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Kittyhawk represents our vision for a Web-scale computational
resource that can accommodate a significant fraction of the world’s
computation needs and enable various parties to compete and
cooperate in the provisioning of services on a consolidated
platform. In this paper, we explain both the vision and the system
architecture that supports it. We demonstrate these ideas by way of
a prototype implementation that uses the IBM Blue Genet/P
platform. In the Kittyhawk prototype, we define a set of basic
services that enable the allocation and interconnection of
computing resources. By using examples, we show how higher
layers of services can be built by using our basic services and
standard open-source software.

Introduction
Our aim is to develop a sustainable, reliable, and

profitable computational infrastructure that can be easily
used to create and trade goods and services. The

globalization of computation and acceleration of

commerce are inevitable, given the trends in digitalization

of information and enablement of communications. In a

sense, computation and commerce are indistinguishable.
In the future, it is likely that virtually all information will

be digital and will be manipulated, communicated, and

managed in a digital fashion. In the future, the line

between computation, global commerce, and humanity’s

information will become indistinct.

Kittyhawk is our vision of efficient, pervasive,

worldwide computational capacity and commerce. We

view worldwide computational capacity as requiring a

significant fraction of the capacity of all available servers
currently installed. At the time of this writing, the

worldwide installed base of volume servers is reaching

about 40 million units with an annual growth of about

4 million units [1]. The theoretical limit of an IBM

Blue Gene*/P [2] installation is 16 million connected
nodes; thus, a small double-digit number of geographically

dispersed data centers would theoretically be sufficient

to host the worldwide capacity of all currently installed

volume servers.

Toward the fulfillment of the Kittyhawk vision, we

explore and establish a practical path to realizing the

promise of utility computing. The idea of utility
computing is not new [3, 4], and the idea of using large-

scale computers to support utility computing is not new

[5]. However, practical realization has yet to be achieved.

In a prior publication [2], we briefly described the

exploration of a global computational system on which

the Internet could be viewed as an application. In this
paper, we present a commerce-centric vision of utility

computing, a corresponding system model, and a

prototype. The model comprises four components: 1)

resource principals, 2) nodes, 3) control channels, and 4)

communication domains. We are developing a prototype

based on the Blue Gene/P system that lets us explore
the feasibility of the model for providing the building

blocks for utility computing, and we present three

Internet-style usage scenarios built on the prototype.

Key aspects and related goals associated with our

approach include the following. First, we must

acknowledge the Internet as the current model of global
computing. A practical, global-scale computational

system must provide a migration path for the Internet

and be able to support its salient features. Second, we

must enable commerce by supplying the system with

primitives for distributed ownership as well as for
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consumption-based usage via metering and billing.
A global system must enable the creation and trading

of value and ensure the ability for cooperation and

competition within the system. Third, we must provide
open building blocks with respect to hardware access,

specifications, and example construction via open-source

software. Success of a global system will come from
enabling the ingenuity of others. Fourth, we must focus

on provisioning metered, low-level, simple, scalable

hardware-based building blocks. A global system should
constrain software as little as possible to enable diversity

and a wide range of future solutions.

The transformation of computation into a basic

infrastructure for humanity is more than just producing

an easy-to-access high-performance computing resource.
It requires addressing some fundamental social and

political questions. Many of the critical issues were
identified and predicted by early work in utility

computing [6–8]. We identify a few key challenges with

the following three quotations from John McCarthy [7].
First, we must consider the issue of what we call

monopolies of ingenuity. McCarthy writes that ‘‘the main

danger to be avoided is the creation of services of limited
scope. . . .’’ Second, we must consider monopolies of scale.

McCarthy writes, ‘‘Another problem is to avoid
monopolies; the intrinsic nature of the system permits any

person who can write computer programs to compete

with large organizations in inventing and offering
imaginative services, but one can worry that the system

might develop commercially in some way that would

prevent that. In general we should try to develop
information services in such a way as will enhance the

individuality of its user.’’ Third, we must consider

monopolies of service. ‘‘The major force that might tend
to reduce competition is the exclusive possession of

proprietary programs or files. Therefore it is desirable to
separate the ownership of programs performing services

from the ownership of the service bureaus

themselves. . . .’’
The Kittyhawk technical design attempts to make these

issues explicit in order to make the provisioning of
computation a basic and accountable operation.

Specifically, our goal is to show that it is feasible to

separate metered hardware capacity from all layers of
software, including virtualization and operating systems.

We argue that this leads to a number of advantages.

Enabling creativity
No system-imposed software restricts the kinds of
services that can be developed. This leads to an open,

publicly accessible hardware platform with no software or

usage restrictions, in contrast to closed private systems
that restrict direct hardware access or can only be used

through system-imposed firmware, hypervisors, operating

systems, or required middleware. The only goal of an

open hardware system would be to support the

provisioning of hardware capacity so that others may

provide a diversity of products and services, rather than

provisioning of capacity as a secondary goal of utilizing

excess resources of a system serving other primary

purposes. The owner of a closed system, which can be

used for proprietary services while also providing publicly

available capacity, has little incentive for only providing

hardware capacity and will typically have implicit

control and interests that potentially conflict with those

of the public services. This control can be exerted in ways

ranging from low-level technical controls, such as biasing

virtual scheduling priorities in favor of the proprietary

services, to simply refusing access to competing groups

and individuals.

Open and flexible scaling

In a truly open hardware infrastructure, the provider is

not biased to limiting capacity based on the requester’s

identity or purposes. In contrast, the provider’s goal is to

maximize usage by customers, whoever they may be. In

this way, questions of resource limitations and access

become economic, social, and political issues for all of us

to become engaged in. Our goal is not to argue whether

we should approach these issues through auditing and

regulation, free-market based mechanisms, or some form

of hybrid, regulated public utility. Our goal is to make

these issues explicit, so that all options can be explored,

by isolating the hardware capacity and exposing it as

a commodity. In such an environment, no single provider

of software or data services is beyond competition or

validation. Given today’s software techniques, the actual

limiting factor in implementing functionally competitive

services is access to scalable numbers of general-purpose

networked processors, memory units, and storage

devices. Given that the hardware capacity is

independently provisioned, its resource counts and limits

can be made public either through regulation, pricing, or

both. Thus, the decision as to whether additional

resources are needed in the system becomes a public one.

Scarcity of resources can manifest itself either in higher

price or in the inability to satisfy all requests for service.

Either way, it can be a cooperative and open decision

process by entrepreneurs, public overseers, and providers.

Entrepreneurs may compete with service offerings, which

will reduce prices. Public regulation can concurrently

allocate additional funds, to increase the system

resources, whenever regulation limits the providers’

ability to increase system capacity. Additionally, the

provider need not acquire the burden of speculatively

over-provisioning the system, because risk and resource

limits can be expressed through price and auditing.
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A real and transformable commodity
A hardware commodity can be independently audited,

priced, and regulated, as society deems appropriate.

A hardware base can provide an underlying commodity
that can be audited and used to compare software-based

service offerings. Given that the price of the hardware
commodity is known, competitive service offerings can be

compared with respect to price and function or with

respect to hardware commodity usage (which may be
made public by regulation). It also avoids the perils

associated with basing our digital economy on implicit

financial derivatives that can be manipulated on purpose
or by accident. Virtual time, virtual resources, and other

secondary units such as business operations can all serve

legitimate pricing roles, but unless they are based on
an actual and accountable commodity they lack the

openness needed to avoid manipulation. To better
understand this, consider that a virtual machine may be

considered more as a promise to execute than a

guarantee, and measuring the real time that a virtual
machine has run says little about the actual resources

consumed. That is not to say that virtual machine

techniques do not offer actual value. For example, a
virtualization service may increase resource utilization

and may thus be able to provide resources less
expensively (although perhaps less predictably) than a

non-virtualized system. However, without an auditable

underlying resource, virtualization may not prevent
manipulation of price or function. To our knowledge,

there is no single virtualization or scheduling technique

that is suitable for all situations, with various types of
workloads and competing priorities, and thus the

common point for comparison enabled by an underlying
hardware commodity can have great value.

Systems that either do not take into account these

issues, or address them implicitly, have associated social
and political risks and ramifications that may prevent

their wide adoption. What is worse, they may be widely

adopted and then used as a tool of oppression, as Parkhill
[8] warns. Provisioning the utility will itself require

commitment to responsible stewardship, integrity, and
societal trust. Successful global computation will demand

the trustworthiness and reliability we associate with

personal banking, and the transparent and ubiquitous
accessibility we associate with electricity and water

utilities in the developed world. Whether such a steward

exists, and whether we would trust it, are open questions.
That is why it is imperative that we openly debate these

questions rather than implicitly allow the system to
evolve unchecked and affect our socioeconomic fabric.

McCarthy points out that the development of these

systems is inevitable unless regulation disallows it, and
from this perspective the purpose of our system is to be a

counterpoint to the proprietary systems of the past as well

as the present, and to serve as a catalyst for debate and
study in global computers.

Whereas great responsibility will be placed on the

service provider, there will also be great potential for
sustained revenue growth, in proportion to the worldwide

demand for service. The aim is to embrace the
relationship between commerce and computing, and the

trend toward global scale for both. As discussed, we

propose a path that enables pervasive and universal use of
computation at a global scale by way of practical building

blocks, with the goal to foster an open, sustainable, and
efficient global computing infrastructure for humanity.

As such, the system must have a sustainable economic

model. The goal is not to create a vendor-specific cloud
computing system in order to sell only the value of

consolidation, but rather create a sustainable
environment in which many parties can compete and

cooperate in the creation and trade of digital goods and

services.

The remainder of this paper is organized as follows.

In the next section, we present the system model we adopt
in order to implement the vision of a flexible, scalable,

and extensible computing platform. Next, we discuss our

prototype implementation, which makes use of the
scalability of the Blue Gene/P system. We describe the

functionality provided and several use cases that
exemplify how that functionality can be used to build

extensible and scalable services. This is followed by a brief

overview of the related work that has inspired much of
our activity. In the last section, we discuss the status of

the work and our conclusions.

Kittyhawk and cloud computing
Three main aspects are associated with cloud computing.
The first is the mass adoption of virtual server computing

technologies to construct ‘‘hardware as service’’ offerings

from large pools of PC-based commodity hardware.
The second is the desire to outsource hardware

ownership, utilizing networked computing resources to

host infrastructure remotely, thereby isolating hardware
infrastructure and its management (purchase, operation,

and maintenance) as a separate, third-party product.
The third aspect is to provide the basis for service-

oriented computing models in which software is utilized

to construct service products that are purchased and
available on the Internet and hosted on third-party

hardware infrastructure. The approach we take in Project
Kittyhawk is to explore a fine-grain stratification that

focuses on creating a fundamental environment for

creating cloud computing offerings.

Ultimately all computing products must utilize some

real physical computing resources that have attendant
physical costs (materials, space, and energy). In Project

Kittyhawk, we attempt to make this fact explicit and
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transparent so that real resources can be the building
blocks for construction, auditing, and billing. Server

virtualization is a technology that provides services

beyond just a standardized compatible hardware
interface. Virtualization has inherent scheduling and

overcommitment policies and management capabilities.

Thus, rather than conflating virtualization with the
lowest-level offering, we attempt to make configurable

hardware the basic unit of resources for service
construction. As discussed, this allows virtualization and

hardware to be isolated offerings, open for competition,

auditing and comparison.

In order to permit cloud computing where

predictability, overcommitment, and isolation of
hardware are choices to made based on cost and need, we

are exploring how to advance hardware to be better
suited to cloud computing. We need not rely solely on

virtualization to turn 1980s-based computing technology

into the building blocks for cloud computing.

System model
In order to allow all additional value created to be diverse
and open to competition, our system model focuses on

providing simple, low-level primitives for building

applications by others. In our view, the job of the
hardware is to provide a set of building blocks that can be

utilized by others to construct value in any manner they
see fit. The goal is not to provision all capabilities, or

eliminate all inefficiencies, but to allow them to be

identified and addressed by others. It is critical that the
ability to acquire resources be simple so that any

application can scale and grow. Diversity and
competition should be encouraged by allowing all

software layers to be provided by others.

As mentioned, our model provides a low-level system
with open interfaces. Basic examples of use are provided,

demonstrating that resources can be acquired with ease.

Revisiting utility computing
Rather than base our model on a hardware system that
enforces a specific hardware model, such as a cluster or a

shared-memory multiprocessor architecture, we have
chosen to explore hardware systems that are scalable

hybrids, that is, machines that are consolidated but do

not fix the communication model to a shared-memory
primitive. We believe that hybrid systems are better suited

to utility computing, as their fundamental resources are
naturally thought of as homogeneous communication,

computation, and memory in physical units that can be

allocated, composed, and scaled.

We expect that, in time, resource usage will be based on

standard measurement units that will be cooperatively
established. These units will permit the metering and

trade of the hardware ‘‘commodities’’ independent of

what they are used for. For the moment, however, we
believe it is important to begin with some simple metering

models and units that can evolve. Although not discussed

in any detail, a basic assumption in the remainder of
our discussion is that all resource usage will be metered

and billed.

Storage
In order to isolate value propositions, we view storage for

data retention and archiving to be separate offerings that
can utilize storage located remotely or locally. It is clear,

however, even in our simple experimentation, that the

notion of storage can and will evolve quickly beyond
traditional models that have hard boundaries between

memory, communication, disks, and software. Scalable
hybrid data systems that seamlessly provide data

retention properties and availability by trading off

locality, density, redundancy (both physical and logical
with respect to the data itself), and communication costs

are natural in a global-scale system. Rather than

architecting system-provided solutions, we suggest that
storage is a key area in which many people will innovate,

and that fixing a storage model would only serve to stifle

competition and ingenuity.

Resource principals, nodes, communication
domains, and control channels
We propose a set of system primitives, accessed via

admission control, management, and hardware

configuration components. The primitives serve as
building blocks on which others can construct

computational environments. As mentioned in the

Introduction, the primitives are resource principals,
nodes, control channels, and communications domains.

Figure 1 illustrates our system model. It identifies the
building blocks listed above and shows how they can be

organized to form two related topologies: control

topologies and communication topologies. The following
subsections describe each building block in turn.

Resource principals
To ensure economic viability, all resource usage must be

tracked and metered and charged to an owner. We refer

to owners as resource principals or simply principals. The
front-end service interface of the system uses the

component Admission Control, as illustrated in Figure 1.

This component establishes and manages the set of valid
principals. For any resource allocation, a provider views a

principal as the owner. The component Management
Services provide to principals the facilities to acquire

resources from the system. The allocated resources are

configured as specified by the principal and usage is
charged to the allocating principal. A standard, secret-key

system is used to validate principals. The system makes
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no restriction on how the principal uses the resources it

owns. The system negotiates a unique ID for each

principal, a credential in the form of a secret-key, as

billing identity.

Nodes

Nodes serve as the basic unit of hardware resource that a

principal can acquire. Nodes are comprised of a

documented physical combination of CPUs, memory

(uniformly accessible to all the CPUs of the node), and

communication interfaces. The communication interfaces

are divided into two categories. Each node is configured

with a control interface that provides the owning

principal access to the node via an encrypted channel. All

other interfaces are optional and depend on the

configuration specified by the principal. A unique

interface is configured for each communication domain to

which the node belongs. The front-end service interface to

the system, using the admission control and hardware

configuration components of the system, configures and

assigns nodes to a principal. After configuration, the

system has no further interactions with the node other

than management operations requested by the principal

(e.g., change of configuration, deallocation, or reset).

Control channels

When a principal acquires a set of nodes, components

Admission Control, Management Services, and a

Hardware Configuration System allocate and configure a

unique control channel for the allocated nodes. This

control channel provides basic access to the nodes to the

owning principal. Principals can transfer the credential

for the control channel, established during allocation, to

other parties. The control channel itself is a low-

NaN7

N9

CC(P0)    P0,(N9)

P0 P1

P3

P9

P8

P7P6P5

N0 N1 N2

N3

N6 N7 N8

Na Nb NdNc

N9

N5Ny

P2

P4

Pa

N0

N1 N5

CC(P2)    P2,(N1,N5)

N1 N5

D2: P2, (N1,N5)

Nd N5 N0

N8 Na

N5 N9

D1: Public, (N8,Na,N5,N9)

D0: External, (Nd,N5,N0)

N2 N3 Nc

D5: P8, (N2,N3,Nc)

D3: Pa, (N0)

N7 Na

D4: P5, (N7,Na)

N8 Nd

Nc N6

D6: P8, (N8,Nd,Nc,N6)

ID

Credential

Billing/metering ID

A resource principal

Communication
domain interconnect

interfaces

Memory

CPUs

Control channel (CC)

A node

CC(P8)    P8,(N2,N3,N8,Nc,Nd,N6)

Control topologies

CC(P5)    P5,(N7,Na)
CC(Pa)    Pa,(N0)

Principals Nodes

D7: P0, (N9)

Management services

Hardware configuration system

Public front-end service interface

Admission control 

Communication domain topologies

N9

N0

N2

Nc

N3

Nd N6

N8

..

Figure 1

Conceptual illustration of the system model. The right arrow symbol indicates that the control channel provides the principal, P, with control

of those nodes. (D: domain; N: node; CC: control channel.)
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bandwidth console-like component that enables remote

access and control of the nodes by the principal. As is true

of all components, the interface to the control channel is

open and public, so that anyone can write software to

interact with the control channel. The provider is

responsible for pre-loading the nodes with initial, simple,

replaceable software that the principal can use to

manipulate the allocated nodes. The principal may load

any software onto the nodes via the control channel,

possibly replacing the low-level boot-loader and

importing customized applications, such as security

models and communications protocols, over the control

channel.

Vendors may offer additional value in the form of

preconfigured nodes with any firmware, hypervisors,

operating systems, applications, etc. It is therefore critical

that the hardware is well documented, and basic software

is provided in open-source form. The software should be

of high enough quality that it can be used as-is to support

value-added products and services.

A critical requirement for the system model is that it

provide good support for both single- and multi-node

usage scenarios. Control and management of, and

interaction with, a single node should be simple and

efficient—encouraging use and software development—

and the transition to environments with multiple nodes

should also be simple and straightforward. Key to this

seamless transition is a secure, flexible, and scalable

control channel. It is not, however, necessary that the

control channel have the best interface or make use of the

most efficient protocol, as clients are many and diverse,

with requirements and preferences that cannot be

predicted. Rather it is more important that the hardware

specification be clear, that the system support scalable

parallel communication, and that the software that

utilizes the control channel be replaceable so that others

can provide custom control protocols and management

systems. It has been our experience that some form of

flexible hardware multicast method is desirable.

The lower left portion of Figure 1 illustrates a number

of node allocations and associated control topologies.

Each allocation groups the allocated nodes with a unique

control channel. If more than one node is in an

allocation, then all the nodes share the same control

channel. The system must provide a portal to the owning

principal of the allocation so that the principal can access

the nodes via the control channel in a secure,

authenticated fashion.

The control channel provides principals with access to

resources without imposing restrictions on how these

resources are used. It provides the means through which

higher-level models of resource representation (e.g., 9p-

based protocols [9]) can be constructed.

Communications domains

In our model, a communication domain is a set of nodes

that are permitted to communicate with one another.
A node may belong to more than one domain. Each

domain to which a node belongs is manifest on the node

as an interconnect interface, whose implementation is
unspecified. However, we assume that the consolidated

nature of the system will result in interconnects that
support communication modes akin to integrated system

buses, thus enabling a wide range of protocol and

communication models to be explored. It is required that
the interconnect and per-node devices be open and clearly

specified, so that the device drivers/interface software
to be developed is not constrained, enabling

communication models and protocols ranging from
Ethernet and shared memory to Transmission Control

Protocol/Internet Protocol (TCP/IP) and Message

Passing Interface (MPI).

Flexible communication topologies are critical to the

ability of the system to reflect the technical, social, and
financial relationships that a global system must support.

We propose that at least three basic types of
communication domains be supported. First, a private

communication domain is one created by a principal and
in which nodes can communicate only with other nodes

within that domain. A principal may create any number

of private domains; an acquired node may be placed
in one or more of these domains. Given the specification

for the communication device, the user may program the
device to use any protocol. The system’s hardware must

enforce these domains without relying on software

cooperation. From the perspective of the software,
domains form a physical communication topology to

which nodes can be added and removed via requests to
the system service interface. As with all resources in our

system model, software may be used to virtualize the
communication domains.

A second type of communication domain is public. The
public communication domain is a single system-provided

common communication domain to which a principal can

add acquired nodes. This domain serves as a common
public communication domain. Nodes that communicate

with one another must agree on the protocol to be used.

Third, the external communication domain is a single

system-provided domain that connects nodes to the
outside, or external, world, thus allowing selected nodes

to communicate with the outside world by way of a

specific network protocol such as TCP/IP.
Communication in this domain is restricted to the

protocol technology provided for external
communications. A principal may request that specific

nodes be added to the public and/or external domains.

The lower-right-hand portion of Figure 1 illustrates

example communication-domain topologies configured
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for a set of allocations. Each domain is labeled with a

unique identifier. The external and the public domains are

D0 and D1 respectively. Each private domain has an

associated owning principal and set of nodes. Figure 2

illustrates the same topology as a network-style topology.

Scalable, flexible, and efficient support for

communication domains is critical to our system model.

We suggest that the ability to scope communication is

essential to supporting competition and cooperation. Our

system model can be utilized to flexibly support

arbitrarily complex Internet (as well as intranet)

networking. In our system model, traditional networking

hardware, such as switches, bridges, routers, and

sprayers, are implemented as software components that

can be run on appropriately configured nodes. However,

future usage models may avoid such components by

implementing new communication and usage models.

Metering

Resources of all types—processor, memory, network and

storage—are constantly monitored and resource usage is

debited to the resource principals by way of trusted

system interfaces. These interfaces provide information

necessary to enable software to make educated decisions

about resource usage and then optimize cost.

We expect that different pricing models (such as fixed,

variable, and volume pricing) will develop over time. A

trusted non-forgeable mechanism for metering resource

usage is a key requirement for commerce for any pricing

model. Increasingly accurate metering fosters

optimization. The energy market is a good example;

whereas households typically pay a fixed price per

kilowatt-hour independent of the time of day, industrial
energy is often variably priced, an incentive for businesses

to move energy-intensive tasks into night hours.

However, only accurate metering over short time
intervals enables such variable pricing.

Prototype
To help validate our model, we are constructing a

prototype. In this section, we describe the prototype and

some of the scenarios we have implemented on it. We
begin by summarizing our Blue Gene/P hardware

platform. Additional details can be found in Reference

[2].

Blue Gene/P
A Blue Gene/P node contains four 850-MHz cache-

coherent IBM PowerPC* microprocessor cores in a

system-on-a-chip with dynamic RAM (DRAM) and
interconnect controllers. The nodes are physically

grouped onto node cards, 32 nodes per card, and 16 node

cards are installed in a midplane. There are 2 midplanes in
a rack, providing a total of 1,024 nodes and, in its current

configuration, a total of 2 terabytes of random access
memory (RAM). Multiple racks can be joined to

construct an installation. The theoretical hardware limit

to the number of racks is 16,384, which would result in an
installation with 16.7 million nodes and 67.1 million

cores, with 32 petabytes of memory.

Additionally, each node card can have up to two I/O

nodes featuring the same basic unit but with an additional

10-Gb Ethernet port. Hence, each rack has an external
I/O bandwidth of up to 640 Gb per second; the aggregate

I/O bandwidth of the maximum installation is 10.4

petabits per second. It is important to recognize that
the nodes themselves can be viewed for the most part as

general purpose computers, with processors, memory,
and external I/O.

The interconnects seamlessly cross all the physical

boundaries (e.g., nodecards, midplanes, and racks),
at least with respect to the software, once the machine

is configured. There are four relevant networks on
Blue Gene/P: (1) a global secure control network; (2) a

hierarchical collective network (which provides

broadcasts and multicasts); (3) a three-dimensional torus
network; and (4) a 10-Gb Ethernet for external

communication.

Service interface, admission control, management,
and hardware configuration
In order to ensure a scalable system, we have been

designing the components of our prototype to be

completely self-hosted and distributed. A set of nodes are
used to provide the front-end service interface—which

involves admission control, management services, and the
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Figure 2

The communication domain topology of Figure 1 as a network-

style topology.
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hardware configuration system—and external

connectivity. At this time we have only a small

installation and require only a small set of resources to

manage our limited hardware. However, the design goal

is to ensure that as the system scales, a constant fraction

of the additional resources are used to scale the

infrastructure components. One cannot design a global

system that requires external resources for its base

management.

We have constructed a simple, programmable,

command-line front-end service interface. The goal is to

determine a minimal level of functionality and

expressiveness that is sufficient to support additional

services. It is important to keep the interface simple,

programmable, and efficient so that other more advanced

interfaces and management systems can be constructed

on top to meet specific technical or business needs. We

describe below in some detail the service interface of our

prototype.

The main primitive is a simple allocation command,

khget. To allocate resources one must run khget on a

system that has TCP/IP connectivity to our Blue Gene*

prototype. We have constructed a simple set of

components that run on externally connected nodes

reserved for the system infrastructure. Currently most

components reside on a single node and implement in

software the admission control, system management, and

hardware configuration functions, to which we

collectively refer as the management infrastructure.

Although simple in structure, they are designed to be

iteratively duplicated in order to enable the distributed

management of large hardware installations. All I/O

nodes are currently configured to form a distributed

scalable external I/O network. A future step toward

distributing the management infrastructure is to locate

some of these components on the I/O nodes.

The key arguments to khget are listed in the following:

! username: an identifier used in conjunction with the

argument credential (described next) to identify a

principal.
! credential: an authentication key to be supplied by a

principal on first use of khget for the corresponding

username. The credential is recorded and any

subsequent interaction with this username must

include proof of the initial key. This feature is

currently inactive.
! number of nodes: The number of nodes to be acquired

(defaults to 1).
! communication domain configuration: a set of optional

arguments that can be used to configure the nodes

with respect to the communication domains to which

they belong.

! -p n: n private domains should be created for this

principal, and all nodes allocated should be added

to the domains. The principal is considered the

owner of the new domains.
! -n a[,b,c. . . ]: a list of pre-existing domains (owned

by the principal) to which the newly allocated nodes

should be added.
! -I: a node should be added to the internal public

communication domain.
! -x: a node should be added to the external

communication domain for connectivity to the

outside world.

In our prototype, a domain is identified by netid, an

integer. By default, a private domain is created for every

principal, and if no explicit domain configuration is

specified and only the one private domain for the

principal exists, nodes allocated by the principal are

added to this domain.

khget returns a simple text object identifying the

components of the new allocation. We provide a simple

script to parse and operate on this object to aid in

programming and automation. The object includes the

following:

! control channel: The current version of the prototype

identifies a control channel for the allocated nodes

as an ssh (secure shell, a security protocol for

logging into a remote server) user and host, such

as con34@khcc.research.ibm.com. The principal

can access the control channel and interact with the

default software on the nodes by issuing an ssh

command to this identifier. In the future, the key

associated with the principal will be required for

establishing a successful connection. Currently,

however, we are not enforcing this requirement. We

chose ssh as the protocol for the control channel

because it is widely used and heavily audited. There is

no doubt that vulnerabilities in ssh have occurred and

will continue to occur, but our belief is that we would

do much worse with a one-off, home-grown solution.

We use the hierarchical collective network for control

channel traffic inside Blue Gene/P. This network

guarantees reliable delivery of the messages (in

hardware) and its broadcast and combining functions

are a good fit for the control traffic.
! netid list: The list of communication domains to

which the nodes belong. Domains are identified by

their netids (a list of integers).
! node list: The list of nodes that were allocated, each

assigned a unique node number.
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In the following, we discuss examples of khget use.
One such example is khget -c jonathancred jonathan. If

this is the first time the principal identified by the pair

( jonathan, jonathancred ) is being used in khget,
admission control initializes it as a new principal.

Additionally, (1) If this is the first allocation for this

principal, a new private communication domain is
created and assigned to the principal. (2) A single node is

allocated to the principal and configured to be a part of

the domain. (3) A new control channel is created and the
node is configured appropriately.

Finally, the node is removed from the free pool and
released to be managed by the principal. The node is

preloaded with default software, which the principal can

use for initial interaction with the node. Our prototype
currently preloads the node with an open source boot-

loader (U-Boot) and a Linux** kernel [10]. As a
convenience we pre-configure the U-Boot environment so

that when booted the configured communication domains

can be utilized as Ethernets, with the device drivers we
have added to the Linux kernel. From this point, the user

can access the node via the returned control channel (by

performing ssh with the identified host as the identified
user). At this point the principal can utilize U-Boot to

load arbitrary software onto the node and boot it as

desired. We describe specific usages in the section on
examples, below. It is important to note the principal is

free to overwrite anything, even U-Boot itself, with
customized low-level software that can implement either

simpler or more complex function, including alternative

security models.

The invocation of khget -c jonathancred jonathan 100 is

similar to the first invocation, except that 100 nodes are

requested, instead of just one. In this case, the default
behavior of the control channel is to broadcast all

communication to all nodes in the allocation set. For
example, if the principal sends to the control channel the

string mrw 0x10000000 1024, and the default U-Boot is

still executing, all U-Boot instances execute the command
mrw with arguments 0x1000000 and 1024. This command

(which we added to U-Boot) takes n bytes (in this case
1,024) from the console channel and writes them to the

specified memory location (in this case 0x10000000).

At this point, the next 1,024 bytes sent to the control
channel are written to the memory location 0x10000000

on all nodes. Because this communication is implemented

on top of hardware-supported broadcast, the
performance scales with the number of nodes. Although

the support added to U-Boot for our control channel is
simple, we have discovered that to have a simple,

scriptable way to manage hundreds or thousands of

nodes in parallel is a very powerful feature. Clearly,
considerably more complex control environments can be

constructed, either by extending U-Boot to be more fully

aware of the broadcast nature of the control channel,

or by using altogether new control software. We have

also added support in Linux for a console device driver

that operates on the control channel. At this point the

driver is rather simple, but in this case also we have found

that a secure, scriptable, broadcast control channel can be

the basis for a well-managed computational environment

built out of standard software. It is simple to write

scripts that broadcast commands to all nodes of an

allocation, causing, for example, all nodes to configure an

Ethernet interface and mount a file system from a server

on that Ethernet. While performance is not the main

focus in this paper, the fact is that the broadcast control

channel makes the booting and managing of thousands of

nodes not much more difficult than managing just one

node.

The command khget -x -c jonathancred jonathan 20

allocates and configures 20 nodes for principal ( jonathan,

jonathancred ). In this case, the -x ensures that the nodes

are also part of the external domain and can

communicate with the external world. Although, ideally,

we would like most communication to migrate to internal

domains on public and private networks inside the

system, it is clear that external communication is required

to interact with the rest of the world, migrate function,

and access external data sources. In our prototype, the -x

ensures that the nodes have access to the Ethernet

connected to the rest of our corporate infrastructure.

In this way, principals can construct services that have

external connectivity. This connectivity can be used both

for providing services to the external world and for

accessing services, such as storage, in the external

network.

The command khget -i -n 128,45 -p 1 -c jonathancred

jonathan 1 creates a node configured to be part of four

communication domains: the public internal domain,

existing private domains 128 and 45, and a new private

domain created for this allocation (-p 1). If all of these

domains are used as Ethernet domains, such a node could

act as a bridge or switch at the Ethernet level or as a

gateway at the TCP/IP level (assuming TCP/IP use).

Given, however, that arbitrary software can be run, it is

also possible that the new domain will be used by nodes in

the domain to run a custom tightly coupled protocol

designed to implement a shared computing environment,

and that this node is to act as the external connection

(in this case to the public network and networks 128 and

45) for this environment.

The current khget is only a prototype and clearly needs

to be extended to incorporate additional information,

such as billing and metering credentials. Its purpose is

primarily as a vehicle for experimentation with a scalable

and programmable environment.
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Example scenarios

In this section, we describe three scenarios using the

infrastructure described above and open-source software.

We believe that a key feature of the system model is its

ability to make use of a large body of open-source

software, which can serve as building blocks in

developing useful services. The actual value of the model

will be realized as others begin to construct environments

that we have not designed for, or even thought about. In

order to explore the model and establish a body of open-

source software for the system, we have focused on

examples that provide Internet-like functionality. We

show that arbitrary communication topologies can be

constructed and that scalable consolidated hardware can

be used to support standard environments in a utility

computing model with the notion of distributed

ownership.

We begin with a brief summary of the usage model and

elements common to all scenarios. Following the

allocation of a set of nodes, the user is directed to a

publicly accessible machine and uses the credentials

provided at registration time to access a console channel

to the allocated nodes. Initially the nodes are running the

open-source firmware, U-Boot. From here a user can

reload the entire memory content of the nodes and

restart the nodes. We specify how to write software

that communicates on the console channel and

communication domains in addition to the standard

documentation necessary to write software to manage

the nodes.

In addition to U-Boot, we also provide a version of the

Linux kernel with device drivers for the communication

domains, which enable a domain to communicate using

Ethernet protocols. When using this software, each

communication domain appears as a separate Ethernet

network.

Using this software stack, we can build arbitrary

TCP/IP network topologies and Internet examples using

the built-in networking capabilities of Linux. A user may

also write custom software to perform these functions.

We create examples in which small organizations each

have a private Ethernet and one or more gateway

machines to the public communication domain, allowing

them to interoperate.

While the standard Internet examples may be what

people immediately prefer to consider, the system is not

restricted to them. It is just as viable for someone to

allocate nodes and run custom software that exploits the

communication devices in different ways, such as running

a more tightly coupled environment, in which the nodes

form a single system image. Such a system could also use

another communication domain to connect to other

networks.

RAM disks as open source appliances

Using the khget interface, a principal can acquire nodes,

and the control channel can communicate with the nodes,
U-Boot, and Linux kernel to build self-contained scalable

open-source appliances. These appliances are stateless
and can be deployed and configured via the control

channel.

Using U-Boot and the control channel, a principal can

load arbitrary data into the memories of the allocated
nodes. The load operations for the nodes take place in

parallel. By loading the nodes with a Linux kernel and a

RAM-based root file system, one can use the nodes to
perform custom functions. We refer to such RAM-based

root file systems as ‘‘software appliances.’’ As in other
approaches aiming at scalability—such as Bproc

(Beowulf Distributed Process Space) [11] and Warewulf/
Perceus [12]—our appliances are stateless.

Such software appliances form the basic building
blocks for the construction of arbitrary, special, or

general-purpose environments. We illustrate this
approach by using appliances to create a farm of

Web servers.

Because we run a standard Linux 32-bit PowerPC

kernel, we can draw from a large pool of open-source
software packages to construct our appliances. Both

Debian** and Fedora** Linux distributions support 32-

bit PowerPC. We developed a tool to automate the
process of building these software appliances. The tool

runs on a standard Linux installation and extracts and
packages the necessary files to form a stand-alone root file

system for a specific application.

Reference [2] presents the sizes of the software

appliances our tools automatically constructed from a
typical Linux root file system of approximately 2 GB. For

example, our shell appliance has 3 MB, and a Ruby-on-
Rails** Web site appliance has 12 MB. The appliances are

generally 5% of the size of the full root file system.

Listing 1 illustrates the commands necessary to:

1) Acquire a node with external connectivity, 2) Load the
Linux kernel (packaged as a U-Boot image), 3) Load the

apache ‘‘software appliance’’ (packaged as a compressed
cpio root file system image as supported by the Linux

kernel), 4) Boot the node by writing the U-Boot

command run kboot to U-Boot via the control channel,
and 5) Query the Web server running on the booted node.

khdo is a simple script we wrote to parse the return

information from khget and perform standard tasks such

as the U-Boot commands necessary to load a kernel and
RAM disk and write specified strings to the control

channel. In addition, khdo provides a way to iterate over
the lists that khget returns (e.g., peripcmd, which iterates

over the IP addresses returned by khget). As a
convenience, our prototype currently provides IP

addresses for each node.
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This scenario illustrates the power of the model in

automating the construction of services. We could

generalize these commands in a shell script that

parameterizes the appropriate values. Also, simply

replacing the value of 1 in the khget command to 100

would launch 100 Apache instances with no other

changes. Because of the broadcast nature of the control

channel and self-contained nature of the appliances,

scalable performance is ensured. The approach can be

used to build more complex environments, including

environments in which the nodes cooperate to provide a

service. Note that if a user were to launch as many as

hundreds of thousands of web server appliances, the

resultant allocation would look flat rather than

hierarchical. The multicast nature of our allocation

scheme combined with software appliances that run

entirely in RAM allows us to avoid hierarchical boots.

A principal can construct an intranet by using

communication domains. Network configurations and

management functions can be automated through simple

scripts. We have used the scenario described here as a

building block for more complex environments.

Figure 3 shows the network topology for this scenario.

The service interface, from which resources can be

requested, is labeled SrvIface in the figure. The service

interface can be accessed either from the external network

or from the internal public network. A machine

configured to invoke khget must have network access to

the service interface. All other components in Figure 3

represent resources that belong to the intranet owner. We

now describe the various components used in

constructing the example scenarios, including the

commands used to allocate and interconnect these

components.

Gateway (GW)

This node, which serves as a gateway for the private

intranet, is allocated with the command

gw¼$(khget -x -i -p 1 -c ./corp1cred corp1 1). The

command also establishes connectivity to three

communication domains: (1) the external domain, (2) the

internal public domain, and (3) a new private domain to
serve as the main internal network, which we refer to as
pnet. The node acts as a gateway to the external and
public networks for the nodes and associated services on
the private network (pnet). On this node we run a Linux
kernel and an appliance based on the Debian PowerPC
32-bit distribution that contains the necessary tools for
the gateway function. The communication domains are
defined on this node as three Ethernet interfaces (eth0,

eth1, and eth2) using the network drivers we have
developed.

File Server (FS)

This node acts as a traditional network file server for the
internal network. It is allocated by the command
fs¼$(khget -n pnet -p 1 -c ./corp1cred corp1 1), which
allocates the node and establishes connectivity to two
communication domains: (1) the main internal network

GW

...d d d d d

... w w w w w

SrvIface

D1:Public

FS DS

D0:External

Corporate network

ATA over Ethernet

Figure 3

Example of a private Intranet. [SrvIface: system service interface

(khget server); GW: gateway; DS: disk server; w: worker; d: ATA

over Ethernet (AOE) disk; AOE: ATA over Ethernet; ATA: AT

attachment.]

Listing 1 Shell commands that allocate, load, launch, and query a Web server.

Shell commands that allocate, load, launch, and query a Web server.

1 : . nodes¼$(khget -x $USER 1)

2 : . echo ‘‘$nodes’’ j khdo loadkernel ./uImage

3 : . echo ‘‘$nodes’’ j khdo loadramdisk ./apache.cpio.gz.uimg

4 : . echo ‘‘$nodes’’ j khdo write ‘‘run kboot’’

5 : . echo ‘‘$nodes’’ j khdo peripcmd ‘‘wget http://%ip%/’’
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(pnet) and (2) a new private network to host ATA-over-

Ethernet (AOE) [13] storage, which we refer to as disknet
(ATA stands for AT attachment, where AT originates

with IBM Personal Computer/AT*). On this node, we run

a Linux kernel and an appliance based on the Debian
PowerPC 32-bit distribution that contains the necessary

tools for AOE, LVM2 [14], NFS [15], and basic

networking. The communications domains are again
manifested on this node as two Ethernet interfaces

(eth0 and eth1).

Disk Server (DS)

This node provides a new and unique service for

constructing AOE ‘‘disks nodes,’’ developed specifically
for the prototype system. It is allocated by the command

ds¼$(khget -i -n pnet,disknet -c ./corp1cred corp1 1). On
this node we again run a Linux kernel and another

Debian-derived appliance that contains AOE, basic

networking, and the utilities needed to interface with the
system service interface (khget). The appliance also

contains two custom components developed for this

example: 1) a Debian-derived ‘‘vblade [16] appliance’’ that
contains the AOE vblade server and a startup script to

launch the vblade server exporting the RAM of the node

as an AOE disk; and 2) a simple shell script (khgetdisk)
that acquires nodes, loads the vblade appliance and an

appropriately configured Linux kernel, and boots the

nodes. The script also manages the AOE device
namespace, allocating names and configuring vblade

instances appropriately. The node is allocated to be part

of three communication domains: 1) the public internal
network (in order to have access to the system service

interface), 2) the main internal network (pnet), and 3) the

private disknet network in order to create and manage the
‘‘disk nodes.’’ The node does not actually need access to

the public network, as it can use the gateway node to

reach the service interface. This configuration was used
primarily to illustrate flexibility rather than to adhere to a

specific networking policy. Similarly, it is not necessary to

use a separate node for this function, but we wanted to
explore the flexibility of using nodes to provide reusable

service components.

AOE disk (d)

These nodes are created by the disk server via khgetdisk

and act as RAM-based AOE disks. The file server
accesses these nodes as AOE disks, on disknet, and

configures them into logical volume groups, logical

volumes [14] and file systems. Thus, file systems spanning
several disks are created and exported on the main private

network using Network File System (NFS). These nodes

are added on demand by invocations of khgetdisk [n]
where n is the number of disks to construct. The file server

can use the standard features of LVM2 (logical volume

manager 2) [14] and ext3 [17] to enlarge existing file
systems or create new ones from the additional disks.

Workers (w)

These nodes, which act as servers, are allocated by the

command khget -n 3 -c corp1cred corp1 [n], where n is

the number of workers. These nodes are loaded with
whatever appliances they need to run. These workers can

mount the file systems exported by the file server.

This scenario illustrates the following three properties.

First, with a simple, scalable, programmable system

interface for node allocation and communication domain
construction, users can script the creation and population

of entire network topologies. The scripts can be

parameterized to form reusable building blocks. Second,
an easily accessible programmable service interface

permits the on-demand scaling of service components.
In this case the pool of disk nodes and workers can be

easily scaled based on demand. Third, the programming

effort required to make use of a large-scale parallel
proprietary system such as Blue Gene can be reduced

through the use of open-source software. In this scenario,

the only new software components (beyond the device
drivers we added to the Linux kernel) were the simple

shell scripts required to integrate existing open-source
software components.

The role of this scenario is not to establish an ideal

model for resource usage for a given function. Rather, we
illustrate that familiar tools and software can be

leveraged to initially construct and scale services.

Although using collections of nodes as small disks to
create larger storage units may seem wasteful, it illustrates

the use of open-source software to build an initial
environment that can be scaled. We are not precluding

the use of external storage. Rather, we are showing that

the high speed networks and open-source software allows
for the construction of data repositories that have a

familiar interface, in this case a file system. This approach

allows the principal to make communication tradeoffs by
copying/staging data in and out of the memory-based

high-speed interconnected file system formed from the
disk nodes. More sophisticated solutions may include

simple uses and extensions of the logical volume manager

(LVM) to include redundant arrays of inexpensive disks
(RAID) and elements from external storage. It may

also include altogether new distributed storage protocols

and systems that more effectively utilize the memory,
computation, and communications resources of the nodes

while potentially exploiting redundancy in data and
computation.

General-purpose servers

In the previous two scenarios, we used the software

appliance approach described earlier to execute function
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on the nodes. In this subsection we discuss two
approaches to running nodes as complete Linux servers.

The first approach uses the infrastructure described in
the previous scenario. We use the file server to host an

NFS read-only accessible root file system for a Linux

distribution such as LVM28. We then launch worker
nodes that use the NFS root capabilities of Linux to boot

instances of the distribution. At start-up time we relocate
the portions of the file system that require write access to

a small RAM-based file system using standard Linux
operations. The basic approach is described by Daly et al.

[18].

The second approach is to use an AOE disk node to

host the root file system for another node. In this case we

allocate a node to act as an AOE disk, serving its RAM as
storage. We populate the disk node with a copy of a

distribution’s root file system and then allocate another
node to be booted using this disk. Additional storage is

mounted from one or more internal and external file

servers.

Either approach results in nodes that are fully

functional Linux servers. We use them to host arbitrary
services and user functions including remote Virtual

Network Computing (VNC) desktops.

We have developed several other example scenarios

using open-source components, including: distCC** [19]
farms, Hadoop** [20] farms, and UNIX** development

stations. These example scenarios are not intended to be
exhaustive with respect to the set of things that can be

constructed. Rather they are to illustrate that very little

(beyond scalable hardware that can support
communication domains and open-source software) is

actually required to enable the exploration of the system
as a building block for general-purpose computing.

All the scenarios discussed here have been built from
readily available open-source software. The system also

has the potential to enable new software and services as

well as optimized versions of existing software. We
conjecture that the ease of acquiring resources (at

potentially very large scales), the ease of constructing and
configuring communication domains, the benefits of high-

performance networks combined with the open-source
environment and the underlying metering support, will

lead to innovation and the creation of new solutions. In

some ways, this vision is not far from what super-
computers such as Blue Gene have done for the high-

performance computing domain. We are in the process of
exploring the creation of environments in which nodes are

running custom software stacks. Two specific ideas we are
exploring are: (1) a distributed Java** Virtual Machine

execution environment based on prior work [21] (in which

specialized execution environments are hardware-based,
without a hypervisor) and (2) a native Plan 9**

distributed computing environment [22].

Related work
The idea of computation as a utility dates at least as far
back as the early 1960s, when it was proposed by John

McCarthy [4] and Robert Fano [6]. The standard analogy
is to compare the delivery of computing to the delivery of

electricity. In utility computing, computational resources
are provided on demand and are billed according to

usage. There is little or no initial cost, and computations
with large resource requirements, sustained or peak, can
be serviced without having to go through the lengthy

process of acquiring, installing, and deploying large
numbers of computers.

More recent examples of utility computing include grid

computing [23] as well as cloud computing [24]. Both
these approaches make large amounts of computational

resource available on demand. Danny Hillis, creator of
the Connection Machine, suggested that very large

machines could be used to provide computing as a utility,
much as large generators provide electricity to cities [5].

The analogy with electricity goes further than just

production and distribution. Much like electricity is used
by industry to power machines and create products that

are then sold in the marketplace, computing power can
be refined into higher-level services to be offered on-
demand. We already see such commercial offerings, as

companies use machines obtained from the Amazon
Elastic Compute Cloud to power their own Web offerings

[25]. Unlike electricity, however, the same distribution
mechanism for the basic computing capacity (the

Internet) can also be used for the refined product.
Computing is probably unique in terms of the speed with

which it can be transformed from one product to another
product, ready for consumption.

Conclusions and current status
We have implemented prototypes for the first enabling

layers of a global shared computational system. These
layers provide a simple service, namely the ability to

allocate and interconnect a large number of
computational resources. These resources are provided in

a relatively basic state. That is, we provide basic hardware
functionality and the ability to load executable images.
Higher-layer services can then use these basic primitives

and build more functionality.

We used Blue Gene/P as the implementation platform.

The characteristics that make Blue Gene/P ideal for this
role are: its scalability, its fast and partitionable
interconnect, and its scalable control system. Making use

of these characteristics, we created primitives that allow a
user to allocate sets of independent nodes and then

connect these nodes to one or more communication
domains. Using these primitives, and using standard

open-source software, we implemented three example
scenarios involving higher-level services. First, we created
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a scalable Web server using software appliances. Second,
we created a private virtual data center, with worker

nodes, file server nodes, and disk server nodes. Finally, we
created a cluster of general-purpose servers. The examples

have two characteristics in common. First, they were built
using standard (open-source) software; no exotic

technologies were required. Second, they scale easily,
which is made possible by the Blue Gene technology and

our basic services.

We hope that the work described here will encourage
others to develop high-end services for this environment.

We are already working with other groups in IBM to
deliver stream processing services on top of the basic

Kittyhawk services. We also have a good deal of interest
from cloud computing users.

Many aspects of the prototype were designed with the

focus on establishing feasibility; these aspects are not of
production quality, and some critical functionality is

missing. We plan to remedy these deficiencies as we gain
more experience with the prototype. We also plan to

explore improvements in hardware that better support
our system model. We are currently exploring software

device virtualization as a way to evaluate hardware
changes required to support hardware-based

communication domains.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds, Software in the Public Interest, Inc., Red Hat, Inc.,
David Heinemeier Hansson, Martin Pool, Apache Software
Foundation, The Open Group, Sun Microsystems, Inc., or Lucent
Technologies in the United States, other countries, or both.
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