified references to said first source code
with references to said new source code component.
19. A program storage device according to claim 18,
wherein the method is implemented transparently to said
applications, the method is scalable, and said mechanism is
divided across a multiprocessor system so that each proces-
sor can proceed independently.
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20. A program storage device according to claim 18,
wherein the replacing step includes the steps of:

establishing a quiescent state for the first code component;

transferring said quiescent state from the first code com-
ponent to the new code component; and

after transferring said quiescent state, swapping the first
code component with the new code component.
21. A program storage device according to claim 18,
wherein the step of identifying references includes the steps
of:

separating the first code component into objects; and

grouping said objects into a table, whereby references to
said objects are entered in the table.
22. A program storage device according to claim 18,
wherein the replacing step includes the steps of:

establishing a quiescent state for the first code component,
without locking the first code component, by tracking
active threads to the first code component;

transferring said quiescent state from the first code com-
ponent to the new code component; and

after transferring said quiescent state, swapping the first
code component with the new code component.
23. A program storage device according to claim 18,
wherein the replacing step includes the steps of:

establishing a quiescent state for the first code component;

transferring the quiescent state from the first code com-
ponent to the new code component by providing an
infrastructure to negotiate a best transfer algorithm; and

after transferring said quiescent state, swapping the first
code component with the new code component.
24. A program storage device according to claim 18,
wherein:

the step of identifying references includes the steps of
1) separating the first code component into objects, and

ii) grouping said objects into a table, whereby refer-
ences to said objects are entered in the table; and

the replacing step includes the steps of

i) establishing a quiescent state for the first code
component;

ii) transferring the quiescent state from the first code
component to the new code component by providing
an infrastructure to negotiate a best transfer algo-
rithm; and

ii) after transferring said quiescent state, swapping the
first code component with the new code component.



