US007472228B2

a2 United States Patent

10) Patent No.: US 7,472,228 B2

CONDITION

McKenney et al. 45) Date of Patent: Dec. 30, 2008
(54) READ-COPY UPDATE METHOD 2003/0041218 Al* 2/2003 Katariaccccoeevevennnne 711/156
OTHER PUBLICATIONS
(75) Inventors: Paul E. McKenney, Beaverton, OR . N .]
(US); Orran Y. Krieger, Newton, MA McKenney, Paul, EXp101t.1ng Dc?ferred Dc?structlon. An Analysis of
US): Jonathan A White Plai Read-Copy-Update Techniques in Operating System Kernels”, Jul.
(US); onathan Appavoo, © alf(ls’ 2004, pp. xxi-xxii, 83-90, 108-132.*
NY (US); Dipankar Sarma, Karnataka McKenney et al., “Read Copy Update” Jul. 2002.*
(IN) Paul E. McKenney et al, “Scaling deache with RCU”, Linux Journal
. . .) (Jan. 1, 2004).
(73) Assignee: International Business Machines Landon P. Cox, “Samsara: Honor Among Thieves in Peer-to-Peer
Corporation, Armonk, NY (US) Storage”. Department of Electrical Engineering and Computer Sci-
ence, University of Michigan (Oct. 19, 2003).
(*) Notice: Subject to any disclaimer, the term of this Paul E. McKenney, “Using RCU in the Linux 2.5 Kernel”. Linux
patent is extended or adjusted under 35 Journal (Oct. 1, 2003). _ o
U.S.C. 154(b) by 727 days. Paul E. McKenney et al, “Read-Copy Update: Usmg_EX_ecutlon His-
tory To Solve Concurrency Problems”, Parallel and Distributed Com-
(21) Appl. No.: 10/974,515 puting and Systems, pp. 509-518 (Oct. 1998).
(Continued)
22) Filed: Oct. 27, 2004 .
(22) ’ Primary Examiner—Matt Kim
(65) Prior Publication Data Assistant Examiner—Michael C Krofcheck
(74) Attorney, Agent, or Firm—Walter W. Duft; Abdy
US 2006/0100996 A1l May 11, 2006 Raissinia
(51) Int.CL (57) ABSTRACT
GO6F 12/00 (2006.01) .
GO6F 1212 (2006.01) A method for managing requests fpr deferred quates to
. . . shared data elements while minimizing grace period detec-
(52) US.Cl e, 711/141; 711/147: 711/154: ﬁlén O(ie(ihza dlassocitate dhviith unimizing ggwhetﬁerpfei;ist
711/159 . _ .
. . . ing references to the data elements have been removed. Plural
(58) Field of Classification Search 71 1 /Z‘lé/ 114519’ update requests that are eligible for grace period detection are
g lication file f et h hist ’ buffered without performing grace period detection process-
ce application liie for complete search fustory. ing. One or more conditions that could warrant commence-
(56) References Cited ment of grace period detection processing are monitored
while the update requests are buffered. If warranted by such a
U.S. PATENT DOCUMENTS condition, grace period detection is performed relative to the
5442758 A * 8/1995 Slingwine etal. oo 707/8 update requests so that they can be processed. In this way,
5727209 A 3/1998 Slingwine et al. w........ 395/672 &race period detection overhead can be amortized over plural
6377959 Bl 4/2002 Carlson 707/202 ypdate requests Whlle? being sensitive to conditions warrant-
6,490,671 BI* 12/2002 Franketal. 711/207 ~ ing prompt grace period detection.
6,578,114 B2 6/2003 Breuder et al. .. 711/141
2001/0037445 Al 11/2001 Mukherjeec...c........ 712/216 11 Claims, 7 Drawing Sheets
RCU SUBSYSTEM
CALLBACK P
API éz =
CALLBACK 3
——| REGISTRATION o SYSTEM
i/\ CONDITION CONDITION
46 32
6
CRACE % [connimon “J
PERIOD
DETECTION o4 MONITOR |q
END CURRENT| GENERATION
w
ﬁ PROCESSING kA
é PROCESS| CALLBACKS 8 &
g 4’, QUEUE
g

CURRENT GENERATION
CALLBACK QUEUE
NEXT GENERATION
CALLBACK QUEUE

MOVE CALLBACKS

STAGING QUEUE

30

US 7,472,228 B2
Page 2

OTHER PUBLICATIONS

Sup Park Chang et al., “A Replica Control Method For Improving
Availability For Read-Only Transactions,” Dept. of Comp. Sci, Korea
Adv. Inst. Of Sci & Technol., 1997, Abstract Only, 1 page.

OT Satyanarayanan et al., “Efficient Execution of Read-Only Trans-
actions in Replicated Multiversion Databases,” IEEE Transactions on

Knowledge and Data Engineering, vol. 5, No. 5, Oct. 1993, Abstract
Only, 1 page.
Sooyeon Park et al., “Dynamic Copy Security in Real-Time Database
Systems,” Journal of KISS(B), vol. 26, No. 8, Aug. 1999, Abstract
Only, 1 page.

* cited by examiner

U.S. Patent Dec. 30, 2008 Sheet 1 of 7 US 7,472,228 B2

A > B > C

r1

FIG. 14 (PRIOR ART)

ui

A Lg B g C

r1

FIG. 1B (PRIOR ART)

A > B’ > C
r2

B

+

r1

FIG. 1C (PRIOR ART)

A g B’ > C

FIG. 1D (PRIOR ART)

U.S. Patent Dec. 30, 2008 Sheet 2 of 7

ul

A » B

/'Y
r1

FIG. 24 (PRIOR ART)

ui

US 7,472,228 B2
P C
> C

FIG. 2B (PRIOR ART)

FIG. 2C (PRIOR ART)

U.S. Patent

Dec. 30, 2008 Sheet 3 of 7 US 7,472,228 B2
GRACE PERIOD
4’
PROCESS 0 “ —F”
PROCESS 1 ——b" ”
PROCESS 2 " »
PROCESS 3 “ —Dﬂ
MULTIPROCESSOR COMPUTER SYSTEM
2
PROCESSOR PROCESSOR PROCESSOR
4, 4, 4, SHARED
UPDATER UPDATER UPDATER MEMORY
18, 18, 18, 8
20 | RO ggssvs RCU ggssvs RCU gngvs D/S\;':F‘S'EQS
1 2 n 16
CACHE CACHE CACHE
MEMORY MEMORY MEMORY
10, 10, 10, MEMORY
CACHE CACHE CACHE CONTROLLER
CONTROLLER CONTROLLER CONTROLLER 14
12, 12, 12
SYSTEM BUS (6)

FIG. 4

U.S. Patent Dec. 30, 2008 Sheet 4 of 7 US 7,472,228 B2

RCU SUBSYSTEM
CALLBACK 20

API é"-
CALLBACK

REGISTRATION

34

SYSTEM
EXPLICIT CONDITION
CONDITION
M 46 (732
50

GRACE
PERIOD -2 | CONDITION

DETECTION fA o4 MONITOR |

END CURREN'Ii GENERATION

CALLBACK L~
PROCESSING 26

N\
54
PROCESS | CALLBACKS ég

QUEUE
CONDITION

NEW CALLBACKS

CURRENT GENERATION

CALLBACK QUEUE T 28a

NEXT GENERATION
CALLBACK QUEUE ™ 28b

?

MOVE CALLBACKS

STAGING QUEUE

Z
30

FIG. 5

U.S. Patent Dec. 30, 2008 Sheet 5 of 7 US 7,472,228 B2

RCU SUBSYSTEM
CALLBACK 20

API 22
I—’ CALLBACK

REGISTRATION SYSTEM

EXPLICIT CONDITION
CONDITION
46

34

32
50 =

S < | conDITION [
DETECTION N\ 24 MONITOR le—

END CU RRENTl GENERATION

CALLBACK A
PROCESSING 26

\N
54
PROCESS | CALLBACKS és

QUEUE
CONDITION

NEW CALLBACKS

CURRENT GENERATION
CALLBACK QUEUE
A
MOVE | CALLBACKS

NN 28a

> NEXT GENERATION
CALLBACK QUEUE/ PN
STAGING QUEUE 28b/30

FIG. 6

U.S. Patent

FiG. 7

Dec. 30,2008 Sheet 6 of 7

US 7,472,228 B2

REPLACEMENT SHEET

NEW CALLBACK
REGISTERED

I~ 40

'

BUFFER NEW
CALLBACK

42

I

PROVIDE FIRST
INDICATION
TO START
NEW GRACE PERIOD

44

CONDITION
SATISFIED?

A 48

MOVE CALLBACK(S)
FROM STAGING QUEU
FOR CALLBACK
PROCESSING

E

'

PROVIDE SECOND
INDICATION
TO START
NEW GRACE PERIOD

'

START NEW
GRACE PERIOD

58

U.S. Patent Dec. 30, 2008 Sheet 7 of 7 US 7,472,228 B2

100

FIG. &

US 7,472,228 B2

1
READ-COPY UPDATE METHOD

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to computer systems and
methods in which data resources are shared among concur-
rent data consumers while preserving data integrity and con-
sistency relative to each consumer. More particularly, the
invention concerns improvements to a mutual exclusion
mechanism known as “read-copy update,” in which lock-free
data read operations run concurrently with data update opera-
tions.

2. Description of the Prior Art

By way of background, read-copy update is a mutual exclu-
sion technique that permits shared data to be accessed for
reading without the use of locks, writes to shared memory,
memory barriers, atomic instructions, or other computation-
ally expensive synchronization mechanisms, while still per-
mitting the data to be updated (modify, delete, insert, etc.)
concurrently. The technique is well suited to multiprocessor
computing environments in which the number of read opera-
tions (readers) accessing a shared data set is large in compari-
son to the number of update operations (updaters), and
wherein the overhead cost of employing other mutual exclu-
sion techniques (such as locks) for each read operation would
be high. By way of example, a network routing table that is
updated at most once every few minutes but searched many
thousands of times per second is a case where read-side lock
acquisition would be quite burdensome.

The read-copy update technique implements data updates
intwo phases. In the first (initial update) phase, the actual data
update is carried out in a manner that temporarily preserves
two views of the data being updated. One view is the old
(pre-update) data state that is maintained for the benefit of
operations that may be currently referencing the data. The
other view is the new (post-update) data state that is available
for the benefit of operations that access the data following the
update. In the second (deferred update) phase, the old data
state is removed following a “grace period” that is long
enough to ensure that all executing operations will no longer
maintain references to the pre-update data.

FIGS. 1A-1D illustrate the use of read-copy update to
modify a data element B in a group of data elements A, B and
C. The data elements A, B, and C are arranged in a singly-
linked list that is traversed in acyclic fashion, with each ele-
ment containing a pointer to a next element in the list (or a
NULL pointer for the last element) in addition to storing some
item of data. A global pointer (not shown) is assumed to point
to data element A, the first member of the list. Persons skilled
in the art will appreciate that the data elements A, B and C can
be implemented using any of a variety of conventional pro-
gramming constructs, including but not limited to, data struc-
tures defined by C-language “struct” variables.

It is assumed that the data element list of FIGS. 1A-1D is
traversed (without locking) by multiple concurrent readers
and occasionally updated by updaters that delete, insert or
modify data elements in the list. In FIG. 1A, the data element
B is being referenced by a reader rl, as shown by the vertical
arrow below the data element. In FIG. 1B, an updater ul
wishes to update the linked list by modifying data element B.
Instead of simply updating this data element without regard to
the fact that r1 is referencing it (which might crash rl), ul
preserves B while generating an updated version thereof
(shown in FIG. 1C as data element B') and inserting it into the
linked list. This is done by ul acquiring a spinlock, allocating
new memory for B', copying the contents of B to B', modify-

20

25

30

35

40

45

50

55

60

65

2

ing B' as needed, updating the pointer from A to B so that it
points to B', and releasing the spinlock. All subsequent (post
update) readers that traverse the linked list, such as the reader
r2, will thus see the effect of the update operation by encoun-
tering B'. On the other hand, the old reader r1 will be unaf-
fected because the original version of B and its pointer to C
are retained. Although r1 will now be reading stale data, there
are many cases where this can be tolerated, such as when data
elements track the state of components external to the com-
puter system (e.g., network connectivity) and must tolerate
old data because of communication delays.

At some subsequent time following the update, r1 will have
continued its traversal of the linked list and moved its refer-
ence off of B. In addition, there will be a time at which no
other reader process is entitled to access B. It is at this point,
representing expiration of the grace period referred to above,
that ul can free B, as shown in FIG. 1D.

FIGS. 2A-2C illustrate the use of read-copy update to
delete a data element B in a singly-linked list of data elements
A, B and C. As shown in FIG. 2A, a reader r1 is assumed be
currently referencing B and an updater ul wishes to delete B.
As shown in FIG. 2B, the updater ul updates the pointer from
A to B so that A now points to C. In this way, rl is not
disturbed but a subsequent reader r2 sees the effect of the
deletion. As shown in FIG. 2C, r1 will subsequently move its
reference off of B, allowing B to be freed following expiration
of the grace period.

In the context of the read-copy update mechanism, a grace
period represents the point at which all running processes
having access to a data element guarded by read-copy update
have passed through a “quiescent state” in which they can no
longer maintain references to the data element, assert locks
thereon, or make any assumptions about data element state.
By convention, for operating system kernel code paths, a
context (process) switch, an idle loop, and user mode execu-
tion all represent quiescent states for any given CPU (as can
other operations that will not be listed here).

In FIG. 3, four processes 0, 1, 2, and 3 running on four
separate CPUs are shown to pass periodically through quies-
cent states (represented by the double vertical bars). The
grace period (shown by the dotted vertical lines) encompasses
the time frame in which all four processes have passed
through one quiescent state. If the four processes 0, 1, 2, and
3 were reader processes traversing the linked lists of FIGS.
1A-1D or FIGS. 2A-2C, none of these processes having ref-
erence to the old data element B prior to the grace period
could maintain a reference thereto following the grace period.
All post grace period searches conducted by these processes
would bypass B by following the links inserted by the updater.

There are various methods that may be used to implement
a deferred data update following a grace period, including but
not limited to the use of callback processing as described in
commonly assigned U.S. Pat. No. 5,727,209, entitled “Appa-
ratus And Method For Achieving Reduced Overhead Mutual-
Exclusion And Maintaining Coherency In A Multiprocessor
System Utilizing Execution History And Thread Monitor-
ing.” The contents of U.S. Pat. No. 5,727,209 are hereby
incorporated herein by this reference.

The callback processing technique contemplates that an
updater of a shared data element will perform the initial (first
phase) data update operation that creates the new view of the
data being updated, and then specify a callback function for
performing the deferred (second phase) data update operation
that removes the old view of the data being updated. The
updater will register the callback function (hereinafter
referred to as a callback) with a read-copy update subsystem
so that it can be executed at the end of the grace period. The

US 7,472,228 B2

3

read-copy update subsystem keeps track of pending callbacks
for each processor and monitors per-processor quiescent state
activity in order to detect when a current grace period has
expired. When it does, all scheduled callbacks that are ripe for
processing are executed.

Because grace period detection consumes processing
cycles, it is undesirable to incur such overhead unless there
are pending callbacks in the read-copy update subsystem.
Moreover, the greater the number of pending callbacks that
are processed per grace period, the more efficiently the over-
head of grace period detection can be amortized. On the other
hand, callback processing is sometimes urgent, such as dur-
ing low-memory conditions wherein memory could be freed
by removing the old data. In that case, the situation may
justify prompt callback processing without regard to grace
period detection overhead.

It is to solving the foregoing problems that the present
invention is directed. In particular, what is needed is a new
read-copy update technique that achieves the goal of amor-
tizing grace period detection over plural callbacks while
being sensitive to urgent callback conditions.

SUMMARY OF THE INVENTION

The foregoing problems are solved and an advance in the
art is obtained by a method for managing requests for deferred
updates to shared data elements (such as callbacks if the
invention is implemented in a callback-based read-copy
update system) while minimizing grace period detection
overhead associated with determining whether pre-existing
references to the data elements have been removed. Accord-
ing to exemplary embodiments of the invention, plural update
requests that are eligible for grace period detection are buff-
ered without performing grace period detection processing.
One or more conditions that could warrant commencement of
grace period detection processing are monitored while the
update requests are buffered. If warranted by such a condi-
tion, grace period detection is performed relative to the update
requests so that they can be processed. In this way, grace
period detection overhead can be amortized over plural
update requests while being sensitive to conditions warrant-
ing prompt grace period detection.

In further exemplary embodiments of the invention, the
condition(s) being monitored can be one or more of (1) the
buffered update requests reaching a threshold number, (2) the
buffered update requests being buffered for a threshold time
period, (3) the buffered update requests including an update
request designated as urgent, (4) a low-memory event being
encountered, and (5) a low-memory event being encountered
on a memory type and the buffered update requests including
an update request corresponding to the memory type.

The condition(s) can be identified in various ways, includ-
ing as an explicit indicator associated with one of the update
requests. The explicit indicator can be passed as parameter
when a function associated with the update request is
invoked. Alternatively, the indicator can be generated by the
update request being invoked using a pre-designated update
request function. As indicated above, the condition(s) can
also be system-related, such as a low memory condition.

The update requests can be buffered on a queue that is
separate from existing queues within a read-copy update sub-
system, or it can be buffered on one of the existing queues. In
the first implementation, the buffered update requests can be
buffered on a staging queue and then moved to an existing
queue in the read-copy update subsystem upon the occur-
rence of a condition warranting grace period detection pro-
cessing. In the second implementation, the update requests

20

25

30

35

40

45

50

55

60

65

4

can be buffered on one of' the existing queues in the read-copy
update subsystem, and held there until the occurrence of the
condition warranting grace period detection processing. For
example, the read-copy update subsystem could include a
first queue of update requests awaiting expiration of a grace
period and a second queue of update requests awaiting pro-
cessing of the update requests in the first queue. The update
requests could be buffered on the second queue and then
moved to the first queue upon the occurrence of the condition
warranting grace period detection processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of exemplary embodiments of the invention, as
illustrated in the accompanying Drawings, in which:

FIGS. 1A-1D are diagrammatic representations of a linked
list of data elements undergoing a data element replacement
according to a conventional read-copy update mechanism;

FIGS. 2A-2C are diagrammatic representations of a linked
list of data elements undergoing a data element deletion
according to a conventional read-copy update mechanism;

FIG. 3 is a flow diagram illustrating a grace period in which
four processes pass through a quiescent state;

FIG. 4 is a functional block diagram showing a multipro-
cessor computing system that represents one exemplary envi-
ronment in which the present invention can be implemented;

FIG. 5 is a functional block diagram showing a read-copy
update subsystem according to a first exemplary embodiment
of the present invention;

FIG. 6 is a functional block diagram showing a read-copy
update subsystem according to a second exemplary embodi-
ment of the present invention;

FIG. 7 is a flow diagram showing exemplary processing
logic that may be implemented in accordance with the present
invention; and

FIG. 8 is a diagrammatic illustration of storage media that
can be used to store a computer program product for imple-
menting read-copy update grace period detection functions in
accordance with the invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Turning now to the figures, wherein like reference numer-
als represent like elements in all of the several views, FI1G. 4
illustrates an exemplary computing environment in which the
present invention may be implemented. In particular, a sym-
metrical multiprocessor (SMP) computing system 2 is shown
in which multiple processors 4,, 4, . . . 4, are connected by
way of a common bus 6 to a shared memory 8. Respectively
associated with each processor4,, 4, . . . 4,,is a conventional
cache memory 10,, 10, . . . 10,, and a cache controller 12,,
12, ...12,. A conventional memory controller 14 is associ-
ated with the shared memory 8. The computing system 2 is
assumed to be under the management of a single multitasking
operating system adapted for use in an SMP environment.

It is further assumed that update operations executed
within kernel or user mode processes, threads (or within other
execution contexts) will periodically perform updates on
shared data sets 16 stored in the shared memory 8. Reference
numerals 18, 18, . . . 18, illustrate individual data update
operations (updaters) that may periodically execute on the
several processors 4,, 4, . . . 4,. As described by way of
background above, the updates performed by the data updat-
ers 18,, 18, . . . 18, can include modifying elements of a

US 7,472,228 B2

5

linked list, inserting new elements into the list, deleting ele-
ments from the list, and many other types of operations. To
facilitate such updates, the several processors 4,,4, . . . 4, are
programmed to implement a read-copy update (RCU) sub-
system 20, as by periodically executing respective read-copy
update instances 20, 20, . . . 20,, as part of their operating
system functions. Although not illustrated in the drawings,
the processors 4,, 4, . . . 4,, also periodically execute read
operations on the shared data sets 16. Such read operations
will typically be performed substantially more often than
updates, insofar as this is one of the premises underlying the
use of read-copy update.

As shown in FIG. 5, the read-copy update subsystem 20
includes a callback registration component 22 as part of its
functionality. The callback registration component 22 serves
as an API (Application Program Interface) to the read-copy
update subsystem 20 that can be called by the updaters
18, . . . 18, to register requests for deferred (second phase)
data element updates following initial (first phase) updates
performed by the updaters themselves. As is known in the art,
these update requests involve the removal of stale data ele-
ments, and will be handled as callbacks within the read-copy
update subsystem 20. The read-copy update subsystem 20
additionally includes a grace period detection component 24
and a callback processing component 26, both of which can
be implemented according to any of the techniques known to
those who are familiar with read-copy update.

The read-copy update subsystem 20 also maintains a set of
one or more callback queues 28 that are manipulated by the
callback registration component 22 and the callback process-
ing component 26. The callback queue set 28 can be imple-
mented using a shared global array that track callbacks reg-
istered by each of the updaters 18, 18, . . . 18, . Alternatively,
each read-copy update subsystem instance 20,, 20, . . . 20,
can maintain an array in a corresponding one of the cache
memories 10, 10, . . . 10, that defines a per-processor queue
set. In either case, a queue in the callback queue set 28 will be
appended (or prepended) with new callbacks by the callback
registration component 22 as such callbacks are registered.
The callback processing component 26 is responsible for
executing the callbacks referenced on the callback queue set
28, and for removing the callbacks therefrom as they are
processed.

As disclosed in U.S. Pat. No. 5,727,209 (referenced above)
the queue set 28 can be implemented using two queues 28a
and 2856 for managing callbacks. Queue 284 is a current
generation queue that specifies callbacks eligible for process-
ing at the end of the current grace period. Queue 285 is a next
generation queue for accumulating callbacks that will not
become eligible for grace period processing until the end of
the next grace period that follows the current grace period.
According to conventional callback queuing, new callbacks
registered by the callback registration component 22 are
accumulated on the next generation queue 28b. The new
callbacks cannot be added to the current generation queue
28a because that queue is only for callbacks that have been
pending since the beginning of the current grace period. Only
those callbacks are eligible to be processed at the end of the
current grace period.

The reason why new callbacks are not eligible for process-
ing and cannot be placed on the current generation queue 28a
becomes apparent if it is recalled that a grace period repre-
sents a time frame in which all processors have passed
through at least one quiescent state. If a callback has been
pending since the beginning of a grace period, it is guaranteed
that no processor will maintain a reference to the data element
associated with the callback at the end of the grace period. On

20

25

30

35

40

45

50

55

60

65

6

the other hand, if a callback was registered after the beginning
of the current grace period, there is no guarantee that all
processors potentially affected by this callback’s update
operation will have passed through a quiescent state. Indeed,
if a new callback was placed on the current generation queue
28a shortly before the end of the current grace period, there
might only be one or two processors that have passed through
quiescent states since the callback was registered.

All callbacks accumulated on the next generation queue
28b must wait for the end of the current grace period in order
to become eligible for processing. When this occurs, the
callback processing component dispatches the callbacks in
the current generation queue 28q, assigns all callbacks in the
next generation queue 285 to the current generation queue
28a, and waits for the end of the next grace period.

It will be appreciated that the foregoing callback handling
technique will assign callbacks from the next generation
queue 286 to the current generation queue 28a regardless of
the number of accumulated callbacks. This means that grace
period detection processing may or may not be amortized
over many callbacks. As described by way of background
above, inefficiencies will result without some level of amor-
tization. The solution provided by exemplary embodiments
of'the present invention is to manage callbacks in such a way
that grace period detection processing is adequately amor-
tized, while monitoring conditions warranting urgent call-
back processing so that grace period detection can be
promptly initiated when needed.

To that end, the present invention contemplates that call-
backs (or any other form of deferred update request) will be
buffered in some way until a monitored condition warrants
the invocation of grace period detection (followed by callback
processing) relative to the buffered callbacks. FIG. 5 shows
the use of a callback staging queue 30 to provide the callback
buffering function. As in the case of the queue set 28, the
staging queue 30 can be implemented globally or replicated
on a per-processor basis. Staging queue replication could be
alternatively established on a per-process, per-thread, per-
task, or other basis in order to avoid “cache thrashing.”

A condition monitor 32, which could be implemented as
part of the grace period detection component 24, defers call-
back detection processing and allows callbacks to remain on
the staging queue 30 until a condition being monitored by the
condition monitor is detected, at which point callback pro-
cessing relative to the buffered callbacks is deemed to be
warranted. There are any number of conditions that could be
monitored by the condition monitor 32. Examples include,
but are not limited to, one or more of the following:

1) the number of buffered callbacks reaches a threshold

number;

2) the buftered callbacks have been buffered for a threshold
time period;

3) the buffered callbacks include a callback designated as
urgent;

4) a low-memory event has been encountered;

5) a low-memory event has being encountered on a
memory type and the callback corresponds to that
memory type.

The above exemplary conditions may be grouped into three
categories. Conditions (1) and (2) represent queue conditions.
Conditions (4) and (5) represent system conditions. Condi-
tion (3) represents an explicit condition. FIG. 5 shows that the
condition monitor 32 monitors each condition category. Sys-
tem conditions can be monitored using conventional infor-
mation maintained by an operating system kernel, such as the
amount of available system memory. Queue conditions can be
monitored by examining the staging queue 30, and making

US 7,472,228 B2

7

determinations about the number of callbacks, the pendency
time of the oldest callback, etc.

Explicit conditions, such a whether a callback is urgent,
can be monitored by examining the staging queue 30 or by
receiving an explicit indication from the callback registration
component 22. In the first case, a callback urgency indicator
could be stored with a callback’s entry in the staging queue
32. Each callback would thus include the callback function
and arguments specified by an updater 18,,18, .. .18, (asis
conventional), and would additionally include an urgency
indicator flag. In the second case, the callback registration
component 22 could alert the condition monitor 32 of the
urgent callback by way of a suitable message passing scheme.
For example, as shown in FIG. 5, the callback registration
component 22 could set an urgency indicator 34 that is tested
by the condition monitor 32. The urgency indicator 34 can be
a per-processor variable or a global variable. The advantage
of indicating urgency globally is that all callbacks on all
processors could be advanced. The advantage of indicating
urgency on a per-processor basis is that cache locality is
preserved.

The urgent nature of a callback can be indicated when the
callback is registered. This can be done in several ways,
including modifying the API provided by the callback regis-
tration component 22 to allow an updater 18,, 18, . .. 18,, to
pass a parameter that indicates a need for urgent grace-period
detection. The conventional “call_rcu()’ API function used
in many read-copy update implementations could be so modi-
fied. Alternatively, a separate API function, which is similarto
“call_rcu()” but could instead be designated “call_rcu_
now(),” may be used.

When the condition monitor 32 detects one of the condi-
tions being monitored, it moves buffered callbacks from the
staging queue 30 into the next generation callback queue 285.
If there are no pending callbacks in the current generation
callback queue 28a (which will normally be the case), the
buffered callbacks will be eligible for grace period detection.
They will be moved by the callback processing component 26
from the next generation callback queue 285 to the current
generation callback queue 28a. Grace period detection pro-
cessing will then commence. In an alternative implementa-
tion, the condition monitor 34 could move the buffered call-
backs directly from the staging queue 32 to the current
generation call back queue 284, provided the latter is empty.

In order to prevent the next generation callback queue 285
from being rendered obsolete by the staging queue 30, effi-
cient implementations of the present invention might utilize
the next generation callback queue 285 as the staging queue
30. Such an embodiment is shown in FIG. 6. In this embodi-
ment, instead of moving callbacks from the next generation
queue 285 to the current generation callback 28a whenever
the latter is empty, the callbacks would only be moved as
directed by the condition monitor 32.

Regardless of how the staging queue 30 is implemented, it
will be appreciated that all callbacks being buffered thereon
may initially be ineligible for grace period detection due to a
current generation of callbacks being processed. However,
once the current callback generation is dispatched, all buft-
ered callbacks will become eligible for grace period detection
processing. Notwithstanding such eligibility, grace period
detection will not be performed relative to the buffered call-
backs until the occurrence of one of the conditions being
monitored by the condition monitor 32. Only when such
condition warrants grace period detection will such process-
ing be permitted. In most cases, the condition that warrants
grace period detection processing will arise from the staging
queue 30 reaching a threshold number of callbacks or holding

20

25

30

35

40

45

50

55

60

65

8

atleast one callback for a threshold time period. These thresh-
olds can be established according to design preferences. In
the comparatively rare case where a low memory situation
arises, or where a callback is marked urgent, grace period
detection can be promptly initiated so as to address the urgent
condition. In this way, grace period detection overhead can be
amortized over plural update requests while being sensitive to
conditions warranting prompt grace period detection.

FIG. 7 provides an overview of the processing that may be
performed by the RCU subsystem 20 in accordance with the
present invention. In step 40, a new callback is registered at
the callback registration component 22 by an updater 18,,
18, ...18,,. In step 42, the callback registration component 22
buffers the new callback onto the staging queue 30. Then in
step 44, according to conventional callback-based read-copy
update processing, the callback registration component 22
sets an indicator 46 (see FIG. 5 or 6) that indicates to the grace
period detection component 24 that detection of a new grace
period is being requested. In a conventional callback-based
read-copy update system, the indicator 46 would authorize
the grace period detection component 24 to commence detec-
tion of a new grace period as soon as any current grace period
ends. However, in accordance with the present invention, the
grace period detection component 26 is programmed to wait
in step 48 for a further indication 50 (see FIG. 5 or 6)from the
condition monitor 32 before commencing detection of the
new grace period. When the condition monitor 32 detects a
monitored condition in step 48, it manipulates the staging
queue 30 in step 52 (as shown by the arrow 54 in FIG. 5 or 6)
by moving all buffered callbacks to an appropriate queue in
the queue set 28. The condition monitor 32 then provides the
indication 50 to the grace period detection component 26. in
step 56 of FIG. 7. response to receiving the indication 50, the
grace period detection component 26 becomes authorized in
step 58 to commence detection of a new grace period on
behalf of the previously buffered callbacks. This will occur as
soon as the current grace period ends, or immediately if there
is no current grace period is being tracked. As is conventional,
the callback processing component 26 is thereafter notified
when the new grace period ends, at which point the previously
buffered callbacks can be processed.

Accordingly, a technique for managing callback requests
while minimizing period detection overhead has been dis-
closed. It will be appreciated that the foregoing concepts may
be variously embodied in any of a data processing system, a
machine implemented method, and a computer program
product in which programming means are recorded on one or
more data storage media for use in controlling a data process-
ing system to perform the required functions. Exemplary data
storage media for storing such programming means are
shown by reference numeral 100 in FIG. 8. The media 100 are
shown as being portable optical storage disks of the type that
are conventionally used for commercial software sales. Such
media can store the programming means of the invention
either alone or in conjunction with an operating system or
other software product that incorporates read-copy update
functionality. The programming means could also be stored
on portable magnetic media (such as floppy disks, flash
memory sticks, etc.) or on magnetic media combined with
drive systems (e.g. disk drives) incorporated in computer
platforms.

While various embodiments of the invention have been
described, it should be apparent that many variations and
alternative embodiments could be implemented in accor-
dance with the invention. It is understood, therefore, that the
invention is not to be in any way limited except in accordance
with the spirit of the appended claims and their equivalents.

US 7,472,228 B2

9

What is claimed is:
1. A method for managing requests for deferred updates to
shared data elements while minimizing grace period detec-
tion overhead associated with determining whether pre-exist-
ing references to the data elements have been removed, com-
prising:
buffering plural update requests that are eligible for grace
period detection without performing grace period detec-
tion processing that determines whether a grace period
has elapsed to signify it is safe to process said update
requests;
monitoring a set of conditions that are indicative of
whether said grace period detection processing should
be commenced, said conditions comprising buffer queue
conditions, system conditions and explicit conditions,
including:
(1) said buffered update requests reaching a threshold num-
ber, (2) said buffered update requests being buffered for
a threshold time period, (3) said buffered update
requests including an update request designated as
urgent, (4) a low-memory event being encountered, and
(5) alow-memory event being encountered on a memory
type and said buffered update requests including an
update request corresponding to said memory type;

determining whether any of said conditions warrants com-
mencement of said grace period detection processing;
and

if warranted by one of said conditions, performing said

grace period detection processing relative to said update
requests.

2. The method of claim 1 wherein said one of said condi-
tions is identified by an explicit indicator associated with one
of said update requests.

3. The method of claim 2 wherein said explicit indicator is
passed as parameter when a function associated with said
update request is invoked.

4. The method of claim 2 wherein said explicit indicator is
generated by said update request being invoked using a pre-
designated update request function.

5. The method of claim 1 wherein said buffered update
requests are buffered on a queue.

6. The method of claim 1 wherein said method is imple-
mented in conjunction with a read-copy update subsystem
and said buffered update requests are buffered on a staging
queue that is separate from a current generation or next gen-
eration update request queue of said read-copy update sub-
system.

7. The method of claim 6 wherein said buffered update
requests are moved from said staging queue into one of said
current generation or next generation update request queues
of said read-copy update subsystem upon the occurrence of
said condition warranting grace period detection processing.

8. The method of claim 1 wherein said method is imple-
mented in conjunction with a read-copy update subsystem
that includes one or more queues of update requests, and
wherein said buffered update requests are butfered on one of
said queues.

9. The method of claim 1 wherein said method is imple-
mented in conjunction with a read-copy update subsystem
that includes a first queue of update requests awaiting expi-
ration of a grace period and a second queue of update requests
awaiting processing of said update requests in said first
queue, and wherein said buffered update requests are buffered
on said second queue.

20

25

35

40

45

50

55

60

10

10. A method for managing callbacks processed by a read-
copy update subsystem while minimizing grace period detec-
tion overhead, comprising:

buffering plural callbacks that are eligible for grace period
detection without performing grace period detection
processing that determines whether a grace period has
elapsed to signify it is safe to process said callbacks;

monitoring a set of conditions that are indicative of
whether said grace period detection processing should
be commenced, said conditions comprising buffer queue
conditions, system conditions and explicit conditions,
including:

(1) said buffered callbacks reaching a threshold number,
(2) said buffered callbacks being buffered for a threshold
time period, (3) said buffered callbacks including a call-
back designated as urgent, (4) a low-memory event
being encountered, and (5) a low-memory event being
encountered on a memory type and said buffered call-
backs including a callback corresponding to said
memory type;

determining whether any of said conditions warrants com-
mencement of grace period detection processing; and

if warranted by one of said conditions, performing said
grace period detection processing relative to said call-
backs;

whereby grace period detection overhead can be amortized
over plural callbacks while being sensitive to conditions
warranting prompt grace period detection.

11. A method for managing requests for deferred updates to
shared data elements while minimizing grace period detec-
tion overhead associated with determining whether pre-exist-
ing references to the data elements have been removed, com-
prising:

establishing a buffer to hold plural update requests that are
eligible for grace period detection without performing
grace period detection processing that determines
whether a grace period has elapsed to signify it is safe to
process said update requests;

monitoring a set of conditions that are indicative of
whether said grace period detection processing should
be commenced, said conditions comprising buffer queue
conditions, system conditions and explicit conditions,
including:

(1) said update requests reaching a threshold number, (2)
said update requests being buffered for a threshold time
period, (3) said update requests including an update
request designated as urgent, (4) a low-memory event
being encountered, and (5) a low-memory event being
encountered on a memory type and said update requests
including an update request corresponding to said
memory type;

establishing an indicator for indicating the existence of any
of said conditions warranting commencement of said
grace period detection processing; and

establishing an activator responsive to said indicator indi-
cating said condition and adapted to activate grace
period detection relative to said update requests;

whereby grace period detection overhead can be amortized
over plural update requests while being sensitive to con-
ditions warranting prompt grace period detection.

