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DYNAMIC UPDATE MECHANISMS IN
OPERATING SYSTEMS

FIELD OF THE INVENTION

This invention relates to the field of computer operating
systems and particularly to software updates to such operat-
ing systems that are loaded and implemented without having
to reboot the operating system.

BACKGROUND

An operating system is a computer program that is the first
piece of software that a computer executes when a computing
device is turned on. Operating systems are no longer limited
to mainframe and desktop computers: mobile telephones and
various other portable devices now use operating systems to
enable and manage multiple different functionalities of their
host device, so the term computer system is not limited to a
traditional mainframe/desktop device. In certain networked
arrangements, one operating system may manage and be
accessed by multiple user stations simultaneously, which is
considered within the definition of a single computer system.
The operating system loads itself into memory and begins
managing the resources available on the computer. It then
provides those resources to other applications that the user
wants to execute. Typical services that an operating system
provides include a task scheduler, a memory manager, a disk
manager, a network manager, other I/O services manager, and
a security manager. These services are exemplary only. The
core operating system functions, the management of the com-
puter system, lie in what is termed the kernel of the operating
system in a traditional computer architecture. In a micro-
kernel architecture, core operating system functionality can
lie on system servers, outside the kernel. The kernel is often
considered as how the operating system is displayed to the
user of a device, but in fact the kernel lies below the display
manager (though is often tightly tied to it).

At the simplest level, an operating system manages the
hardware and software resources of the device or system (e.g.,
processor, memory, disk space, etc.), and it provides a stable,
consistent way for applications to deal with the hardware
without having to know all the hardware details. The first task,
managing the hardware and software resources, is very
important, as various programs and input methods compete
for the attention of the central processing unit (CPU) and
demand memory, storage and input/output (I/O) bandwidth
for their own purposes. In this capacity, the operating system
ensures that each application gets the necessary resources and
ensures proper interfacing between applications, as well as
husbanding the limited capacity of the system for maximum
usage by the various users and applications. The second task,
providing a consistent application interface, is especially
important if there is to be more than one of a particular type of
computer using the operating system (e.g., a single operating
system for computer systems made by different manufactur-
ers), or if the computer system hardware is changed or
updated. A consistent application program interface (API)
allows developers of application software to write code on
one computer system and have a high level of confidence that
it will run on another computer system using the same oper-
ating system, even if the amount of memory, the quantity of
storage, or even the computing architecture is different on the
two computer systems.

As computing infrastructure becomes more widespread,
updates to various software programs have become more
common. These are generically termed patches, and there
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have been an increasing number of patches for functionality,
performance, and especially security reasons. To take effect,
these patches traditionally require either restarting system
services, or often rebooting the operating system, resulting in
downtime. Sometimes this downtime can be scheduled, if for
example the patch adds a feature, improves performance, etc.
In other situations such as applying a security patch, delaying
the update is not desirable. Users and system administrators
are forced to trade off the increased vulnerability of a security
flaw against the cost of unplanned downtime. Dynamic
update is used to avoid such downtime, and involves on-the-
fly application of software updates to a running system with-
out loss of service.

In addition to the above-mentioned impact on availability,
dynamically updatable operating systems have other benefits.
Such operating systems provide a good prototyping environ-
ment. They allow, for example, a new page replacement, file
system, or network policy to be tested without rebooting.
Further, in more mature computer systems such as main-
frames, some user constraints prevent the operating system
from ever being shutdown. In such an environment, users can
only get new functionality into the operating system by per-
forming a dynamic update.

An operating system is a unique environment with special
constraints as compared to an application, and additional
challenges must be solved to provide dynamic update func-
tionality. An important piece of prior art is described in U.S.
Patent Application Publication No. 2005/0071811 Al to
Appavoo et al. (hereinafter, the Appavoo publication). The
Appavoo publication discloses how to swap an individual
object instance and discusses other prior art references
detailed below. The Appavoo publication is hereby incorpo-
rated by reference, and it is noted that each inventor of the
Appavoo publication is an inventor of this application.

One reference detailed in the Appavoo publication is
entitled: “Dynamic C++ Classes: A Lightweight Mechanism
to Update Code in a Running Program,” by Gisli Hjalmtysson
and Robert Gray (Annual USENIX Technical Conference,
June 1998, pps 65-76, USENIX Association). The Hjalmtys-
son and Gray reference describes a mechanism for updating
C++ objects in a running program, but, in the disclosed sys-
tem, client objects need to be able to recover from broken
bindings due to an object swap and retry the operation, so the
mechanism is not transparent to client objects. Moreover, the
Hjalmtysson and Gray approach does not detect quiescent
state, and old objects continue to service prior calls while the
new object begins to service new calls.

Another reference detailed in the Appavoo publication is
entitled: “Optimistic Incremental Specialization: Streamlin-
ing a Commercial Operating System,” by Calton Pu, Tito
Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon
Inouye, Lakshmi Kethana, Jonathan Walpole and Ke Zhang
(ACM Symposium on Operating System Principles, Copper
Mountain Resort, Colo., Dec. 3-6, 1995, Operating Systems
Review, vol 29, no 5). This reference describe a replugging
mechanism for incremental and optimistic specialization, but
the reference assumes there can be at most one thread execut-
ing in a swappable module at a time. In later work, that
constraint is relaxed but does not scale.

As mentioned, the Appavoo publication and the works
discussed therein describe how to hot-swap an individual
object. For a true dynamic upgrade, all objects of a given class
need to be swapped.

Another reference, entitled “Mutatis Mutandis: Safe and
Predictable Dynamic Software Updating” by G. Stoyle, M.
Hicks, G. Bierman, P. Sewell and I. Neamtiu (POPL *05, Jan.
12-14, 2005, Long Beach, Calif.) describes a formal model
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for dynamic update in C-like languages using pre-computed
safe update points present in the code.

Some commercial operating systems offer features similar
to Sun® Microsystems’ Solaris Live Upgrade, which allows
changes to be made and tested without affecting the running
system, but requires a reboot for changes to take effect. Other
approaches are limited to perform an upgrade on a single
threaded user-space applications cite.

What is needed is a dynamic upgrade approach that is
scalable for both upgraded objects and new objects, for both
single CPU computer systems and those with hypervisors and
multiple instances of operating systems, that has the capabil-
ity to track objects and to dynamically upgrade all objects of
a particular type in a running operating system, without the
need to shut down or reboot that operating system.

SUMMARY

The present invention enables dynamic updates to operat-
ing system software, and as compared to the prior art of which
the inventors are aware, provides much greater flexibility in
that it is scalable to update the operating system kernel,
update one or more objects, and/or add one or more objects to
the operating system. It is particularly valuable for adding
security patches, in that reboot is unnecessary for the patch to
be implemented and accessible by the operating system, and
any patch may be incorporated dynamically without inter-
rupting access to the operating system as a whole.

In one embodiment, the present invention is a signal bear-
ing medium tangibly embodying a program of machine-read-
able instructions executable by a digital processing apparatus
to perform operations to dynamically update an operating
system. The operations include loading a new factory object
that has at least one updated object instance within an object
class. All object instances of the new factory object are within
the same class. Then, an old factory object that has at least one
old object instance within that same object class is located.
The old factory object is identified by the new factory object.
A dynamic update procedure is then executed, which includes
(a) changing a factory reference pointer within the operating
system from the old factory object to the new factory object,
(b) hot swapping the old object instance for the updated object
instance, and (¢) removing the old factory object.

In another embodiment, the present invention is a method
of dynamically updating an operating system that includes
loading a new factory object having at least one new object
instance and one updated object instance, determining that a
version identifier of an old factory object meets what is
termed a versioning evolution requirement (e.g., compatibil-
ity with the new factory object, detailed below), and setting a
pointer that goes between a factory reference and an old
factory object to go between the factory reference and the new
factory object. For the case of the updated object instances,
the method involves several steps: establishing a safe point
(e.g., a quiescent state) for an old object instance that corre-
sponds to the updated object instance; changing a factory
reference pointer within the operating system from the old
factory object to the new factory object; hot swapping the old
object instances for the updated object instances; and deleting
the old object instances. For the case of all new object
instances, the method includes establishing a pointer from the
new factory object to the new object and deleting the old
factory object.

According to another embodiment, the present invention is
a method of dynamically updating an operating system that
includes loading a new class definition corresponding to an
update implementation of at least one existing old class defi-
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4

nition, determining that version of the updated class meets a
versioning requirement, and setting data structures to indicate
that new object instantiations of the old class are satisfied by
the new class. Any object instances of the old class are then
replaced by instances of the new class. A safe point is estab-
lished for each old object instance that corresponds to an
updated object instance, the old object instances are hot-
swapped for the updated object instances, and the old object
instances are deleted in order to perform the method.
These and other embodiments are detailed further below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is more fully understood with refer-
ence to the following drawing figures.

FIG. 1, separated into FIGS. 1A-1F, are schematic dia-
grams of steps involved in a dynamic upgrade using the
factory method of the present invention.

FIG. 2 is an example of an update to source code for fixing
a bug in a kernel service according to embodiments of the
invention.

FIG. 3 is a block diagram of method steps in dynamically
upgrading using the factory method according to embodi-
ments of the invention.

DETAILED DESCRIPTION

The present invention is not limited to the following
described embodiment. It provides a most common imple-
mentation, but one skilled in the art will see enhancements
that are still keeping within the scope covered by the embodi-
ment.

Dynamic update is a mechanism that allows software
updates and patches to be applied to a running operating
system without loss of service or downtime. Dynamic update
on an operating system places unique demands on its imple-
mentation, as compared to dynamic update of applications.
These demands stem from the event-driven nature of operat-
ing systems, from their restricted run-time execution environ-
ment, and from their role in simultaneously servicing mul-
tiple clients, whether those clients are different user stations
or different applications (in a multi-tasking environment).
Various embodiments of the present invention support updat-
ing both kernel code and data structures. Some terms are now
defined in order to more particularly describe the invention
and its operation.

Updatable unit: In order to update an operating system, it is
necessary to identify an updatable unit. Depending on the
class of update supported, and the implementation of the
system, an updatable unit may consist of a code module, or of
both computer code and encapsulated data. In both cases, the
updatable unit must have a clearly defined interface to the
operating system as a whole (e.g., to other portions of the
operating system apart from the particular updatable unit
being considered). Furthermore, external code should invoke
the updatable unit in a well-defined manner, and should not
arbitrarily access code or data of that unit.

While creating updatable units is straightforward with sup-
port from languages such as C++, it is still possible without
such support. Primarily, providing updatable units means
designing the operating system with good modularity, where
the various updatable units obey module boundaries. The
structure of the operating system dictates what is feasible. As
detailed in the Appavoo publication, objects may share aback
end such as an underlying data structure, but are carefully
constructed to avoid sharing a front end through which they
are invoked by other system resources.
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Safe Point: Dynamic updates should not occur while any
affected computer code or data is being accessed. That is, an
updatable unit should not be updated while any part of that
updatable unit is in use. To do otherwise would cause unde-
fined behavior. It is therefore important to determine when an
update may safely be applied, while minimizing any delay in
applying that update. In general however, this is undecidable
because the computer system generally does not know in
advance whether an object is to remain quiescent or is soon to
be invoked. Thus, operating system support is required to
achieve and detect what is termed a safe point. Dynamic
updates may involve requiring the operating system to be
programmed with explicit update points or safe points, or by
detecting when an updatable unit becomes idle or quiescent
and blocking accesses to that updatable unit by other non-
updating functions while that particular object is being
updated. Each safe point applies to a specific updatable unit.
When an updatable unit reaches a safe point, it is no longer
being invoked by the computer system.

An operating system is fundamentally event-driven,
responding to application requests and hardware events. This
differs from most applications, which are structured as one or
more threads of execution. As detailed below, this event-
based model can be used to detect when an updatable unit of
the system has reached a safe point. Additional techmques
can be employed to handle blocking I/O events or long run-
ning daemon threads. A daemon thread works in the back-
ground to support the runtime environment (e.g., a clock
handler thread, an idle thread, a garbage collector thread, a
screen updater thread). Since the safe point is by definition
that point when an updatable unit is no longer active, daemon
threads as well as user-initiated threads that apply to a specific
updatable unit must not cross a safe point for that updatable
unit. Determining and establishing a quiescent state or safe
point is detailed in the Appavoo publication further. Gener-
ally, an indirection virtual entity (termed a mediator in the
Appavoo reference) is disposed in advance of the object in
question. Current threads are allowed to continue accessing
the object, newly invoked threads are blocked at the mediator,
and when all current threads expire, the quiescent state is
established.

State Tracking: For a dynamic update system to support
changes to data structures, it must be able to locate and
convert all such structures. This requires identifying and man-
aging all instances of state maintained by an updatable unit
(particularly those that include data structures, but preferably
all updatable units) in a uniform fashion. This functionality is
usually provided in software systems using what is termed a
factory design pattern, or for brevity, factories. Note that two
classes of updates, dynamic update to code and dynamic
update to single-instance data, are still possible without state
tracking. A state tracking mechanism enables dynamic
updates that affect multiple-instance data, that data that is
present in more than one updatable unit.

State Transfer: When an update is applied that affects data
structures, or when an updated unit maintains its internal state
without change (e.g., the updated unit and the original unit are
substantively identical, perhaps changing only in version
number), the state of that updated unit must be transferred so
that it may be invoked transparently from the updatable unit it
replaced without interruption or discontinuity. The state
transfer mechanism performs this task, and is how changes to
data structures can be supported.

Redirection of Invocations: After the update to an updat-
able unit occurs, all future requests affecting the old updat-
able unit should be satisfied by the replacement updated unit,
including invocations of computer code in the updated unit
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itself (which may include portions of the original updatable
unit that remain unchanged, but which need not always be
copied in the update process as detailed below). Redirection
of invocations is detailed further in the Appavoo publication
under the headings “Transfer Phase” and “Completion
Phase”. Furthermore, in a system supporting multiple-in-
stance data structures, creation of new data structures of the
affected type should produce the updated data structure.

Version Management: In order to package and apply an
update, and in order to debug and understand the running
system, it is necessary to know what code is actually execut-
ing prior to the updates being applied. This is inherent in the
concept of performing updates after reaching a safe point for
a particular updatable unit. If a current update depends on
another update having previously been applied, then some
means is required to verify which previous updates have
already been applied. Absent this, the current update may
cause an error, such as replacing a segment of code that should
have been modified by a previous update that, in fact, may
have never been executed. Furthermore, if updates may come
from multiple sources, the versioning may be non-linear,
causing the interdependencies between updates to become
complex and difficult to track.

The level of support required for version management is
affected by the complexity of update interdependencies, but
at a minimum, Version Management should track a version
number for each update present in the system, and for these
version numbers to be checked before a current update is
applied. A version evolution requirement is merely satisfying
the criterion for version management, and may include that
the old version precedes in sequential number the updated
version, or falls within a certain date of most recent revision,
or other version checking mechanisms known in the art.

Having now described the context and terms, implementa-
tions of dynamic updating of operating systems according to
the present invention are now detailed. According to certain
embodiments, dynamic updating is scalable for open-source
operating systems incorporating innovative mechanisms and
policies, and for modern programming technologies. Prefer-
ably, these scalable dynamic update protocols run on 64-bit,
cache-coherent PowerPC systems, and supports the Linux
API and ABI. These use a modular object-oriented design to
achieve multiprocessor scalability, enhance customizability,
and enable rapid prototyping of experimental features (such
as different implementations of dynamic update).

Object-oriented architecture is used throughout the design
of the operating system to enable dynamic updating. Each
resource of the computing system (for example, virtual
memory region, network connection, open file, or process) is
managed by a different set of object instances. Each object of
an object instance encapsulates the meta-data necessary to
manage the resource as well as the locks necessary to manipu-
late the meta-data. This architecture avoids global locks, data
structures, and policies that are present in some operating
systems that might otherwise prevent isolation of individual
objects by safe points. The object-oriented nature enables
adaptability, because different resources can be managed by
different implementations. For example, each running pro-
cess in the system may be represented by an in-kernel
instance of the process object Process (analogous to the pro-
cess control block structure present in other operating sys-
tems). Presently two implementations of the “process” inter-
face exist: ProcessReplicated and ProcessShared.
ProcessReplicated is the default and ProcessShared is opti-
mized for the case where a process exists on only a single
CPU. In these embodiments of the present invention, the
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kernel defaults to creating replicated processes, but allows for
a combination of replicated and shared processes.

Dynamic updating according to some embodiments of the
invention uses clustered objects, which is a mechanism that
enables a given object to control its own distribution across
processors. Clustered objects are detailed further in the
Appavoo publication. The inventors successfully hot-
swapped objects using the object translation table facility
provided by clustered objects. Hot-swapping allows an object
instance to be transparently switched from an older version to
an updated version of the object while the overall computing
system is running, and is an important aspect of the present
dynamic update implementation. As the name implies, trans-
parent switching is invisible to a user. While all users may be
denied access to the particular object being updated once that
object reaches a safe point and further access is blocked while
it is being updated, the users retain access to all other
unblocked objects and instances during that time.

Preferably, the dynamically updatable unit is the same as
for hot-swapping, namely the object instance. The operating
systems that use the present invention use a coding style that
enforces encapsulation of data within objects. It is important
to note that all data lies within an object, typically the back
end that does not uniquely differentiate over other objects.
Each object’s interface may be declared in a virtual base
class, allowing clients of an object to use any implementation,
and for the implementation to be changed transparently by
hot-swapping.

Respecting safe points, embodiments of the present inven-
tion can detect quiescent states using any of various mecha-
nisms, such as a read copy update (RCU) found in the Linux
operating system. Using the RCU as a safe point makes use of
the fact that each system request is serviced by a new kernel
thread, and that all kernel threads are short-lived and non-
blocking. Each thread belongs to a certain epoch, or genera-
tion, which was the active generation when it was created. A
count is maintained of the number of live threads in each
generation, and by advancing the generation and waiting for
the previous generations’ counters to reach zero, it is possible
to determine when all threads that existed on a processor at a
specific instance in time have terminated.

While waiting for the currently running threads to a par-
ticular object to finish, new invocations of that object are
blocked and the generation-count mechanism above is used to
detect quiescence of that object. Once all those threads have
terminated, a safe point is reached and the object instance
may be swapped or otherwise updated, and afterwards made
immediately available for access by other resources of the
operating system without the necessity of a reboot.

State tracking is preferably provided by factory objects,
which is detailed with particularity below for the case where
multiple objects in a class are added orupdated. State transfer,
on the other hand, relates to changing an indicator for a
specific object to indicate that it has indeed been updated with
the current patch. Factory objects use state transfer also but on
a repetitive basis for each of the objects that are updated by
that particular factory. Once the object being swapped is
quiescent, the update framework invokes a state transfer
mechanism which transfers state from the old object to the
new object, using a transfer negotiation protocol to allow the
negotiation of a common intermediate format that both
objects support. There are several common intermediate for-
mats that object developers currently use to implement
patches. These common intermediate formats enable data to
be converted from the old object to the new object, as the
updated object may sometimes be in a different format that
that of the old object. The Appavoo publication details the use
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of a mediator to record the most desirable format derived
from two lists, obtained prior to a hot-swap, from the old and
new object instance, and using a most significant bit taken by
logically AND’ing bit vectors of the two different protocols
resolves the most desirable format in the most significant bit.
While the inventors prefer the mediator embodiment of the
Appavoo publication, the specifics of the intermediate format
are a design choice, and will not be explored further in this
description.

The transfer negotiation protocol is a generalized tech-
nique that was developed to support hot-swaps between any
arbitrary implementations of an object. In the case of dynamic
update, the replacement object is typically only a slightly
modified version of the original object, with similar state
information, so the conversion functions perform either a
direct copy, or a copy with slight modifications.

Invocations of the new or updated object instances use a
per-address-space, or an object translation table. Each object
has an entry in the table, and all object invocations are made
through this reference. In the process of performing a
dynamic update, the translation table entries for an object are
updated to point to the new instance, which causes future calls
from clients to transparently invoke the new code. The object
translation table can be used to support clustered object multi-
processor scalability (such as multiple user stations running a
single instance of an operating system), and also for hot-
swapping for one or more object instances in a single-proces-
sor environment. This is true whether the object instances are
newly added by the current patch or updated versions of a
pre-existing object instance. For multi-processor systems
where multiple user stations run from a common operating
system, there is a global translation table and at each user
station a localized translation table. The easier implementa-
tion for those environments is seen to be at the local transla-
tion tables, since each different local translation table will
have the same virtual address on each of the different proces-
sors but may be backed by different physical addresses.

When an object that has multiple instances is updated,
creations of that type of object are also redirected. This redi-
rection is provided by the factory mechanism, described in
detail below. When only one instance of an object is present,
the factory mechanism may be used (where the factory has
only one object) but can be avoided by replacing the object
singularly as a module.

Preferably, the present invention uses a versioning scheme
for dynamic updates. In a simple implementation, each fac-
tory object carries a version number, and before an update
proceeds these version numbers are checked. Where manda-
tory prior versions are not present, at least those objects not
bearing all of the mandatory prior versions are not updated.
Preferably when at least one object of a factory does not
reflect all mandatory prior versions, no objects of that factory
are updated. The latter preference is to avoid having multiple
but incomplete patches input to an operating system, which
over time would be difficult to resolve given that installing the
later patches to version-acceptable objects may act to prevent
installing the missing patches to the version-not acceptable
objects at a later time, rendering increasing numbers of object
instances unusable and un-patchable through normal means.

Because hot-swapping forms an important subsection of
dynamic updating according to the present invention, various
implementations are outlined immediately below.

As noted above, the inventors characterize the object trans-
lation table as adding an extra level of indirection on all object
invocations. This indirection enables a mechanism to be
imposed above the object itself, whereby an object’s entry in
the object translation table (the pointer to the object) is modi-
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fied. Because all accesses of an object are through the object
translation table, this mechanism causes all accesses of that
object to transparently invoke a different interposer object.
The interposer can then choose to pass the call along to the
original object. This “interposer” mechanism may be used by
the hot swapping and dynamic update implementations, and
is detailed as a mediator in the Appavoo publication.

Hot-swapping operates by interposing a mediator object in
front of the object to be hot-swapped. The mediator passes
through several phases, first tracking incoming calls until it
knows (such as through the generation-count mechanism
described above) that all calls are being tracked, and then
suspending further calls until the existing tracked calls are
complete. At this point the object is quiescent. This idle state
is assured for the duration of the hot-swapping by blocking
further invocations to the object instance, and blocking may
be done as active threads are running and their completion is
awaited, or after all active threads are completed. The former
is preferable, as the mediator may enable re-access of a par-
ticular object by an existing thread while still blocking other
new threads. This avoids the error of blocking all threads to
the object while an existing thread requires re-access of the
object to close. The mediator then performs state transfer
format negotiation as above, followed by the state transfer
between the old and the new object instances. Finally, it
updates the object translation table reference to the new
object, and forwards the blocked calls to the new object
instance according to the updated object translation table.

The present invention uses in certain embodiments a mod-
ule loader to avoid the need for rebooting. The module loader
described above has some similarities to that used in Linux,
but is seen as a simpler implementation. Specifically, it is
believed that Linux must maintain a dynamic symbol table
and support interdependencies between modules. The mod-
ule loader implemented for this invention avoids this because
all objects are invoked indirectly through the object transla-
tion tables. A module can (and to be useful should) contain
code that is called by the existing kernel without requiring its
symbols to be visible. Its initialization code simply instanti-
ates replacement objects and performs hot-swap operations to
invoke the code in those object instances. The present module
loader performs the relocations and symbol table manage-
ment preferably at the user-level (e.g., at the local translation
table for a multi-CPU environment).

The factory mechanism touched on above is now
described. Hot-swapping allows updating of the code and
data of a single specific object instance. However, the above
description is predicated on the concept that each instance of
aresource is managed by a different instance of an object. To
dynamically update an operating system object, the infra-
structure must be able to both locate and hot-swap all
instances of that object, and cause any new instantiations to
use the updated object code. As noted above, this is a recog-
nized problem; to support dynamic updates affecting data
structures requires a mechanism to track all instances of those
data structures and update them.

The above embodiments of the invention track object
instances in a class-specific manner, and objects are typically
created through calls to statically-bound methods. For
example, to create an instance of the ProcessReplicated
object (the implementation used by default for Process
objects), the call used might be:

ProcessReplicated::Create(

ProcessRef &out, HATRef h, PMRef pm,
ProcessRef creator, const char *name);

This leads to problems for dynamic update, because the

Create call is bound at compile-time, and so cannot easily be
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redirected to an updated implementation of the ProcessRep-
licated object. Relying on the caller to track a newly created
object instance will be ineffective unless the Create call can
be redirected, and one of the inventors’ goals is to enable the
installation of new objects (as well as updating old objects)
without rebooting the system.

To track object instances and to control object instantia-
tions, the inventors have found that using the factory design
pattern is particularly advantageous. As characterized in the
prior art, the factory method is an abstraction for creating
object instances. In the present invention, factories also track
instances that they have created, and are themselves objects.
Each factory object provides an interface for creating and
updating/destroying objects of one particular class, and main-
tains the set of objects that it has created. A factory may be
considered as a frame within which one or more objects of a
single class lie. In that respect, a factory may be considered as
the entries in an object translation table that point to a par-
ticular class of object instances. Preferably, all objects within
a single class lie in one factory, and that factory includes no
other objects from other classes. All invocations of the object
go through the factory, but the objects themselves exist inde-
pendently of the factory in which they lie. Deleting the factory
does not necessarily mean deleting the objects within it,
though pointers that previously went through the deleted
factory may have to be reset to a new factory in orderto invoke
those objects directly.

The majority of the factory implementation is factored out
using inheritance and preprocessor macros, so that adding
factory support to a class is relatively simple. Using the above
example to create an instance of the ProcessReplicated
object, after adding the factory, the creation call may be
changed to:

DREF_FACTORY_DEFAULT(ProcessReplicated)->cre-

ate(...);

where ( ... ) represents the arguments as before.

The macro above hides some implementation details,
whereby the default factory for a class is referenced using a
static member. It expands to the following:

(*ProcessReplicated::Factory: :factoryRef)->create( . . . );

Using a factory reference allows hot-swapping of the factory
itself, which is used in dynamic updating according to the
present invention.

To provide basic support for configuration management,
factories carry a version number identifying the specific
implementation of the factory and its type. Typically, the
factories in the base or original operating system all carry
version zero, and updated factories have unique non-zero
version numbers. Assuming a strictly linear model of update
is employed, when an update occurs the current version num-
ber of the factory is compared to the version number of the
update, and if the update is not the immediately succeeding
version number, the update is aborted. To support reverting
updates in this scheme, the previous factory version with an
increased version number are preferably applied.

The inventors’ implementation of the factory patterns
enables increased performance and adds a high dimension of
scalability. For example, in a multi-CPU environment where
either processing is shared among multiple CPUs or multiple
clients access a central unit where the operating system
resides, object instances are tracked for dynamic update in a
distributed fashion using per-CPU instance lists. Moreover,
adding factories offers other advantages apart from dynamic
update. For example, in order to choose between ProcessRep-
licated and ProcessShared, the present invention may use a
configuration flag that is consulted by the code that creates
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process objects to determine which implementation to use.
Using the factory model, this flag is removed so that the
scheme supports an arbitrary number of implementations, by
changing the default process factory reference to the appro-
priate factory object.

To perform a dynamic update of a class of object instances,
the software code for the update is compiled along with some
initialization code into a loadable module. When the module
is loaded, its initialization code is executed. The steps that this
initialization code executes to dynamically update an operat-
ing system are shown graphically at FIGS. 1A-1F.

FIG. 1A shows the operating system prior to loading any
updates. A factory reference 12 has a pointer that points to an
old factory object 14, which may be original in the operating
system or a previous version of an update. The old factory
object 14 has two old object instances, labeled a and b. All
objects invoked by the old factory object 14 are of the same
class. Though only two object instances a and b are shown, the
reader will understand that there may be more than two but
there is nearly always at least one object instance associated
with any factory object under normal operations system con-
dition (e.g., not mid-stream of an update), apart from the
factory object itself (which is also an object as noted above).
In the unusual circumstance where no object is associated
with a factory, the step illustrated in FIG. 1E is unnecessary.
All invocations of objects a and b are through its factory
object 14 via the factory reference 12.

AtFIG. 1B, anew factory object 16 for the updated class of
objects is loaded and its execution is automatically instanti-
ated once fully loaded. As above, a precondition to further
execution of updates is checking the version number of the
new factory object 16 against the version number of the
existing old factory object 14. Ifthe version number of the old
factory object 14 is incorrect, the update is aborted. This is not
to say that the version number of the old factory object 14
must immediately precede that of the new factory object 16,
only that the version number of the old factory object 14 must
be compatible with the updates of the new factory object 16.

As shown in FIG. 1C, the old factory object 14 is located
using its statically bound factory reference 12, and hot-
swapped to the new factory object 16. This hot-swapping
changes the pointer (from the factory reference 12) from the
old factory object 14 to the new factory object 16, and sets
pointers from the new factory object 16 to all of the old object
instances a and b. The new factory object 16 thereby receives
the set of object instances a and b that was being maintained
by the old factory object 14, and the old factory object 14 is
merely a shell through which the old object instances a and b
can no longer be invoked. For this reason, either prior to the
version check or prior to hot-swapping the factories 14, 16
(preferably after the version check), a quiescent state is deter-
mined for each of the old object instances a and b that are
hot-swapped from the old factory object 14 to the new factory
object 16. Further execution of the dynamic update code may
be delayed until all old factory objects a and b are quiescent
(reach a safe point), or they may be updated as detailed in
FIGS. 1C-1F individually as they each become quiescent.
Further invocations of each old object instance a and b are
blocked so that they remain in a quiescent state throughout
updating, again either en masse or individually.

Once the factory hot-swap of FIG. 1C is completed for all
object instances a and b within the object class defined by the
factory 14, 16, all new instantiations of those old objects aand
b are handled by the new factory object 16 as shown in FIG.
1D, and therefore go to the updated class. Note that at this
juncture, the old object instances have not yet been updated.
FIG. 1D also shows that new object instances ¢ and d, which
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are within the same new factory object 16 and which may be
of a class that is newly introduced, are also now available
through the new factory object 16 and the factory reference
12. These new object instances ¢ and d are those newly
created with the current dynamic update (the new factory
object 16), and may be made immediately available for invo-
cation by the broader operating system once the factory hot
swap of FIG. 1C is complete, regardless of whether the old
object instances a and b are yet updated.

To update the old instances, the new factory object 16
traverses the set of old object instances a and b that it received
from the old factory object 14. For each old object instance a
and b, the dynamic update code creates an updated object
instance a' and b', and then initiates a hot-swap between the
old object instance a and b and the updated object instances a
‘and b’, as shown in FIG. 1E. At this juncture, the new factory
16 is ‘tracking’ the updated object instances a' and b' in that
pointers to them are added to the new factory 16. This step
proceeds in parallel across all CPUs where the old factory
object 14 was in use (for multi-CPU embodiments), and while
the rest of the system is functioning. Because each object
instance is hot-swapped individually, and because the present
invention encapsulates all data behind object instances, there
is no requirement to block all accesses to all objects of the
affected type while an update is in progress. At any given
time, access needs to be blocked only from the particular
object of the class that is currently being hot-swapped. While
blocking may occur over all objects of that class, blocking and
hot-swapping by individual object instances is preferable as it
allows greater functionality of the operating system while
dynamic update proceeds, since at any given instant it is
possible to have only one object instance (or possibly two,
assuming some chronological overlap between releasing a
block on one object instance and initiating blocking of
another) is removed from access by the operating system,
rather than the entire class of object instances. For a multi-
processor system, all old instances of an object may be
updated in parallel, or separately if'it is seen as advantageous
to have one or more users retain access to a particular old
object instance while it is being updated for another user.

At FIG. 1F, dynamic update of the class of object instances
is completed by destroying the old factory object 14.

Implementation of dynamic updating is simpler in certain
cases, for example when an update adds new objects to the
system that do not replace any existing objects, or when an
update affects an object with only a single instance. FIGS.
1A-1F illustrate a more comprehensive dynamic update that
addresses the different scenarios of updating old object
instances and adding new object instances.

Following are some examples of dynamic updating that the
inventors have implemented on an experimental scale. A first
example is adding a new kernel interface for a partitioned
memory region. Benchmarking of a memory-intensive paral-
lel application showed poor scalability during the initializa-
tion phase of the above factory object approach. The inventors
then determined that a bottleneck occurred during an object
instance update that resized a shared hash table structure. A
new partitioned memory management object was developed
that did not suffer from the problem, and was added in a
dynamic update as a new object instance. This new object
added a new interface to the kernel, allowing user programs to
create a partitioned memory region if they specified extra
parameters, resolving the bottleneck.

Adding a new piece of code to the kernel and making it
available through a new interface is the simplest case of
dynamic update, because it avoids replacing old code or trans-
ferring state information. This update was implemented as a
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simple loadable module, consisting of the code for the new
region object and some initialization code to load it and make
it available to user programs. This module could be shipped
with programs requiring it, or could be loaded into the kernel
on demand when a program requires the new interface, either
way avoiding a reboot.

This first example demonstrates the use of the module
loader combined with an extensible kernel interface to add
new functionality to a running kernel. The loader module is
detailed above to effect dynamic updates without requiring a
reboot. Prior art update systems also allow modules to be
loaded, for example to provide new file systems or device
drivers. However, the modularity of the present invention
makes it possible to replace a portion of the page-fault path
for a critical application with a new set of requirements,
which could not be done on an existing system such as Linux.

A second example is a patch for a memory allocator race
condition. This scenario involves a bug fix to a kernel service,
one of the key motivations for dynamic update. In the course
of development, the inventors discovered a race condition in
the core kernel memory allocator that could result in a system
crash when kernel memory was allocated concurrently on
multiple CPUs.

Fixing this bug required adding a lock to guard the alloca-
tion of memory descriptors, a relatively simple code change.
In fact, only two lines of code were added, one to declare the
lock data structure, and another to acquire (and automatically
release on function return) the lock. A recompile and reboot
would have brought the fix into use. However, even with
continual memory allocation and deallocation occurring, the
update was applied dynamically using the added object tech-
nique above, without having to reboot.

The replacement code was developed as a new class inher-
iting almost all of its implementation from the old “buggy”
object, except for the declaration of the lock and a change to
the function that acquired and released it. This caused the C++
compiler to include references to all the unchanged parts of
the old class in the replacement object code, significantly
avoiding programmer errors. Simple copying implementa-
tions of the state transfer functions were also provided to
allow the object to be hot-swapped. The key parts of the new
class implementation are shown in FIG. 2.

The new class was compiled into a loadable module, and
combined with initialization code that instantiated the new
object and initiated a bot-swap operation to replace the old
“buggy” object instance. Because this object was a special
case object with only a single instance, it was not necessary to
use the factory mechanism, though of course the factory
mechanism could be used with only one new object to add and
none to update. This second example demonstrates the use of
hot-swapping as part of the present dynamic update mecha-
nism, combined with a kernel module loader, to dynamically
update live code in the system.

Athird example is optimization of a file cache manager and
its implementation of file cache manager objects. The inven-
tors instantiated a file cache manager in the kernel for each
open file or memory object in the system. They discovered
that the unmapPage method did not check if the page in
question was already unmapped before performing expensive
synchronization and IPC operations. These were unnecessary
in some cases.

In this third example, the inventors developed a new ver-
sion of the file cache manager object that performed the check
before unmapping, and prepared it as a loadable module.
Applying this update dynamically required the factory
mechanism, because the running system had file cache man-
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ager instances present that needed to be updated, and because
new instantiations of the file cache manager needed to use the
code in the updated module.

This scenario demonstrates all major components of the
present dynamic update implementation, using a module
loader to load the code into the system, a factory to track all
instances of state information that are affected by an update,
and hot-swapping to update each instance.

FIG. 3 illustrates steps in the factory method detailed
above. First, a new factory object is loaded 312 that has an
updated object instance and a new object instance, each
object instance within the same object class. Next, a version
check is performed 314 that ensures the corresponding old
factory object is compatible with the new factory object.
Preferably, only the old factory object version need be
checked but in some less efficient implementations it may be
that the version of each of the old object instances of the old
factory object need to be checked. If compatibility is not
assured, the dynamic update is aborted.

Next, a safe point is sought and established 316 for each of
the old objects, such as by blocking access to each, and
determining when all threads accessing each of the old
objects are terminated. Once quiescence is established for all
of the affected old object instances (e.g., all those with a
companion updated object instance in the new factory), the
pointer between the factory reference and the old factory
object is changed to go between the factory reference and the
new factory object, hot-swapping those factory objects 318.
Each old object instance of the old factory is then hot-
swapped with its corresponding updated object instance 320
in the new factory. As each completes, the old object instance
is deleted 322, with the proviso that where format of under-
lying data structures is not changed, the underlying data struc-
tures may be retained without copying and merely pointers to
that structure are reset to run from the updated object instance
rather than from the old object instance. Once all old object
instances are deleted, the blocking can be released 324 and
the old factory object may be deleted 326.

Any new object instances are merely added by establishing
328 a pointer from the new factory object to the new object
instance; no blocking, safe point, or swapping need be done
on these because there are no existing invocations of the new
object instance that may precede its being made available
through the new factory object, and no corresponding old
objects with which to swap.

An exemplary embodiment in accordance with this inven-
tion is a method of dynamically updating an operating sys-
tem. The method comprises: loading a new factory object
having at least one of a new object instance and an updated
object instance; determining that a version identifier of a
corresponding old factory object is compatible with the new
factory object; setting a pointer that goes between a factory
reference and the old factory object to go between the factory
reference and the new factory object. The method includes,
for the case of each updated object instance, establishing a
safe point for the old object instance that corresponds to the
updated object instance: changing a factory reference pointer
within the operating system from the old factory object to the
new factory object; hot swapping the updated object instance
for the old object instance; and deleting the old object
instance. The method also includes, for the case of each new
object instance, establishing a pointer from the new factory
object to the new object instance; and deleting the old factory
object. The method may also include updating a kernel of the
operating system by relating indeterminate references to
either or both of kernel symbols or library routines, the inde-
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terminate references present in a kernel update module, to at
least one object translation table without rebooting the oper-
ating system.

The above description is not seen to be exhaustive of all
embodiments or variations of the present invention, many of
which will be obvious to those skilled in the art and within the
ensuing claims.

What is claimed is:

1. A signal bearing medium tangibly embodying a program
of machine-readable instructions executable by a digital pro-
cessing apparatus to perform operations to dynamically
update an operating system, the operations comprising:

loading a new factory object, where a factory object is

configured to create object instances and to maintain
object instances generated by the factory;

executing a dynamic update procedure that comprises:

changing a factory reference pointer within the operat-
ing system from the old factory object to the new
factory object; and

for each old object instance maintained by the old fac-
tory object: using the new factory object to create a
new object instance; transferring state information
from the old object instance to the new object
instance; and deleting the old object instance; and

in response to completion of the dynamic update proce-

dure, removing the old factory object.

2. The signal bearing medium of claim 1 wherein the new
factory object comprises a new object, the operations further
comprising enabling invocations of the new object through
the new factory object.

3. The signal bearing medium of claim 1, wherein, for the
case where a data format of an old object instance is not
identical to that of its corresponding new object instance,
transferring state information comprises copying a data struc-
ture of the old object instance via a common intermediate
format to the new object instance.

4. The signal bearing medium of claim 1, wherein, for the
case where a data format of an old object instance is identical
to that of its corresponding new object instance, transferring
state information comprises resetting a pointer between the
old object instance and an underlying data structure used by
the old object instance to point from the corresponding new
object instance to the underlying data structure, and wherein
removing the old object instance does not comprise deleting
the underlying data structure.

5. The signal bearing medium of claim 4, wherein trans-
ferring state information does not comprise making a copy of
the underlying data structure.

6. The signal bearing medium of claim 1, further compris-
ing determining when at least one of the old object instances
reaches a safe point prior to changing the factory reference
pointer.

7. The signal bearing medium of claim 6, wherein deter-
mining when the old object instance reaches a safe point
further comprises blocking new invocations of the old object
instance.

8. The signal bearing medium of claim 1, wherein the
operating system is dynamically updated without rebooting.

9. The signal bearing medium of claim 1, further compris-
ing an embodied kernel module loader program that down-
loads the machine readable instructions into a kernel of the
operating system and initiates the steps of the dynamic update
procedure.

10. The signal bearing medium of claim 1, where the opera-
tions further comprise determining that a version of a corre-
sponding old factory object is compatible with the new fac-
tory object.
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11. The signal bearing medium of claim 1, where the
dynamic update procedure further comprises:

tracking incoming calls to the old factory object;

in response to all pending calls to the old factory object
being tracked, suspending subsequent calls to the old
factory object; and,

in response to determining that all pending calls to the old
factory object are complete, determining that the old
factory object is quiescent, where setting the pointer is
performed when the old factory object is quiescent; and

forwarding the suspended subsequent calls to the new fac-
tory object.

12. The signal bearing medium of claim 1, where the

dynamic update procedure further comprises:

tracking incoming calls to the old object instance;

in response to all pending calls to the old object instance
being tracked, suspending subsequent calls to the old

20 object instance;

in response to determining that all pending calls to the old
object instance are complete, determining that the old
factory object is quiescent; and

in response to transferring state information, forwarding
the suspended subsequent calls to the new object
instance.
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13. A method of dynamically updating an operating system
comprising:
loading a new factory object, where a factory object is
configured to create object instances and to maintain
object instances generated by the factory;

executing a dynamic update procedure that comprises:
35 setting a pointer that goes between a factory reference
and the old factory object to go between the factory

reference and the new factory object; and

for each old object instance maintained by the old fac-
tory object: using the new factory object to create a
new object instance; establishing a safe point for the
old object instance transferring state information
from the old object instance to the new object
instance; and deleting the old object instance; and

40

45 in response to completion of the dynamic update proce-

dure, deleting the old factory object.

14. The method of claim 13, further comprising updating a
kernel of the operating system by relating indeterminate ref-
erences to either or both ofkernel symbols or library routines,
the indeterminate references present in a kernel update mod-
ule, to at least one object translation table without rebooting
the operating system.
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15. The method of claim 13, wherein the new factory object
comprises at least one additional object instance and at least
one new object instance, where said additional object
instance is of a different class than each of the new object
instances.

55

16. The method of claim 13, wherein, for the case where the
old object instance exhibits an identical data format as its
corresponding new object instance, transferring state infor-
mation comprises resetting a pointer between the old object
instance and an underlying data structure used by the old
object instance to go between the new object instance and the
underlying data structure, and deleting the old object instance
comprises deleting only that portion of the old object instance
that is not the underlying data structure.
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17. The method of claim 13, wherein establishing, trans-
ferring, and deleting are executed for each of the updated
object instances separately.

18. The method of claim 13, wherein establishing, chang-
ing, transferring, and deleting are executed for each of the
new object instances in parallel in a multi-user operating
system environment.

19. The method of claim 13, wherein establishing a safe
point comprises blocking new access to the old object
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instance and determining when all existing access threads to
the old object instance are terminated.

20. The method of claim 13, wherein establishing a safe
point and transferring are done separately for at least two old
object instances for the case where the computer comprises a
multi-user environment.



