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Abstract
In this paper, we demonstrate that a server running a single

latency-sensitive application can be treated as a black box to
reduce energy consumption while meeting an SLA target. We
find that when the mean offered load is stable, one can find
“sweet spot” settings in the batching of packets (via interrupt
coalescing) and controlling the processing rate (DVFS) that
represents optimal tradeoffs in the interactions of the software
stack and hardware with the arrival rate and composition of
requests currently being served. Trying a few combinations
of settings on the live system, an example Bayesian optimizer
can find settings that reduces the energy consumption to meet
a desired tail latency for the current load.

This research demonstrates that: 1) with no software
changes, dramatic energy savings (up to 60%) can be achieved
across diverse hardware systems if one controls batching
and processing rate, 2) specialized research OSes that have
been developed for performance can achieve over 2x better
energy efficiency than general-purpose OSes, and 3) a con-
troller, agnostic to the application and system, can easily find
energy-efficient settings for the offered load that meets SLA
objectives.

1 Introduction

Today latency-sensitive cloud applications1 play a critical
role; in many cases, fleets of servers are dedicated to running
a single instance of these applications [47, 88, 108, 123, 137].
Researchers have shown that it is worth exploiting techniques
to bypass the kernel and design highly specialized software
stacks that combine a purpose-built library OS with these
applications to improve their performance [4, 13, 64, 71, 86,
89, 90, 100, 102, 103, 107, 110, 112, 113, 132]. As global data

1Examples of latency-sensitive cloud applications include kev-value
stores, search, and image and speech recognition. The execution of such
applications must often meet a specific performance target expressed as a
Service Level Agreement (SLA). A common SLA is a 99% tail latency re-
quirement – Eg. 99% of all requests must be completed within some time
limit.

center energy use continues to rise [39,48,98,122], it is critical
to find ways to meet the challenging requirements of these
applications while reducing their energy use.

Studies of latency-sensitive applications have shown that
they experience stable mean demand curves. These curves
show gradual changes in offered loads over extended pe-
riods, ranging from multiple hours to days. Such stability
arises from recurring diurnal patterns and use of load bal-
ancers [24, 25, 112, 137]. Generally, these studies suggest that
for a particular service there exists a stable mean arrival rate
and composition of requests over some time scale.

This load stability (i.e. request rates and composition of
requests) offers opportunities to meet SLA objectives while
reducing energy use. Specifically, queuing theory suggests
that the slack between request arrival, service time, and the
SLA can be leveraged to improve energy efficiency. For ex-
ample, induced queuing can amortize per-packet overhead
to improve coalescing and processing efficiency [38], and
even introduce idle periods in which the system can enter
low-energy sleep states [77].

However, for a specific offered load, application, operating
system (OS), and hardware, the most energy-efficient way to
meet the SLA objective is specific to how the exact combina-
tion of software and hardware interacts. For example, queuing
and processing rate settings that mimic a “race-to-idle” policy,
executing as fast as possible to create the greatest amount of
idle time to spend in a deep sleep state (that may flush CPU
caches), maybe the right choice. It is, however, also possible
that for the combination of hardware and software being used,
it is better to choose a setting that mimics a "pace-to-idle"
policy, executing more slowly and either entering a light sleep
state or not entering a sleep state altogether [72].

Our research adds to the body of work on energy manage-
ment [22, 72, 77, 93] by demonstrating that one can exploit
stability in system behavior to efficiently find queuing and
CPU processing rate settings to meet a tail latency target
while reducing energy consumption. We explore three basic
conjectures:
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1. There is a combination of queuing and CPU frequen-
cies for a particular offered load and system (application,
OS, hardware) that yields “sweet spots” where one can
achieve an acceptable latency distribution while signifi-
cantly reducing energy consumption.

2. Despite complex interactions between software and hard-
ware, the “sweet spot” setting for a system and load are
stable and, once found, will continue to yield good be-
havior if queuing and CPU frequencies are fixed (i.e.,
not dynamically changed by the OS).

3. A system’s response to changes in the queuing and CPU
frequencies, at a fixed mean offered load, is well-behaved
such that it is possible to use a generic black-box search
strategy to quickly find a “sweet spot” setting on a run-
ning system.2

We explore the first two conjectures in an experimental
study (§2) on two applications across two distinct OSes:
Linux and an OS specialized for latency-sensitive applica-
tions (EbbRT [117]). Similar to Co-PI [68], we use existing
hardware mechanisms: network interrupt coalescing (ITR-
delay [66]) and dynamic voltage frequency scaling [34]
(DVFS) to externally sweep queuing and CPU frequency
on the server for a fixed set of offered load. Our study ex-
plored up to 340 combinations of ITR-delay, and DVFS and
found "sweet spots" that both improved performance by 60%
while also lowering energy use by 50% (§2.5.1) in closed-
loop applications. For open-loop applications (§2.5.2, §2.5.3),
these mechanisms can lower energy use by 76% in Linux (in
contrast to its ondemand DVFS policy)3 while meeting SLA
objectives. We find that the specialized system has not only
much better performance but also achieves a further 43%
reduction in energy. Most importantly, we found that, while
the settings differ, the general purpose and specialized sys-
tem have similar responses to changes, suggesting one could
formally capture this common structure.

This common structure led us to the third conjecture – it is
plausible to use a generic search strategy to dynamically find
energy-efficient ITR-delay, and DVFS settings for a given
offered load. We successfully model (§3) our experimental
data to capture latency and energy profiles across both OSes.
The accuracy of our model fit suggests that a generic black-
box-based controller can be used. We then built a prototype
controller (§4) using an established machine learning tech-
nique, Bayesian optimization [45], and we illustrate its use
in exploiting the stable mean demand curve of a publicly
available key-value trace [65] to save up to 60% in server
energy. Note that the goal of the prototype is to validate that a
black box approach is possible; issues like how and when to

2Such an approach has the potential to be universal as it operates at
runtime on the entire system and does not depend on tables of parameters,
prior training, or profiling.

3We’ve studied the available Linux governors and found ondemand to the
most appropriate for these workloads.

OS App Network Loads Loop Type
NetPIPE 64B, 8KB, 64KB, 512KB Closed OS

Linux, NodeJS N/A Closed App
EbbRT Memcached 200K, 400K, 600K QPS Open OS

Silo 50K, 100K, 200K QPS Open App
Table 1: Operating system (OS), application, and network con-
figurations. Network Loads reflect mean values: requests-per-
second (QPS) or message sizes (KB). Type indicates whether
an application is more reliant on application processing or OS
processing.

trigger search are not studied. Finally (§4.3) we demonstrate
the generality of our approach, finding savings up to 36% on
applications different from our study (Tailbench [70]) and
on radically different hardware platforms released almost a
decade apart (i.e. Intel E5-2640-released Q1’12 and Ampere
ARMv8 released Q4’21) with different interrupt coalescing
mechanisms.

This work shows that in environments where: 1) dedicated
servers are used for critical cloud applications and, 2) there is
significant stability (on the order of minutes) in offered load:

1. There are dramatic energy savings possible if one con-
trols queuing and CPU frequency outside the OS for an
offered demand; controls that can be applied to a general
purpose OS like Linux with no changes.

2. Today’s specialized research systems that have been
developed for performance achieve dramatically bet-
ter energy use than general purpose system when run
baremetal.

3. A black-box-based controller can be built to exploit the
stable demand curves of latency-sensitive applications to
find energy-efficient "sweet spots" that are apply across
a range of applications, operating systems and hardware.

The rest of our paper is structured as follows: §2 details our
study and some key experimental findings, §3 presents a sub-
set of our modeling results as motivation towards the design
and evaluation of our controller in §4. We then present related
works in §5 and conclude in §6.

2 Energy Study

We designed this study to validate our conjectures that ex-
ternally manipulating queuing and CPU frequency can yield
a diverse space for exploring energy-efficient "sweet spots".
To our knowledge, this study is the first to conduct a study
of interrupt coalescing, CPU frequency combinations across
two distinct OSes running baremetal, and with a variety of
network applications shown in table 1.
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2.1 Study Setup

Our infrastructure consists of seven nodes, featuring a mix
of 16-core Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz with
126 GB RAM and 12-core Intel(R) Xeon(R) CPU E5-2630L
v2 @ 2.40GHz processors with 256 GB RAM, all equipped
with Intel 82599ES 10-Gigabit SFI/SFP+ NICs. The sin-
gle node used for booting into both baremetal EbbRT and
Linux includes a 16-core Intel(R) Xeon(R) CPU E5-2690 @
2.90GHz, 126 GB RAM, and an Intel 82599ES 10-Gigabit
SFI/SFP+ NIC. Ensuring hardware parity between Linux and
EbbRT, we carefully configured IA-32 Architectural MSRs,
processor-specific MSRs (refer to Tables 35-2 and 35-18
in [58]), and NIC features, including disabled direct-cache
injection (DCA), enabled receive-side scaling (RSS) for multi-
core packet processing distribution, and enabled hardware
checksum offloading. We matched NIC transmit and receive
descriptors and write-back thresholds for packet transmis-
sions. Additionally, to minimize system noise, hyperthreads
and TurboBoost are disabled on all processors. We excluded
TurboBoost due to reported energy anomalies when used with
different sleep states [77].

2.2 Hardware Mechanisms

We summarize the software and hardware techniques we use
to conduct sweeps of static ITR-delay, and DVFS combina-
tions.

2.2.1 Interrupt Coalescing (ITR-delay)

Most modern NICs have a hardware feature to control per-
interrupt rates [59, 94] that induce interrupt coalescing. Typ-
ically in Linux, these rates are set dynamically by pre-built
dynamic policies within their respective device drivers. How-
ever, it is possible to set them statically and we use ethtool [1]
in the Linux study4. For EbbRT, we program the NIC directly
via its Intel device driver. ITR-delay on Intel NIC’s can be
programmed in 2 µs increments.

2.2.2 CPU Frequency (DVFS)

DVFS power states (p-states) are features on modern proces-
sors that trade-off instruction execution speed for a reduction
in energy use [5, 54, 56]. Normally, p-states are set dynam-
ically by a policy governor in Linux [34]. In this study, we
disable dynamic DVFS through Linux’s userspace governor
and write directly to the IA32_PERF_CTL MSR register [58]
instead. We replicate this in EbbRT by writing to the same
register.

4ethtool is a user tool that maps interrupt coalescing values to appropriate
NIC settings

2.3 OS Softwares
We explored two OSes with fundamentally different system
designs. This gave us the ability to deepen our understand-
ing of how ITR-delay and DVFS mechanisms impact per-
formance and energy consumption under different system
implementations.

2.3.1 Linux

We build a set of application-specific Linux appliances [49,
118] for each of the applications shown in table 1. These
appliances are specially constructed to run a RAM-based
filesystem and contain only a small set of system libraries and
kernel modules required to run their constituent applications.
We construct these appliances from a custom 5.5.17 kernel
which we built using a modified configuration file for high
performance, following suggestions from previous work that
studied Linux core operation costs [114]. To reduce schedul-
ing overheads and noise, we pin all applications to physical
cores, disable Linux irqbalance, and affinitize packet receive
interrupts to their respective cores.

2.3.2 EbbRT

Specialized systems aimed at accelerating network applica-
tions have seen significant research [4, 13, 64, 71, 86, 89,
90, 100, 102, 103, 107, 110, 112, 113, 117, 132]. However,
these systems often overlook importance of their energy ef-
ficiency [53, 98, 135]. To explore the performance and en-
ergy implications of such a specialized system, we chose
EbbRT [117], an open-source platform for building per-
application library OSes (around 20K LOC). EbbRT shares
properties with these prior systems and employs a run-to-
completion, event-driven model in a single execution domain.
We developed a network device driver for EbbRT for the
network applications to run baremetal on servers with Intel
82599 10 GbE NICs [60] (around 3K LOC).

2.4 Per-Interrupt Log Collection
For the study, we built a per-interrupt logging framework,
intlog (Acesss to our data and logging scripts can be found
at https://anonymous.4open.science/r/intlog-9925), in Linux
and EbbRT’s network device driver. We collect the following
data in the NIC’s interrupt handler code: received and trans-
mitted bytes, descriptors, sleep state statistics, and current
timestamp via rdtsc instruction. Additionally, per-core Intel
performance monitoring counters (PMCs) capture hardware
statistics every millisecond, including instructions, cycles, and
last-level cache misses. We use standard Running Average
Power Limit (RAPL) hardware registers to read per-package
energy values [57] 5. Using rack-level energy measurement

5The 1 ms rate is due to sampling granularity of RAPL
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Figure 1: NetPIPE performance and energy results for different message sizes. Every *-static datapoint is the result of a single experimental
run with a unique ITR, DVFS combination while Linux has dynamic ITR-delay, DVFS algorithms enabled instead. The X-axis is a measure of
performance (lower is better) and Y-axis shows the total energy consumed. For Linux-static and EbbRT-static, the labeled (ITR-delay, DVFS)
pair are experimental values that resulted in the lowest energy use. Note: The X and Y scales are different to show the structure of collected data.

mechanisms, we have validated that the changes in energy
consumption we observe using RAPL are accurate and im-
pactful6.

2.5 Study Results
In our results, we compare and contrast the performance and
energy consumption achieved by three OS configurations:

1. Linux, which has both its dynamic ITR-delay and DVFS
algorithms enabled - DVFS is set by Linux ondemand
governor [34], while ITR-delay is set by Intel’s dynamic
policy [59])

2. Linux-static and EbbRT-static where ITR-delay and
DVFS are set to specific fixed values.

For both *-static OSes, we conducted a study sweeping to 340
7 static ITR-delay, DVFS pairs, and repeated up to 10 times
for stability; our gathered statistics show a standard deviation
error of less than 0.01%. In each experiment, we measure a
software stack’s performance (elapsed time for closed-loop
and 99% tail latency for open-loop applications) and overall
energy usage. While our study generated over 5 TB of data
across multiple runs, we will concentrate on presenting three
representative findings based on the results of NetPIPE [119]
and memcached [40] experiments in the following sections.

Closed Loop NetPIPE is a simple network ping-pong appli-
cation of fixed-size messages over a single TCP connection
and is an example of a closed loop application [10–12, 39, 87,
92]. For closed-loop applications, the work to be done is a
sequence of requests that have an inter-dependency on each

6While we have validated that ITR-delay and DVFS also impact rack-level
energy savings, we use RAPL instead because the granularity of the rack-
level measurements (on the order of seconds) made it difficult to attribute
detailed energy use to specific system events.

7This is due to the experimental scope and also to cover a broad range of
possible pairs out of 2 million.

other. Linux runs NetPIPE-3.7.1 while EbbRT uses a custom
version ported to its interfaces.

Open Loop Memcached is an example of an open-loop ap-
plication, characterized by an external request rate considered
largely independent of the time required for request servicing.
In our setup, an unloaded client, running mutilate [63]8,
interfaces with five agent nodes generating requests to the
memcached server. Each agent node operates on a 16-core ma-
chine, with each core establishing 16 connections, resulting in
a total of 1280 connections. Linux executes memcached-1.6.6,
while EbbRT utilizes a re-implemented version tailored to
its native interfaces, supporting the standard memcached
binary protocol. We run the representative ETC workload
from Facebook [7]. It uses 20 to 70-byte keys and 1-byte
to 1-KB values and contains 75% GET requests. We use
a stringent SLA objective where the 99% tail latency < 500 µs.

Figure 2: ITR-delay values set by Linux’s dynamic ITR-delay
algorithm. This is captured during a live run of NetPIPE at 64 KB
message size.

8Mutilate is configured to pipeline up to four connections to enhance its
request rate.

4



2.5.1 ITR-delay and DVFS impact on batched packet
processing

While the focus of our work is on open-loop style SLA-driven
applications, we begin our study with a NetPIPE server. Net-
PIPE’s closed-loop style and simple application protocol al-
low us to explore how different message sizes, ITR-delay and
DVFS affect the overall performance and energy of different
OSes. Fig. 1 shows that at 64 KB message size, the static ITR-
delay in Linux demonstrates a performance improvement of
over 60%, and a 50% reduction in energy consumption com-
pared to dynamic policies in Linux. To understand why this is
dramatic, consider the dynamic ITR-delay policy, visualized
in fig. 2, which reveals extreme variability at a per-interrupt
granularity9. This indicates that the current policy, designed
for general use cases, operates at an inappropriate timescale
for NetPIPE and that significant advantages can be gained
through specialization. Moreover, fig.1 illustrates the Pareto-
optimal performance-energy curve for various message sizes
in both Linux and EbbRT. As the NetPIPE message size in-
creases from 8KB to 64KB and 512KB, the fixed ITR-delay
values yielding optimal energy efficiency also increase toward
26µs and 28µs at 512KB for EbbRT and Linux, respectively
(labeled in red and green boxes). Intuitively, this result indi-
cates that ITR-delay effectively batches processing by control-
ling the amount of payload transmitted from the NIC to the
OS within a time window. Optimal ITR-delay settings suggest
a "sweet spot" where the OS paces packet processing, saving
energy through a combination of idling and CPU frequency
control.

Lastly, though (ITR-delay, DVFS) pairs in fig. 1 have differ-
ent values for the different OSes explored, the performance-
energy curves for the OSes follow a common ’V’ shape. The
lowest point in this ’V’ shape represents a setting that con-
sumed the least energy while being competitive in perfor-
mance while the left points represent settings that sacrificed
energy for better performance. This ’V’ shape also illustrates
that it is essential to be strategic in tuning, as while some
static settings can outperform dynamic control, there can also
be sub-optimal static settings, as shown by points to the right
of Linux in Fig. 1.

2.5.2 OS Specialization on Energy and Performance

Next, we consider experiments that explore the performance
and energy trade-offs of memcached with varying requests-
per-second (QPS) loads under the same SLA objective. Our
key findings are that 1) different OS designs can impose
different trade-offs between performance and energy, and
2) specialized systems can achieve dramatic efficiency in
both. This can be seen in fig. 3 which illustrates the Pareto-

9We instrumented a simple log in Linux’s network device driver to save
every updated ITR-delay value during a single run of NetPIPE for a 64 KB
message.

optimal curves 10 of EbbRT and Linux. Fig. 3 shows that
as QPS increases, EbbRT exhibits a consistent vertical struc-
ture, suggesting effective energy savings without impacting
latency. Conversely, Linux’s curves become more horizon-
tal, indicating performance degradation as QPS rises due to
increased trade-offs between performance and energy. No-
tably, EbbRT’s optimized stack allows it to handle higher
peak QPS (2000K) compared to Linux (800K). In particular,
fig. 4 shows the impact of ITR-delay on the total amount of
instructions needed to run a single memcached server in both
Ebbrt and Linux. This figure shows how a large ITR-delay
(e.g. 400 µs) can reduce overall instruction count by up to
30% in Linux. It also shows the drastic differences in instruc-
tion count between the two OSes, as EbbRT uses up to 2.5X
fewer instructions to support the same load as Linux does.
This implies that a greater fraction of EbbRT’s instructions
were spent getting actual work done rather than traversing
the network stack, which suggests that combining ITR-delay
and DVFS control with EbbRT’s optimized network paths
presents substantial opportunities for maximizing race-to-idle
energy benefits [22, 93].

2.5.3 Revealing ITR-delay and DVFS Performance-
Energy Trade-offs

To help build intuition of the impact of specific ITR-delay and
DVFS settings on the performance and energy of open-loop
style applications, we present an example in fig. 5 featuring
a Linux memcached server with a load of 400K QPS. Using
colored gradients, the figure visually represents the effects of
each ITR-delay, and DVFS pair; each data point is divided in
half, providing insights into their respective impacts on 99%
latency and energy.

In fig. 5, one can see the trend that as DVFS decreases from
2.9 GHz: the energy gradient becomes lighter, indicating a
more pronounced impact on reducing energy use. Simultane-
ously, increasing ITR horizontally has an immediate effect
on increasing measured 99% latency, evident in the darken-
ing of colored gradients. Further, we observe two notable
behaviors at a DVFS frequency of 1.3 Ghz: 1) a fast ITR-
delay (0 µs) triggers a spike in tail latency, violating the 500
µs SLA objective due to the slow CPU frequency’s insuffi-
cient processing of incoming requests, and 2) as ITR-delay
increases, this induces additional queuing which enables effi-
cient request batching, thereby facilitating additional energy
savings.

These observations indicate that the combination of ITR-
delay and DVFS enables one to select different operating
points that can move within this space. This is evident in
the common "L" shapes seen in fig. 3; which while they
differ in absolute performance and energy, illustrates how
ITR-delay and DVFS can be combined to reduce energy while
still meeting SLA objectives in both OSes.

10We filter out (ITR-delay, DVFS) pairs that resulted in SLA violations.
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Figure 3: Memcached: Each point represents a single experimental run. The *-static data points use a unique (ITR-delay, DVFS) pair. We only
illustrate data that lie on the Pareto-optimal curve. The X-axis shows performance measurement (lower is better) and the Y-axis shows total
energy consumed. Linux results for 1000K and 1500K QPS loads are not shown as Linux could not support them without violating SLA.

Figure 4: Memcached: ITR-delay impact on instruction count
(1e11). Not drawn to scale to show structure in data.
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Figure 5: Illustrates the change in energy and 99% latency as differ-
ent ITR-delay, DVFS pairs are explored for Linux memcached.

3 Modeling ITR-delay and DVFS Effects

A key takeaway from §2 is that fig. 1 and fig. 3 reveal common
shapes ("V" and "L") that are OS-agnostic and share a stable

structure in response to changes to ITR-delay and DVFS. This
suggests one can develop a formal model that captures OS-
agnostic performance and energy profiles and that generic
external control mechanisms can then be made feasible for
both OSes.

3.1 Memcached Model Fitting
Motivated by the implications of these OS shapes, we formu-
lated a mathematical model to explore fitting our experimental
data with a set of free parameters and ITR-delay, DVFS set-
tings. We assume a simple model where the offered load is
light enough that requests don’t batch up in the receive queue
and can be treated independently. We model the performance
as 99% tail latency as well as energy consumed 11.

3.1.1 Performance:

We define △t as the time it takes to handle a single request:

△t = twork + tinterrupt

We parameterize twork as a function of DVFS values:

twork =
Z

DV FS1+α
(1)

Z and α are free parameters that change for both the OS
and application load. In this model, Z acts as a maximum
time limit that each request can take (i.e. SLA objective). α

represents a system’s dependence on DVFS to trade off per-
formance for energy. For example, if α =−1, then that partic-
ular system has no dependence on DVFS and can largely use
DVFS to lower energy use without sacrificing performance
- this is inspired by the study results in §2.5.2 that illustrate

11We have also collected other tail latency values and found that our model
can accurately fit them as well.
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Figure 6: Prediction of energy and performance across both OSes
using our model for Memcached @ 600K QPS. The diagonal line
indicates a perfect model fit. The negative energy values are due to
log() transformations during modeling for regression analysis.

how DVFS affects Linux and EbbRT differently in trading off
energy for latency.

We parameterize tinterrupt as a function of ITR-delay values:

tinterrupt = φ∗ IT Rdelay (2)

As ITR-delay greatly affects the measured tail latency, φ

represents the location in the receive queue where a packet
is placed before being processed. For example, if an unlucky
packet arrives just as the NIC’s IT R value starts counting
down, then it will have to artificially wait for a full IT R before
being processed, thereby delaying overall request processing
time.

3.1.2 Energy:

We define △J as the amount of energy it takes to process a
single request. This is affected by the voltage and frequency
states of DVFS and how ITR-delay can induce prolonged idle
periods:

△J = γ∗ (φ∗ IT R)∗DV FSβ (3)

Note that φ used here is the same variable from eq. (2). γ

(units of watts) acts to convert the interactions of ITR-delay
and DVFS into energy used. The variable β acts as a depen-
dence factor on DVFS in a similar way to α in eq. (1).

Fig. 6 illustrates one example result of the model fitting
against memcached data for a QPS of 600K. The x-axis shows
the set of energy and performance predictions and the y-axis
shows their measured values. The diagonal lines show where
ideal points would lie if our model’s calculations were exact.
We use the Adam optimizer from PyTorch [109] in this pro-
cess and run each fit several times to check the stability of the
inferred parameters and avoid getting stuck in local minima.
Overall, we find that despite complicated interactions between
the hardware and software, our models are expressive enough
to exploit the common OS response behaviors to accurately
fit both performance and energy data.

However, the limitation of our model is that it is only prac-
tical in highly constrained settings. To replicate this approach
for new software and hardware, one would need to exhaus-
tively re-gather data while tuning ITR-delay and DVFS. Nev-

ertheless, the accuracy of our model suggests the viability of
using similar approaches to search this space.

4 Proof-of-Concept Controller

Motivated by our prior findings and modeling work, we
present an example controller to help validate our conjec-
ture of a black-box search strategy. This controller uses an
established machine learning technique, Bayesian optimiza-
tion [42, 45], to find energy-efficient interrupt coalescing and
CPU frequency settings that can adapt to the specific appli-
cation, OS, and hardware while exploiting the stability in
offered loads.

In 1) §4.2, we illustrate its applicability in optimizing the
energy efficiency of a server that supports a realistic datacenter
workload trace [65] over 24 hours by periodically adjusting
ITR-delay, and DVFS settings as offered load changes, and
in 2) §4.3 demonstrates the generality of the controller as we
apply it across different types of NICs and CPUs (table 2)
when run on three applications from Tailbench [70].

As a proof-of-concept controller, we made simplfying as-
sumptions in its design and leave addressing real deployment
scenarios for future work. Our assumptions include ad-hoc
thresholds for when to trigger Bayesian optimization and
the number of subsequent trials to run. However, our results
show that even using straightforward assumptions can yield
significant advantages, leaving ample room for improvement.

The architecture of our controller also facilitates the inte-
gration of more advanced policies for initiating the Bayesian
process. We envision the deployment of this technique in data
centers through collaboration with load-balancers that make
use of historical usage data. This collaboration would help
distribute incoming loads to energy-optimized servers, which
have been pre-configured with specific settings, while still
meeting SLA objectives. In addition, the load balancers can
help mitigate the potential gaming of the learning agent’s
behavior in response to changing request rates.

4.1 Design

Fig. 7 illustrates the design of our controller: 1 A live sys-
tem running memcached services requests arriving at varying
QPSes from an external source. 2 It then triggers a set of
performance and energy measurements of the live system to
be shared with an external Ax [8, 9] Bayesian optimization
platform. 3 This process then computes a penalty Rp of

the current (ITR-delay, DVFS) setting and 4 then recom-
mends an update to a new (ITR-delay, DVFS) configuration
on the live system that minimizes Rp. Once this process com-
pletes, the live system is set with a fixed (ITR-delay, DVFS)
configuration until the next set of measurements is triggered.
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Figure 7: Our controller designed to optimize energy efficiency for a memcached server.

4.1.1 Penalty Function

We use a simple function that penalizes the optimization
process by the amount of measured energy and magnifies that
penalty when measured latency violates the SLA objective:

Rp = m_energy∗max((m_latency−SLA+1),1) (4)

For example, with an SLA objective of 99% tail latency <
500 µs, where measured latency (m_latency) is 600 µs, the
reward Rp will be scaled up by a factor of 100, such that
Rp = m_energy∗ (600−500). If m_latency is less than SLA,
then Rp will evaluate to m_energy. Minimizing Rp is in-
dicative that Bayesian optimization is selecting (ITR-delay,
DVFS) pairs to meet performance/energy objectives. This
reward function enables an operator to express their prefer-
ence to optimizing for different combinations of energy and
performance objectives.

The possibilities of customizing this function further are
also ripe for exploration: such as using new combinations of
performance/energy or known metrics such as energy-delay-
product [15, 51]. One can also imagine developing a rich set
of reward functions that capture preferences a service operator
might have. In this way, the controller can be reconfigured
as priorities change by selecting and tuning from the set of
reward functions.

4.2 Applicability to cache-trace
This section presents the results of running our controller
against a publicly available KV store workload trace (cache-
trace [65]) which exhibits the stable demand curve behavior
for our controller.

4.2.1 Experimental Setup

We used the same infrastructure of our study (§2) but modified
the mutilate workload generator to generate QPSes follow-
ing from cache-trace instead: first, we extracted a 24-hour
sequence of QPS rates from a single trace and binned the
data into hourly divisions to capture the mean QPS rate at an
hourly basis. As cache-trace QPS rates were often in the tens
of thousands of QPS as it was running on limited vCPUs, we

scaled up the rates to match our hardware capability. How-
ever, 2.5.3 shows that even at low QPS rates where DVFS
is fixed at the lowest CPU frequency, ITR-delay can still be
used to further reduce energy use. Therefore, we then generate
these scaled-up mean QPSes to our live memcached server
for which we capture energy-per-second measurements over
the entire 24-hour period.

The controller is configured to trigger its periodic measure-
ments at an hourly rate and run Bayesian optimization for a
default of 30 trials - this is due to overheads in our single-
thread Python package; which takes around 5 minutes to run.
In contrast to our initial energy study (§2), which was limited
to only using up to 340 (ITR-delay, DVFS) pairs due to exper-
imental scope, our controller allows Bayesian optimization
to choose from all available ITR-delay, and DVFS values (a
total of 2 million possible combinations).

We evaluate our controller by comparing the energy and
performance behavior of five different system configurations:

• Linux: Operating in its default state, where the dynamic
ITR-delay and DVFS algorithms are enabled.

• Linux-BayOp and EbbRT-BayOp: Operating with
Bayesian Optimization to tune both ITR-delay and
DVFS, with a target of minimizing overall energy use
while maintaining SLA objectives.

• Linux-DVFS-BayOp and Linux-ITR-BayOp: Operat-
ing with Bayesian Optimization to tune only one of the
two settings. We were motivated to explore these config-
urations to better understand the limitations of the two
hardware mechanisms individually. Linux-DVFS-BayOp
tunes DVFS while enabling the dynamic ITR-delay algo-
rithm. Linux-ITR-BayOp tunes ITR-delay while enabling
the dynamic DVFS algorithm.

4.2.2 Evaluation

We evaluate our controller’s energy impact across two ap-
plications, namely memcached and silo, in both Linux and
EbbRT12. Silo [106, 107] is a compute and memory-intensive
application that is extended with a web front-end such that

12The controller’s penalty can also be modified to minimize latency, details
can be found in appendix A
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every request triggers a corresponding set of TPC-C trans-
actions on an in-memory database [128]. We ported Silo to
EbbRT and the workload mix and SLA constraints of Silo
follow from those used in memcached.

4.2.2.1 Memcached Results Fig. 8 illustrates our con-
trollers evaluation against three different SLA objectives: 99%
latency < 500 µs, 90% latency < 500 µs, and a even more strin-
gent 99% latency < 200 µs. The QPS values, shown on the
right, change on an hourly basis, as shown by black line seg-
ments. At the beginning of each hourly QPS change, we see
spikes in energy usage of *-BayOp systems which results
from the Bayesian Optimization process searching through
(ITR-delay, DVFS) settings on the memcached server to meet
its optimization objective. After this initial energy spike, the
system settles into a steady energy consumption state until
the next hourly trigger. A key result of this application is
the importance of using both ITR-delay and DVFS to meet
SLA objectives for optimizing energy efficiency rather than
individually.

Figure 8: BayOp applied to memcached; the QPS label is shown
on the right side of the graph and the QPS lines show the different
offered loads on a per-hour basis. We present results from differ-
ent SLA objectives studied and illustrate the measured power (en-
ergy/second) on the Y-axis as QPS changes across the five system
configurations studied over 24 hours (X-axis).

We find that, for an SLA objective of 99% latency < 500 µs,
Linux-BayOp can result in energy savings of up to 50% over

Linux. Relaxing the SLA objective to 90% < 500 µs enables
our controller to find (ITR-delay, DVFS) configurations that
yield even more energy savings of over 60%. At the most
stringent SLA of 99% latency < 200 µs, our controller can
still adapt while enabling energy savings of up to 30%. The
energy savings of EbbRT-BayOp are similar to those found
in our energy study of memcached (Fig. 3). Our controller is
robust enough to adapt to the software stack of EbbRT and
find energy-efficient configurations that consistently result
in the lowest energy use (over 2X lower than Linux). The
measured energy-per-second variability of EbbRT is often
lower in contrast to that of Linux (indicated by the thinner red
plot in Fig. 8), a byproduct of EbbRT’s simplified and more
optimized network paths.

For Linux-ITR-BayOp, allowing our controller to tune only
ITR-delay still generally improved energy savings over Linux.
However, for a stringent SLA of 99% latency < 200 µs, the re-
duced SLA headroom prevents the controller from trading off
latency for energy as effectively as it can when tuning along-
side DVFS. At the lower QPSes, Linux-ITR-BayOp performed
worse than Linux.

Allowing our controller to tune only DVFS (Linux-DVFS-
BayOp) results in energy savings comparable with Linux-
BayOp across SLA objectives. This is further supported by
2.5.3 which illustrates the significant influence of DVFS on
overall energy consumption. However, though it may seem
that under a more stringent SLA of 99% latency < 200 µs,
Linux-DVFS-BayOp results in the highest energy savings, we
found instances where the measured 99% latency violated the
SLA of 200 µs, as shown in Fig. 10; revealing the weakness
of relying on DVFS only.

4.2.2.2 Silo Results We selected another trace from cache-
trace that was akin to a more computationally intense server.
Fig. 9 shows that the trace peak QPS rates are often lower than
those of Fig. 8 (peak 250K QPS versus 750K QPS). Fig. 9
does not show results for SLA of 99% latency < 200 µs, as
the inherent computational cost of Silo’s TPC-C transactions
resulted in a lower bound of measured latency values that
were consistently greater than the SLA objective of 200 µs. A
key result of this application is that it helps expose in compu-
tationally intensive cases the limitation of ITR-delay to affect
energy savings.

Fig. 9 illustrates that even for a computationally inten-
sive application with different SLA objectives, Linux-BayOp
was able to find (ITR-delay, DVFS) settings that enable 30%
energy savings in Linux for various QPS rates and higher
winnings when the SLA is relaxed to 90% latency < 500 µs.

The controller was able to adapt to a different OS and
application stack and found configurations of EbbRT-BayOp
that consistently had the lowest energy use over Linux. In
contrast to Fig. 8, one can see larger variations in energy
saved from one QPS to the next (more hilly behavior). This
can be partly attributed to the complicated database work that

9



Figure 9: Controller applied to cache-trace for Silo. We show two different SLA objectives. The QPS line shows the change in QPS offered
load on a per-hour basis. The consumed power (energy/second) of each system configuration on the Y-axis is shown over 24 hours on the
X-axis.

Figure 10: Measured 99% latency across Linux for an SLA of 200
µs. The latency is shown on a per-hour basis due to how mutilate
reports its resultant latency measurements. We find that Linux-DVFS-
BayOp often violates the SLA which suggests only tuning DVFS is
not enough to achieve stable system behavior.

must now be done per request.
In contrast to memcached, we find that tuning ITR-delay

alone (Linux-ITR-BayOp) while enabling Linux’s default
DVFS mechanism is largely ineffective at reducing energy.
This is likely due to the increased computational cost for
each request which limits the potential energy savings gained
from interrupt coalescing and prolonged sleep states that are
induced by the ITR-delay mechanism.

We find that tuning DVFS alone (Linux-DVFS-BayOp)
while enabling Linux’s default ITR-delay mechanism works
surprisingly well for Silo and, in most cases, achieves a slight
energy saving over Linux-BayOp. This result suggests an inter-
esting compromise between enabling a degree of energy sav-
ings that controlling ITR-delay provides to a computationally-
driven network application versus abandoning ITR-delay con-
trol so that Bayesian optimization can focus on tuning DVFS
to maximize energy savings.

4.3 Black-Box Generality: Diverse Apps and
Hardware

In this section, we further demonstrate the versatility of the
controller by applying it to optimize energy efficiency for
three applications from Tailbench [70]. Our motivation was

Name CPU Cores NIC RAM
N0 Intel E5-2640 8 Mellanox 25GbE 62GB
N1 Intel E5-2660 20 Solarflare 10GbE 128GB
N2 AMD EPYC 7452 32 Mellanox 40GbE 128GB
N3 Ampere ARMv8 80 Mellanox 25GbE 124 GB

Table 2: Different hardware explored to run Tailbench.

to reveal how externally controlling interrupt coalescing and
CPU frequency can be applied agnostically on hardware even
across multi-generational divides13.

4.3.1 Experimental Setup

For these experiments, we selected four hardware platforms
as shown in table 2. Nodes N0, N1, and N2 are provided by
CloudLab [37] and we disable hyperthreads and TurboBoost
on all processors to minimize system noise. For each node
type, we create a cluster consisting of a single server node,
three client nodes that generate traffic to the server node, and
an external bootstrap node that launches experiments and
runs the BayOp controller to tune interrupt coalescing (ITR-
delay) and CPU frequency (DVFS) on the server. All of the
nodes were running Linux 5.15 kernel; we only examined
Linux as EbbRT does not have the necessary device driver
support for Solarflare and Mellanox NICs. Notably, while
we used ethtool to set static interrupt rates across all three
NICs in this paper, the fundamental implementation may be
different depending on the hardware’s capability. On the Intel
processors, we use the RAPL hardware registers [26] to report
its dynamic energy use while for AMD, we use amd_energy
hardware monitor driver [97].

Node N3 is another experimental node that runs Linux
6.4.13 but we could only get a single client node to generate
traffic14. The ARMv8 server provided xgene-hwmon [2] tool
that enabled us to report its power readings.

13Scripts to reproduce results at https://anonymous.4open.science/r/bayop-
188B

14Due to the computation-heavy nature of Tailbench applications, we
found this was still able to saturate the single server
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Figure 11: This figure illustrates the energy use of each application (APP) for each of the hardware platforms (NODE: N0 to N3). The energy
is normalized (Y-axis) against Linux default, where lower is better. For each APP, we use two representative offered loads which are 40% and
80% of the measured Peak Load of Linux default. Within each representative offered load, we also selected two SLAs (as indicated by ///// and
.....) for the application to meet while our controller is optimizing its energy efficiency.

For each hardware category, we selected applications from
Tailbench [70], each designed to fulfill distinct SLA objec-
tives. These applications encompassed img-dnn, a handwrit-
ing recognition program built on OpenCV; sphinx, an open-
source search engine; and xapian, a speech recognition sys-
tem. These applications both represent a diverse suite of
benchmarks in contrast to the previous examples from our
study as well as providing new SLA objectives in the order
of milliseconds to seconds. Overall, these selections allowed
us to assess the impact of different SLAs and hardware plat-
forms.

4.3.2 Experimental Results

In our experiments, we observed that the controller consis-
tently achieves energy savings ranging from 5% to 36%, de-
pending on the specific combination of software and hardware.
Importantly, our findings underscore the fundamental nature
of these two mechanisms, which can be effectively applied
across a variety of hardware platforms in different SLA-driven
application domains. Further, we found that the generic archi-
tecture of our controller meant that it was straightforward to
simply deploy this technique in new hardware environments
as long as it provided support for energy readings and exposed
control of interrupt coalescing and CPU frequency.

Fig. 11 depicts the resulting energy consumption for Tail-
bench; we normalize the energy usage relative to the default
Linux configurations under different scenarios:

1. We selected representative offered loads of 40% and
80% of each hardware platform’s peak QPS capacity for
running the respective applications.

2. For each of these offered loads, we applied two distinct
SLA objectives tailored to each application, as indicated
by the labels in each figure. These SLA objectives were
derived from default values provided by the authors of
Tailbench [70].

However, it is worth pointing out that the controller’s ability
to adapt to applications and offered loads is heavily influenced
by the hardware’s ability to offer a range of configurations
for exploration within this space. One can see an example of
this for APP: img-dnn in Node: N2 where it did not manage
to find an ITR-delay, DVFS pair that managed to further re-
duce energy consumption. We hypothesize this stems from
a combination of the application type as well as the DVFS
settings provided by the AMD EPYC 7452 processor. The
processor uses AMD’s Collaborative Processor Performance
Control (CPPC) interface [54], which is an abstracted per-
formance value that isn’t tied to specific a CPU frequency;
further, we were limited to only three settings in contrast to
the hundreds and thousands available on the other proces-
sors. However, this limitation can also be mitigated by newer
processors that support the AMD P-state EPP [101] driver,
providing finer-grained CPU frequency settings.

To delve into the energy gains we detail the CDF of an
example Tailbench application in fig. 12. In this figure, we
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Figure 12: CDF of per request latency between Linux and Linux-
BayOp from a single Tailbench application.

illustrate the per-request latency as provided by Tailbench
when running the img-dnn application on our ARMv8 server
(note this is at a particular peak load and SLA). As the figure
shows, the overall request latency of Linux-BayOP is about
2X worse than Linux as the controller chose energy-efficient
ITR-delay and DVFS settings. While we found Linux was
able to support this workload with a 99% latency of 2.8ms,
Linux-BayOp was still able to meet the SLA at 99% latency
of 4.8ms while saving 31% energy.

5 Related Work

Our work falls within a wider space of research on en-
ergy proportional computation in datacenters [12, 39, 126].
Much of this research stems from the challenges of improv-
ing the performance of network-bound data center work-
loads [19, 86, 107] while keeping energy consumption at bay.
These challenges can be attributed to complex diurnal trends
that are characteristic of datacenter-level utilization, whereby
idle time is common and must be optimized for [76, 91, 125]
while simultaneously maintaining the ability to support high-
utilization peaks and strict latency constraints [6, 21, 22, 52,
53, 69, 83, 87, 93, 107, 129, 135, 139]. Our goal was to gain
better insight into these impacts on application performance
and energy when ITR-delay and DVFS settings are precisely
controlled. While prior work has shown how SLA headrooms
can be exploited to minimize the overall energy consumption
of a system [6,21,22,52,53,69,83,87,93,107,129,135,139],
our controller demonstrates this process can be automated and
customized on a wider range of hardware and applications
than previously shown.

There is a wide range of work that targets energy propor-
tionality with a focus on designing OS policies and mech-
anisms for power management. Most of this work presents
hardware level optimizations that manipulate processor speed
mechanisms such as DVFS [23, 34, 38, 41, 43, 46, 62, 74,
75, 77, 81, 82, 85, 116, 121], processor power limiting mech-
anisms such as RAPL [47, 53, 57, 87, 88, 104, 135], and idle
power states [6,21,67,72,93,111] (c-states) by applying feed-
back control mechanisms and relying on activity models. The
authors of [88] and [47] go a step further, exploring and

characterizing the interference of co-located latency-critical
versus best-effort tasks and high versus low CPU demand
tasks when subject to energy tuning via DVFS and RAPL.
In doing so, they highlight limitations in using hardware fea-
tures alone for power management. Our work builds on this
observation and asserts that specialization in the OS stack also
plays a critical role in attaining even more energy efficiency.

Modern hardware components and software stacks expose
a large number of parameters that govern internal system op-
erations and interactions. There is a lot of work on defining
heuristics to control hardware parameters that impact perfor-
mance and energy consumption [16, 35, 55, 73, 95, 96]. In
recent years, there has been an explosion in using ML-based
techniques [30, 134] to uncover more subtle system heuris-
tics for resource management [14, 18, 27, 28, 36, 44, 50, 61,
95, 96, 99, 105, 120, 142], hardware and system configura-
tion [3, 17, 29, 36, 44, 79, 85, 127, 130, 136, 138, 141, 143],
high-performance computing [3, 61, 80, 85, 96, 115, 140],
and data-center-scale applications [17, 27, 28, 31–33, 84, 124,
130, 131, 138, 143]. Though ML is a natural solution for do-
mains like image, video, and audio processing, the complex-
ity of computer systems often requires extensive expertise
to map systems problems to ML tasks. Therefore, prior re-
search has either been limited to simulators [14, 18, 20, 29,
32, 36, 61, 78, 85, 133, 136] or focused only on software pa-
rameters only [3, 27, 28, 33, 84, 99, 131, 138, 140, 142, 143].
Instead, our work is the first to apply an ML technique towards
exploiting stability in offered loads to find energy-efficient
"sweet spots". Our work on finding settings for ITR-delay
and DVFS for SLA-driven network applications is most sim-
ilar to Co-PI [68]. Their approach focuses on the hardware
and software specific nature of optimizing ITR-Delay and
DVFS on an Intel platform; through off-line profiling, they
construct lookup tables indexed base on three coarse gain
load categories (low, medium and high). Our work demon-
strates how external control of interrupt coalescing and CPU
frequency are fundamental mechanisms that can be generally
applied across offered load, application, OS, and hardware.
Further, we demonstrate how Bayesian optimization can be
used to dynamically reduce energy use across a variety of
SLA objectives on a live server.

6 Conclusion

Our work seeks to validate a set of conjectures about how
combining queuing and processing efficiency can result in
diverse set of energy-efficient system settings. Further, to con-
firm our conjecture that one can exploit stable demand curves
in SLA-driven applications; we have also proposed an exam-
ple controller design that utilizes a black-box search strategy
to automatically find these "sweet spots". Our results demon-
strate its applicability across offered loads, applications, OSes
and even hardware.
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A Appendix

Figure 13: Controller applied to optimize only for minimizing 99%
tail latency for memcached. We show show the energy per second
consumption on the left figure and the measured latency on the right.

A.1 Optimizing for Latency in Memcached
In fig. 13 we demonstrate the flexibility of the controller’s
optimization criteria through a change of its reward penalty
function to focus on minimizing tail latency instead at a cost
to greater energy use. In this case, the function is simplified to
Rp = m_latency in order to reflect performance optimization
instead. Fig. 13 illustrates that the Bayesian process was also
able to consistently performance-focused ITR-delay, DVFS
settings that lowered the 99% tail latency by up to 30% in
Linux, however at a higher energy cost of up to 40%. This
result also demonstrates the potential of exploring alternate
reward functions that may consist of different combinations
of performance and energy criteria.

A.2 Optimizing for Latency in Silo
Fig. 14 shows that similar to memcached, the controller can
still largely lower overall 99% latency by 50 % while increas-
ing its overall energy use for a new application across both
OSes.
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Figure 14: Controller applied to optimize only for minimizing 99% tail latency in Silo. We show show the energy per second consumption on
the left figure and the measured latency on the right.
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