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K42 is an open-source, Linux-compatible, scalable operating-system kernel that can be

used for rapid prototyping of operating-system policies and mechanisms. This paper

reviews the structure and design philosophy of K42 and discusses our experiences in

developing and using K42 in the open-source environment.

K42 is an open-source, Linux**-compatible, scalable

operating-system kernel whose implementation is

based on advanced programming techniques and

incorporates innovative mechanisms and policies.
1–5

K42 was developed by several groups with cooper-

ation from a number of universities, in particular

University of Toronto, Carnegie Mellon University,

and more recently the University of New South

Wales. A community of users that includes a

number of universities and national laboratories is

active through a Web site and a mailing list.
6

The main goals of the K42 project are:

Scalability/performance—K42 should run effi-

ciently on a range of multiprocessors, from large to

small, and should support efficiently both large- and

small-scale applications.

Adaptability—K42 should manage system resources

in a way that matches the changing needs of the

running applications and that contributes to the self-

regulating (autonomic) behavior of the system.

Extensibility/maintainability—K42 support should

be extensible to additional hardware platforms or

applications; upgrading the system with new com-

ponents should be possible without interruption in

system services.

Open-source compatibility/customizability—K42

should facilitate open-source collaboration and the

incorporation of new features in support of the

needs of specific user groups.

The following principles were adopted in the design

of K42:

1. Use modular object-oriented code.

2. Avoid centralized code paths, global data struc-

tures, and global locks.
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3. Move system functionality from the kernel to
server processes and into application libraries.

When applying these design principles, however,
we made compromises when their use conflicted
with our performance and scalability goal. Our
intent was not to carry the design principles to an
extreme in order to fully explore their ramifications,
but rather to use them to achieve a better perform-
ing, more customizable system.

K42 was designed to scale up to machines contain-
ing hundreds of processors, and down to machines
with four processors. To achieve such scalability,
K42 has been structured in an object-oriented
manner so that each resource of the system (e.g.,
virtual memory region, network connection, file,
process) is managed by a ‘‘per-instance’’ object (or
set of objects). For example, when a user opens a
file, a new file-object instance is created to manage
that file. The object-oriented design also provides a
high degree of customizability because concurrent
applications can choose the way resources are
managed to best serve their needs. Even within one
application, different uses of a given resource may
be managed differently. We have also provided self-
managing (autonomic) capabilities by implementing
mechanisms that allow these per-instance resources
to be swapped ‘‘on the fly,’’ that is, while the system
is running.

In K42 we use the rich set of device drivers, file
systems, and other code available with Linux, and
we are active in the community that is developing
core kernel technology. We are developing an
alternative to the Linux kernel for research proto-
typing, not a new operating system.

By nature, the open-source system software carries
with it certain requirements. Because open-source
software is to be used by a wide spectrum of users,
the software should be configurable to meet the
needs of various groups of users and should be
flexible enough so that the code base does not
‘‘fragment.’’ The open-source development process
should allow the contribution of one group to be
used by other groups, and should allow developers
to take advantage of the specific features of the
platform they are targeting for their software. The
software should run on a wide range of multi-
processors, from large (with hundreds of proces-
sors) to small (2-way multiprocessors), and should

provide mechanisms and tools for developers to
monitor the performance of the system.

We examine in this paper K42’s capabilities as a
vehicle for open-source development and explore
the advantages of the open-source collaboration
environment. We describe the K42 features that
address the requirements listed earlier and demon-
strate its successful development model for an open-
source community. K42 allows developers to ex-
periment with operating system policies, such as a
new memory management policy, without requiring
detailed knowledge of the entire system. Further-
more, K42’s per-instance resource management
allows the incorporation of function in the base K42
code that affects only specific applications. Thus,
open-source developers with non-mainstream needs
can have their code integrated into K42 without
affecting other users. Because the overall structure
of K42 is significantly different from previous
UNIX** kernel implementations, developers inter-
ested in working with K42 first have to become
familiar with the new design.

The rest of the paper is structured as follows. In the
next section we present an overview of K42 and the
technologies used in its development. In the section
that follows we describe the experience we and
others have had with K42. We highlight those
aspects of K42’s design and features that facilitate
smooth open-source collaboration, and we present
some of the challenges that we encountered. Then,
we present selected results and describe our current
research directions. We conclude with a summary of
the main ideas contained in this paper.

THE STRUCTURE AND TECHNOLOGIES OF K42
In this section we provide an overview of K42 and
the technologies we used in its development.
Following a description of the overall structure of
K42, we describe in some detail an aspect of the
system that illustrates the design principles at work.
We selected for this purpose memory management,
and we describe the objects involved and their role
in the system. We then discuss the object-oriented
design, the user-level implementation of system
services, and a number of other technologies used in
K42.

Structural overview
The structure of K42 is based on the client-server
model as illustrated in Figure 1.

1
The kernel, shown
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at the bottom of the figure, provides memory

management, process management, interprocess

communication (IPC) infrastructure, base schedul-

ing, networking, and device support. Above the

kernel there are two additional layers: the system

servers layer and the applications layer. The system

servers may include an NFS (Network File System)

file server, a KFS (K42 File System) scalable file

server, a name server, a socket server, and a pipe

server. For flexibility, and to avoid context-switch

and IPC overhead, we implement as much func-

tionality as possible in application-level libraries.

For example, all thread scheduling is done by a user-

level scheduler linked into each process.

The implementation of all layers of K42 (the kernel,

system servers, and user-mode libraries) is based on

object-oriented technology. We use a stub compiler

on a Cþþ class augmented with decorations (anno-

tations that extend the language for additional

functionality) to automatically generate IPC calls

from a client to a server, and have optimized these

IPC paths for performance. The kernel provides the

basic IPC transport, and attaches sufficient infor-

mation to the message for the receiver to authenti-

cate each call.

Compatibility with the Linux API and the Linux ABI

is accomplished by an emulation layer that imple-

ments Linux system calls by method invocations on

K42 objects. When an application is written to run

on K42, it is possible to program either to the Linux

API or directly to the native K42 interfaces.

Programming against the native interfaces allows

the application to take advantage of K42-specific

optimizations. Standard Linux system calls are

trapped and reflected to the K42 library loaded into

the client address space. Emulation code in the

library may implement a reflected system call

locally, or it may make IPC calls on the kernel or

other servers. (For performance reasons, we also

provide a version of the dynamically loaded GNU C

Library that branches directly to the K42 library for

system calls, avoiding the hardware traps and

subsequent reflections.) While Linux is the first and

currently only ‘‘personality’’ we support, the base

facilities of K42 are designed to be personality

independent.

The Linux-kernel internal personality is provided by

a set of libraries that allow Linux-kernel components

such as device drivers, file systems, and network

protocols to run inside the kernel or in user mode.

These libraries provide the runtime environment

that Linux-kernel components expect.

To make the structural overview above more

concrete, we describe as an example the group of

K42 objects responsible for handling the memory

management function in K42. All the objects in

Figure 2 are contained in the Memory Manager

component of the kernel shown in Figure 1. Next,

we briefly describe the objects shown in Figure 2

and their handling of a page fault. Additional details

can be found in Reference 5.

Process, the root of the object tree in the figure, is

the kernel object that represents a process. It

maintains a list of the regions in the address space of

the process and, when needed, accesses the hard-

ware-specific information (HAT).

Figure 1
Structural overview of K42
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Region represents an area of memory and manages
the mapping from a contiguous page-aligned range
of virtual addresses to a contiguous page-aligned
range of file offsets.

FR (File Representative) is the object the kernel uses
to access a file. It communicates with the file system
in order to perform I/O.

FCM (File Cache Manager) controls the page frames
currently assigned to hold file content in memory. It
implements the local paging policy for the file and
supports Region requests to make file offsets
addressable in virtual memory.

PM (Page Manager) controls the allocation of page
frames to FCMs, and thus implements the more
global aspects of the paging policy.

HAT (Hardware Address Translator) is the object
that manages the hardware representation of an
address space.

A page fault is resolved as follows:

1. The Process component identifies the Region
component responsible for the faulting address
and triggers its processing of the fault.

2. The Region component checks for permission
violations (e.g., a write access to a read-only
Region) and then sends the FCM a request to
map, with the correct permissions, the corre-
sponding file offset to the virtual address.

3. The FCM determines the page frame in which the
requested file offset falls and asks the HAT to
update the address-space mappings to map the

faulting virtual address to that page frame. In this
case, a page-fault-complete indication is passed
to the low-level code that called the Process
object, and the faulting instruction is retried.

4. If the FCM cannot provide a page frame
immediately, it allocates a page frame and
descriptor and calls its FR to schedule an I/O
operation to fill the page frame. In the normal
case, the fault may be processed asynchronously.
The FCM queues a notification request object to
the page-frame descriptor and returns an indica-
tion that the page fault has not been resolved.

5. If the FCM discovers that the requested page has
already been scheduled for I/O, it proceeds as
described in the previous step, but without
scheduling any new I/O.

6. Sometimes a page fault cannot be handled
asynchronously. This is the case if the faulting
dispatcher cannot accept a page-fault notification
because it is disabled or because it has exceeded a
fixed limit on outstanding faults. In this case, the
fault is handled synchronously.

7. The FR that starts the I/O operation for its FCM
usually communicates asynchronously with its
file server. As soon as the call is initiated, the
kernal thread processing the fault usually termi-
nates. When the I/O operation is complete, the
file system makes an IPC call to the kernel, which
then completes the page fault processing.

This example demonstrates the characteristic way in
which K42 provides a common service that is found
in any operating system. The set of objects used and
their interactions are intended to provide an insight
into the object-oriented nature of K42 and into its
overall structure.

Object-oriented design
Each resource in the system (e.g., virtual memory
region, network connection, file, process) is man-
aged by a different set of object instances. Each
object encapsulates the meta-data necessary to
manage the resource as well as the locks necessary
to manipulate the meta-data. We avoid global locks,
global data structures, and global policies.

The vast majority of requests to an operating system
are independent and may be processed asynchro-
nously, provided the underlying design and data
structures permit it. Some requests, however,
involve dependencies, that is, the sharing of
resources. K42 provides an enhanced object-ori-

Figure 2
K42 memory management
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ented model by means of clustered objects
7,8

that
makes the distinction between independent and
dependent requests transparent (the client is not
aware of it). Clients use clustered objects, and the
underlying implementation determines transpar-
ently the appropriate distribution for achieving good
multiprocessor performance.

We have used object-oriented methods in K42 for
multiple reasons, one of which was to achieve good
performance on multiprocessors. The use of object-
oriented methods facilitates this because (1) when
no shared data structures are traversed and no
shared locks are accessed, unrelated requests to
different resources can be processed independently
(and thus concurrently), (2) good locality of
reference is achieved for resources accessed by a
small number of processors, and (3) the clustered-
object technology lets widely accessed objects be
implemented in a distributed fashion.

In addition, per-instance resource management
allows multiple policies and mechanisms to be
supported simultaneously, and this makes K42
customizable. Because each resource (or allocation
unit of a resource) is accessed through a service that
is implemented by an independent set of objects,
resource management policies and implementations
can be controlled on a per-resource basis; thus,
different applications can use different resource
management policies. Even within a given applica-
tion, different policies may be supplied for different
instances of a given resource. For example, every
open file may have a different prefetching policy,
and different page caches may have different
replacement policies. K42 extends these custom-
izability advantages by providing hot swapping. Hot
swapping allows object instances to be replaced
dynamically as an application’s behavior changes,
as new functionality becomes available, or as bug
fixes are implemented.

8,1,4

Finally, object-oriented technology helps to achieve
other goals as well. The modular nature of the
system makes it more maintainable by providing a
clean model for supporting new applications and
new hardware. Although for each new platform or
application to be supported, additional objects may
be created, these objects remain simple and easy to
program. Further, because the impact of modifying a
given object is limited to a small number of

components, experimentation with new resource
management policies and algorithms is facilitated.
Although these motivations for using object-ori-
ented technology look good in theory, their appli-
cation does not always produce the expected results.
In the section ‘‘Experiences,’’ we discuss the
challenges we have encountered in practice.

User-mode implementation of system services
In K42, much of the functionality traditionally
implemented in the kernel or system servers is
moved to libraries that execute in the client process.
This approach is similar to the one in Exokernel

9

and Psyche
10

and in Scheduler Activations.
11

The
approach allows for a large degree of customization
because libraries customized to the needs of the
applications can be used. For example, subsystems,
games, and scientific applications can provide their
own libraries, replacing much of the operating
system functionality that would traditionally be
implemented in the kernel, without sacrificing
security and without impacting the performance of
other applications. Security is not affected because
only information that would have been accessible to
an application is stored in the library. Overhead is
reduced in many cases because crossing address
space boundaries to invoke system services can be
avoided. Also, space and time is consumed in the
application and not in the kernel or system servers.
As an example, an application can have a large
number of threads without consuming any addi-
tional kernel memory. In many cases, we can handle
common-case critical paths (such as nonshared
files) efficiently in user mode, while handling more
complex functions in the kernel or in a system
server. We describe now some of the services that
have user-mode implementations in K42.

Thread scheduling—All thread scheduling has been
moved to user mode. The kernel is aware only of
user processes and maintains an entity called a
dispatcher that handles the scheduling of all threads
in user mode. Events that would ordinarily block a
process are instead reflected back to the scheduler
library code running in the application. This
scheduler code can then take the appropriate action,
for example blocking the current thread and running
another thread. In this way, any number of threads

can be multiplexed on a dispatcher without negative
consequences for the application. This ties up fewer
kernel resources, makes the scheduling more
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efficient, and most importantly, allows flexibility for
optimizations in user mode. This user-mode sched-
uling facility provides a framework that has allowed
other services to be moved to user mode.

3

Timer interrupts—If an application has thousands
of threads, many of those threads may be waiting for
timer events, such as timeouts on socket operations.
In K42, the dispatcher has a single timer request
outstanding, for its next timeout, and all subsequent
timeouts are maintained by a user-mode function.
This results in better performance because most
timeouts handle exceptional events and are canceled
before occurring. By keeping the state in the
application address space, interaction with the
kernel whenever a timeout is canceled is avoided,
thus providing an inexpensive mechanism for the
common-path timer operation. When a timer event
for a dispatcher actually occurs, it is passed up to the
dispatcher as an asynchronous notification, and the
user-mode function determines how to handle the
event.

Page-fault handling—On a page fault, we maintain
the state of the faulting thread in the kernel only long
enough to determine if the fault is ‘‘in-core.’’ If it is,
then the kernel handles the fault directly. Otherwise,
the fault is reflected back to the dispatcher, and the
user-mode scheduler either schedules another
runnable thread or yields. With our model, kernel
resources are saved because the kernel only needs to
reserve resources for one entity per address space.
As with timer events, page-fault completions are
passed up to the scheduler as asynchronous notifi-
cations. The user-mode functionality provided for
page faults enables customizations.

IPC services—The IPC services implemented in the
K42 kernel are simple. The kernel hands the
processor from the sender to the receiver address
space, keeping most registers intact, and giving the
receiver a non-forgeable identifier for the sender.
Most of the work of IPC is done in user-mode
libraries that are responsible for marshaling and
demarshaling arguments into registers, setting up
shared regions for transferring bulk data, and
authenticating requests. The K42 IPC facility is as
efficient as the best kernel IPC facilities in the
literature.

12
The kernel provides the basic IPC

transport and attaches sufficient information for the
server to perform authentication on those calls.
Because the implementation is in user mode, it can

be customized to, for example, use problem-
domain-specific transports for efficiency, minimize
authentication overhead, and minimize state saving
when communicating between trusted parties.

I/O servers—Unlike other operating systems, in
K42, blocked threads waiting for I/O are blocked in
the thread’s own address space rather then in a
server or the kernel. I/O servers notify applications
about changes in the state of the I/O objects they
are using (e.g., sockets becoming readable, disk
requests being completed) with asynchronous
messages. When changes in the state of I/O objects
are communicated to a client, it unblocks the
appropriate threads or launches new threads.
Although this scheme was introduced in order to
avoid using up server resources, it also has two
other benefits. First, complete state about the file
descriptors that an application is accessing is
available in the application’s own address space.
This means that operations like Posix select( ) can
be implemented efficiently without communication
with the kernel or servers. Second, and more
importantly, it allows us to use an event-driven
rather than a polling model for handling I/O
requests, making implementations of services such
as select( ) more efficient. This allows more
efficient implementations of, for example, web
servers, because there is no need to block threads
for long periods of time.

Additional K42 technologies
We describe additional technologies that we have
used in K42 in this subsection as follows: integrated
performance monitoring, hot swapping, a custom-
izable and scalable operating system, comprehen-
sive scheduling, and lock avoidance.

Integrated performance monitoring

As part of the original design, K42 includes an
integrated tracing and performance-monitoring in-
frastructure. More recently, we have extended the
model to encompass all aspects of the software
stack. K42’s event-tracing infrastructure provides for
correctness debugging, performance debugging, and
performance monitoring of the system. The infra-
structure allows for cheap and parallel logging of
events by all levels of the system including
applications, libraries, servers, and the kernel. This
event log may be examined while the system is
running, written out to disk, or streamed over the
network. Post-processing tools allow the event log
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to be converted to a human-readable form or to be
displayed graphically.

The tracing infrastructure in K42 achieves several
goals:

13

1. Provide a unified set of events for correctness
debugging, performance debugging, and per-
formance monitoring

2. Allow data gathering to be enabled dynamically
by having the infrastructure always compiled into
the system

3. Separate the collection of events from their
analysis

4. Allow events to be efficiently gathered on a
multiprocessor

5. Have minimal impact on the system when tracing
is not in use and allow for zero impact by
providing the ability to compile out (remove the
function at compilation time) events if desired

6. Provide cheap but flexible logging for either small
or large amounts of data per event.

This performance-monitoring infrastructure has
proven invaluable not only in helping us achieve
good performance in K42, but in aiding developers
of Linux programs trying to understand the behavior
of their applications.

Hot swapping

Hot swapping allows the individual object instances
used to implement a service to be tuned to the
varying demands on that service. For example, in
K42, when a file is accessed exclusively by one
application, an object in the application’s address
space handles the file control structures, allowing it
to take advantage of mapped file I/O, thereby
achieving performance benefits of 40 percent or
more. With hot swapping, when the file becomes
shared, a new object can dynamically replace the old
object. This new object communicates with the file
system to maintain the control information. We have
also used hot swapping to switch between shared
and distributed implementations of the object rep-
resenting a region in the kernel when we discovered
the region object being used throughout the multi-
processor. Based on the hot-swapping infrastructure,
a dynamic update

14
capability has been prototyped.

Dynamic update is a mechanism that allows software
updates, bug fixes, and patches to be applied without
loss of service or downtime, thus providing greater
system availability. The hot-swapping infrastructure

can be used to perform dynamic-granularity system
monitoring, allowing low-intensive overall monitor-
ing to occur until a problem is detected, then high-
intensive monitoring to be introduced at the trouble
locations. The hot-swapping infrastructure can also
be used to allow for more extensive system testing by
introducing faults or delays.

Customizable scalable file system

In addition to supporting standard Linux file
systems such as ext2, K42 includes KFS,

15
a fine-

grained adaptable file system that is customizable at
the granularity of files and directories, allowing K42
to meet the requirements and usage access patterns
of various workloads. In KFS, each file or directory
may have its own tailored service implementation,
and these implementations may be replaced on the
fly. By doing so, KFS addresses the difficulties found
in traditional file systems designed to handle a
specific set of requirements and assumptions about
file characteristics, expected workload, and usage
and failure patterns. KFS also includes a meta-data
‘‘snapshot’’ capability, allowing it to have the
properties of a journaled file system (JFS) with
much lower performance overhead. KFS induces
lower overhead than a write-ahead JFS and scales
better as the number of clients and file system
operations grows. KFS has also been implemented
successfully in Linux.

Comprehensive scheduling

We are developing a scheduling infrastructure that
can provide quality-of-service guarantees for pro-
cessors, memory, and I/O and that simultaneously
supports real-time, gang-scheduled (time-shared on
parallel computers), regular time-shared, and back-
ground work. K42 uses synchronized clocks (hard-
ware or software) on different processors to allow
work to be scheduled simultaneously for short
periods of time on multiple processors, without the
need for global synchronization. The ability to
support fine-grained gang-scheduled applications
can simplify parallel programming tasks, and the
ability to run mixes of all classes of jobs allows
developers to develop and test in an environment
similar to the final production environment.

Lock avoidance

Traditionally, the error of using a stale pointer to
deleted storage is avoided by the use of existence
locks or reference counts to protect pointers. Full-
scale garbage collection can also solve this problem
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but is not appropriate for low-level operating-system
code. K42 uses an independently developed mech-
anism similar to the RCU

16
(Read Copy Update)

mechanism, in which deletion of K42 objects is
deferred until all currently running threads have
finished. This mechanism allows an object releases
its own lock before making a call on another object,
thus improving base system performance, increas-
ing scalability, and eliminating the need for complex
lock hierarchies and the resulting complex deadlock-
avoidance algorithms. The technique used is related
to type-safe memory.

17

Other K42 features

K42 was designed to run on 64-bit processors.
Designing for 64-bit architecture enables pervasive
implementation optimizations. Examples include
the use of large virtual arrays rather than hash
tables, the allocation of memory bits for distin-
guishing classes of allocated memory, and exploiting
the fact that we can atomically manipulate 64-bit
quantities efficiently. K42 is fully preemptable, and
most of the kernel data structures are pageable.
Except for low-level interrupt handling and code for
dispatching real-time applications, K42’s threading
model allows the kernel to be preempted at any
point. This provides for low-latency interrupt han-
dling and requires pinning of only kernel code and
data of low-level objects. Reducing the required
pinned memory potentially reduces the footprint of
the kernel and provides more physical memory for
applications.

EXPERIENCES
In this section we describe our experience with K42
as well as that of our collaborators. We cover the
overall object-oriented design; modularity for
maintainability, new applications, and new hard-
ware; user-mode implementation; and version
compatibility issues.

Overall object-oriented design
K42’s object-oriented model provides a development
environment in which it is comparatively easy to
bring up the operating system on a new platform. By
developing simple or stubbed-out implementations
behind a full and correct interface, we were able to
bring up K42 quickly. For example, behind the
interface to the objects that provide a file system and
IP (Internet Protocol) service, we implemented a
simple serial protocol to an existing machine that
could provide the IP service. Component by

component, we have replaced services as needed.
Although there have been a few unexpected
difficulties, this model has worked well. For
example, when we implemented a new variant of
the page cache object, its interface made only the
physical address accessible, although it would have
been more convenient to have had a virtual rather
than a physical address. Overall however, the model
has been a solid success.

One of our concerns involved the use of per-instance
resource management. We feared that it might be
difficult to achieve a desired global state when the
data affecting that state were scattered throughout
many object instances. For example, we have many
objects managing the allocation of pages for many
small files. To effectively use a working set
algorithm, a certain minimum number of pages is
needed, and thus we cannot run such an algorithm
on what might be a natural granularity. As another
example, it is difficult to globally select the next
highest priority thread when the priorities of threads
are distributed throughout a number of user-mode
schedulers. Although per-instance resource man-
agement has produced advantages, it has also raised
interesting research issues that we have had to
address. In our experience, the difficulty of imple-
menting local policies that produced a desired global
state has not prevented us from achieving good
performance. As expected, we have found that
changes to specific objects were more easily made
because their effects were local. This should imply
that open-source developers will not need to gain an
understanding of the overall system when attempt-
ing to tune the performance of a particular compo-
nent.

The largest drawback of the object-oriented nature
of the system is the complexity it introduces, a
complexity that becomes apparent when one is
trying to understand the interactions between the
different components of the system. Although
originally we planned to avoid the use of imple-
mentation inheritance, we later decided that in some
places the benefits outweighted the difficulties
introduced. These decisions, and the nature of
object-oriented software, imply that understanding
cross-module interactions requires wading through
significant layers of interface. For open-source
developers familiar with standard UNIX operating-
system structure, gaining this understanding poses a
barrier to K42 overall system development. Fortu-
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nately, however, work on individual components
requires less expertise.

We were also concerned about the assembly code
generated by the compiler for the Cþþ code of K42.
We have found that a pragmatic approach is needed.
Sometimes we use larger-grained objects than we
would like in order to limit the overhead, and
sometimes we have had to examine the generated
assembly code in order to discover the performance
bugs created during the compilation. For the most
part, we have found the performance of Cþþ code to
be adequate and the necessary compromises ac-
ceptable. In a few cases we have worked with gþþ
(the GNU Cþþ compiler) developers to fix or
understand particular behavior. Because we have
avoided compiler-supported multiple inheritance,
we have observed an increased proliferation of
objects.

Although our object-oriented model supports the
use of multiple objects in managing resources, the
use of this ability is limited at present. As the
number of applications increases, we may need to
add infrastructure that records the objects used by
various applications and the objects that perform
best for each application. We have begun work on a
continuous program optimization infrastructure that
would enable this.

18

Modularity for maintainability, new applications,
and new hardware
Our experience shows that the object-oriented
model facilitates the implementation of new services
as well as the porting of K42 to new architectures.
New services, such as large-page or segment
support, can be added with minimal impact. For
example, POWER4* GPUL (GigaProcessor Ultralite)
supports large pages. K42’s design allowed us to
write code to take advantage of these large pages
with changes localized to that module. There is no
duplication of structures forced by writing to a
‘‘hardware abstraction layer’’—the machine-specific
hardware interface can be at different levels for
different architectures.

As previously stated, stubbed interfaces enable the
quick bring-up of the system. We have provided
unoptimized architecture-independent code formuch
of themachine-dependent part of K42. This allows the
porting to new architectures to proceed quickly, with

tuning taking place after the system was booted and
running. Although our experience with new hard-
ware and new architectures is limited, we can report
favorably on two such cases: first, a porting of K42 to
theAMD**x86 64-bit platform (throughkernel bring-
up), and second, incorporating of test code for a new
memorymodel into K42. These tasks were performed
relatively quickly by a group of developers who
worked closely with the core K42 team but were not
familiar with K42 beforehand.

User-mode implementation
Implementation in the application’s address space
impacts the design of many operating system
services. The implementation is not necessarily
more difficult, but it is different. So far, we have
been able to develop implementations for the user-
mode services described in the last section that are
as efficient as those of other operating systems.
Moreover, in some cases we have found imple-
mentations that are more efficient. For example, for
small files that are used by a single application, a
system library object is invoked that stores the data
in the file and the current position in the user
address space. Thus references to update the current
position or read data proceed without any system
calls or context switches. Once again, this model is
different from what an open-source Linux developer
is used to. Our experience indicates though, that
once the model is understood, it is advantageous
from an open-source development perspective be-
cause it allows finer control over the module that is
being modified.

Version compatibility issues
Because K42 supports the Linux API and ABI, if a
program compiles and runs on PowerPC* Linux, it
should compile and run on K42. This, however,
assumes that the same versions of glibc (GNU C
Library), Linux, toolchain (set of development
tools), and so on, are used in both cases. Dealing
with multiple versions of the software that are
themselves incompatible makes it difficult for K42 to
generically support Linux. This problem is exacer-
bated when we require that collaborators build a
development environment that includes the tool-
chain. We will, however, be moving soon to a model
where the K42 kernel will be placed onto an existing
Linux machine. This significantly reduces the
complexity of running K42, but does not affect the
impact of the wide variety of Linux versions that
exist. To run on K42, the application first will have
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to run on a particular variant or small set of

variants. Though the effort just described appears

prohibitive, most applications run across all ver-

sions of Linux, glibc, and so on, and thus will not

pose a problem when running on K42.

In addition to causing difficulties in building and

running K42, the incompatibilities between glibc

and Linux-kernel data structures also add complex-

ity and hurt performance in the emulation layer. For

example, the stat(2) system call in Linux, invoked

from glibc, involves conversions between Linux’s

struct stat passed in from the glibc layer and Linux’s

struct kstat used in the kernel implementation.

Because K42 uses the glibc definition struct stat, the

stat(2) operation involves conversions between

glibc’s struct stat, Linux’s struct stat, and Linux’s

struct kstat. As discussed earlier, because most of the

incompatibility issues have been dealt with, new

developers will be able to concentrate on designing

modules targeted to their application needs. How-

ever, even in other environments developers need to

be aware of version and data-structure incompati-

bility issues. As with other open-source projects,

incompatibilities may cause problems for develop-

ers, especially problems that cannot be reproduced
when attempts are made to diagnose them.

STATUS AND CURRENT DIRECTIONS
We have made considerable progress towards
making K42 a real system capable of supporting large
applications. K42 runs on PowerPC 64-bit platforms
including POWER3*, POWER4, POWER4þ*, Power
Mac** G5, and Apple G5 Xserve hardware, and
several different simulated PowerPC hardware plat-
forms. We have run a next generation JVM** (Java
Virtual Machine), the SPEC (System Performance
Evaluation Corporation) SDET (Software Develop-
ment Environment Throughput) suite, Apache**
HTTP (Hypertext Transfer Protocol) server (from the
Apache Software Foundation), mySQL database
server (from mySQL Inc.), various scientific appli-
cations such as the UMT2K benchmark (from
Lawrence Livermore National Laboratory), and an
ASCI (Accelerated Strategic Computing Initiative)
nuclear transport simulation application. We are
working to be fully self-hosting and soon hope to be
running our development environment on K42.

K42 is being used by several university collaborators
and national laboratories and by multiple groups
within IBM. We have had collaborations with the
University of Toronto, Carnegie Mellon University,
and more recently, the University of New South
Wales that have produced significant
results.

7,8,1,4,5,19,14
Additional universities and na-

tional labs have recently started to use K42, and we
are continuing to encourage collaboration through
the Web site and the mailing list.

Because performance continues to be one of our
goals, we illustrate the results obtained related to
hot swapping and scalability. Details of these
experiments can be found in References 4 and 5,
respectively.

Figure 3 shows the results from an experiment based
on SPEC SDET that models the behavior of a number
of simultaneous UNIX users (same as the number of
processors). K42 scales well through 24 processors,
where its peak of 33808.1 scripts/hour is achieved,
yielding an efficiency of 89.4 percent. The results
demonstrate the effectiveness of K42’s scaling.

Figure 4 shows performance results when running a
1-way SDET workload with competing streaming
applications running in the background. The higher

Figure 3
Results of running SPEC SDET on K42
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throughput line (hot swapping enabled) corre-
sponds to an experiment in which the system
monitors the pattern of the streaming-application
file access and triggers the dynamic modification of
the page-management policy for that file. The
streaming application achieves the same perfor-
mance; whereas, the interactive users in the system,
as represented by SDET scripts, achieve better
throughput.

4

Current directions
A large part of the early effort on K42 was to design
for and show good scalable performance on multi-
processors. This continues to be an important
direction, and we make sure that new implementa-
tions of system services are consistent with the K42
scalability goals.

In order to gather feedback from the community, we
are engaging more development groups to use K42
as a prototyping platform. K42 offers developers a
vehicle for testing new ideas quickly and ascertain-
ing their value before incorporating them in Linux or
other operating systems. Some of the technology
originally developed for K42 has been transferred to
Linux,

16,15,20
and because of the ability to easily

prototype ideas, we believe this will continue. In
addition, as more advanced policies are imple-
mented in K42, we expect that its user base will
grow. K42 is currently the prototyping environment
for the IBM PERCS (Productive, Easy-to-Use, Reli-
able Computing System) project

21
and has been

useful in that role. The IBM PERCS project is being
done for the DARPA (Defense Advanced Research
Projects Agency) HPCS (High Productivity Comput-
ing Systems) initiative.

Hot swapping, which began as an initiative to
support autonomic computing, allows the operating
system to swap in new objects as needed for
performance, or to be upgraded while remaining
available. Early work in that area demonstrated the
usefulness of swapping individual objects for
performance reasons. Based on that positive expe-
rience, current work is underway to extend K42’s
hot-swapping capability to allow the system to
switch all instances of a given class, thus allowing
for dynamic upgrade.

14

To decide what instances of which objects to switch,
K42 must have performance-monitoring data. How-
ever, just monitoring the kernel may not provide the

best data on which to make a hot-swapping

decision. We are participating in a broad continuous

optimization effort with the goal of monitoring the

entire system, from the hardware counters and low-
level firmware and software (hypervisor), up

through the operating system, compiler, runtime

environment, and middleware, to the application.

Code running throughout the system will examine
this data and make recommendations back to the

various layers, including the operating system. This

feedback, for example, might be an instruction to

use large pages for a given region. This work is
being prototyped on K42, and if successful, will be

transferred to other operating systems.

The file system is another area of active research.
KFS, which has been shown to be highly adaptable,

is based on an object-oriented design, with each

element in the file system being represented by a

different set of objects. Developers can add new

implementations to address their specific needs
without affecting the performance and functional

behavior of other clients. KFS also has been

implemented on Linux with performance similar to

ext2, while providing the journaling capabilities of
ext3. Work is ongoing in KFS to explore its flexible

design beyond performance gains. Our current goal

is to evaluate how much the flexibility of KFS

simplifies the support of object-based storage.

We are examining and optimizing significant sub-

systems, such as databases and JVMs. Work has

begun to get these applications running on K42 and

Figure 4
Comparative performance of an adaptive page 
replacement algorithm
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to understand the areas in which the customizability

of K42 could most help improve their performance.

Developing an understanding of JVM or database

optimization accomplishes two things. First, it

validates the K42 model on applications considered

important by the systems community, and second,

any useful technology that we develop in the

process can be transferred to Linux. If, for example,

we prototype a novel paging policy for databases in

K42 and show it has a positive impact on perfor-

mance, then that experiment provides concrete

motivation for including such a policy in other

operating systems.

The K42 modular development model allows de-

velopers with specific needs to contribute code to

K42, because such customized code does not impact

other users. As a concrete example, developers at

NASA (National Aeronautics and Space Adminis-

tration) Ames created development patches to Linux

for enhanced scalability, but this work was not

incorporated in the main kernel because of possible

negative impact on other users. The need for

specialized changes that are not usually of interest

to users of small workstations is characteristic of the

high performance computing community.

One of the motivations behind our object-oriented

model was to enable contributions to K42 that

benefit groups of users but may not be of interest to

others. Our approach allows incorporating a func-

tion that is available to those who need it without

negatively impacting the other users. Although we

believe this can be done, there are significant

hurdles that must be overcome.

We are just beginning to develop a significant

collaborator community working with our core

team. Within the K42 community we need to decide

who will be given the authority to commit code (add

newly developed code to the existing base) directly

to the K42 base. These persons will be required to

maintain the code style, and more importantly, to

enforce the K42 design principles. In addition,

allowing anyone to commit source to K42 represents

a security exposure. The current plan is to design

and code-review the first several contributions and

then allow collaborators who have teamed up with a

member of the K42 development team to directly

commit code. While this addresses to some extent

the first two issues (authority to commit, maintain

code style), it does not address security concerns, an
issue quite familiar to the open-source community.

A more fundamental issue involves the testing and
verification of the objects in the system. Unlike
projects such as SPIN

22
or Vino,

23
K42 does not

place restrictions on code replacement or on the
programming model for that code. The policy has
been to allow trusted developers to dynamically
load new kernel objects written in Cþþ. This is no
longer sufficient. There is still a need to verify that
the new objects match the specifications of the
objects they are to replace. While formal verification
models do not handle the needed generality, a
technique that combines verification and an em-
pirical harness based on specifications with iterative
testing of the code shows promise.

CONCLUSIONS
We have outlined the structure and core technology
of K42 and have described our community’s
experience with it, particularly its ability to serve as
an open-source development platform. Its modular
structure makes it a valuable teaching, research, and
prototyping vehicle, and we expect that the policies
and implementation mechanisms studied in this
framework will continue to be transferred to Linux
and to other operating systems. In the longer term
we believe the design principles we are studying will
become important to the industry.

K42 can be used as a vehicle for rapid prototyping of
ideas. For example, one could use it to determine
whether a new memory management policy shows
promise. If so, then there is a strong incentive for
taking the time to implement it in Linux or another
operating system. Because K42 is well modularized,
a prototype of such a policy is reasonably easy to
program and potentially to be implemented and
tested by developers without requiring them to have
significant kernel expertise.

Our system is available as open source software
under an LGPL license. Please see our home page

6

for additional papers on K42 or to participate in this
research project.

ACKNOWLEDGMENTS
A kernel development project is a huge undertaking,
and the efforts of many people made K42 possible.
The following people have contributed to K42:

APPAVOO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005438



Andrew Baumann, Michael Britvan, Chris Colohan,
Phillipe DeBacker, Khaled Elmeleegy, David
Edelsohn, Hubertus Franke, Ben Gamsa, Garth
Goodson, Kevin Hui, Jeremy Kerr, Craig MacDonald,
Michael Peter, Jim Peterson, Eduardo Pinheiro, Rick
Simpson, Livio Soares, Craig Soules, David Tam,
Manu Thambi, Nathan Thomas, Gerard Tse, Timothy
Vail, Amos Waterland, and Chris Yeoh. The work
described here was supported by Defense Advanced
Research Project Agency Contract NBCH30390004.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds,
Object Management Group, Inc., Advanced Micro Devices,
Inc., Apple Computer, Inc., Sun Microsystems, Inc., or Apache
Software Foundation.

CITED REFERENCES
1. J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D.

da Silva, O. Krieger, M. Auslander, D. Edelsohn, B.
Gamsa, G. R. Ganger, P. McKenney, M. Ostrowski, B.
Rosenburg, M. Stumm, and J. Xenidis, ‘‘Enabling
Autonomic System Software with Hot-Swapping,’’ IBM
Systems Journal 42, No. 1, 60–76 (2003).

2. M. Auslander, D. Edelsohn, D. da Silva, O. Krieger, M.
Ostrowski, B. Rosenburg, R. W. Wisniewski, and J.
Xenidis, Memory Management in K42, IBM Corporation
(August 2002), http://www.research.ibm.com/K42/.

3. M. Auslander, D. Edelsohn, D. da Silva, O. Krieger, M.
Ostrowski, B. Rosenburg, R. W. Wisniewski, and J.
Xenidis, Scheduling in K42, IBM Corporation (August
2002), http://www.research.ibm.com/K42/.

4. C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski, D.
da Silva, G. R. Ganger, O. Krieger, M. Stumm, M.
Auslander, M. Ostrowski, B. Rosenburg, and J. Xenidis,
‘‘System Support for Online Reconfiguration,’’ USENIX
Technical Conference, San Antonio, TX (June 9–14 2003),
pp. 141–154.

5. J. Appavoo, M. Auslander, D. Edelsohn, D. da Silva, O.
Krieger, M. Ostrowski, B. Rosenburg, R. W. Wisniewski,
and J. Xenidis, ‘‘Providing a Linux API on the Scalable
K42 Kernel,’’ Proceedings of the FREENIX track: USENIX
Technical Conference, San Antonio, TX (June 9–14 2003),
pp. 323–336.

6. The K42 Project, IBM Corporation, http://
www.research.ibm.com/K42/.

7. B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm,
‘‘Tornado: Maximizing Locality and Concurrency in a
Shared Memory Multiprocessor Operating System,’’
Symposium on Operating Systems Design and Implemen-
tation, New Orleans, LA (February 22–25, 1999), pp. 87–
100.

8. J. Appavoo, K. Hui, M. Stumm, R. Wisniewski, D. da
Silva, O. Krieger, and C. Soules, ‘‘An Infrastructure for
Multiprocessor Run-Time Adaptation,’’Workshop on Self-
Healing Systems (WOSS’02), Charleston, SC (November
18–19, 2002), pp. 3–8.

9. D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.,
‘‘Exokernel: An Operating System Architecture for Ap-

plication-Level Resource Management,’’ Operating Sys-
tems Review, 29, No. 5 (1995), pp. 21–27.

10. B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos, ‘‘First-Class User-Level Threads,’’ Operating
Systems Review 25, No. 5, 110–121 (1991).

11. T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy, ‘‘Scheduler Activations: Effective Kernel Support
for the User-Level Management of Parallelism,’’ Operat-
ing Systems Review 25, No. 5, 95–109 (1991).

12. J. Liedtke, ‘‘On Micro-Kernel Construction,’’ Operating
Systems Review 29, No. 5, 237–250 (1995).

13. R. W. Wisniewski and B. Rosenburg, ‘‘Efficient, Unified,
and Scalable Performance Monitoring for Multiprocessor
Operating Systems,’’ Proceedings of Supercomputing
2003, (available on CD-ROM only) Phoenix, AZ (No-
vember 15–21, 2003).

14. A. Baumann, J. Appavoo, D. da Silva, O. Krieger, and R.
W. Wisniewski, ‘‘Improving Operating System Availabil-
ity with Dynamic Update,’’ Proceedings of the Workshop
of Operating System and Architectural Support for the On
Demand IT Infrastructure (OASIS), Boston, MA (October
9, 2004) pp. 21–27.

15. L. Soares, O. Krieger, and D. D. Silva, ‘‘Meta-data
Snapshotting: A Simple Mechanism for File System
Consistency,’’ Proceedings of the International Workshop
on Storage Network Architecture and Parallel I/O
(SNAPI’03), New Orleans, LA (October 2003), pp. 41–
52.

16. P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen, O.
Krieger, and R. Russell, ‘‘Read Copy Update,’’ Proceedings
of the Ottawa Linux Symposium (OLS), Ottawa, Canada
(26–29 June 2002), pp. 338–367.

17. M. Greenwald and D. Cheriton, ‘‘The Synergy Between
Nonblocking Synchronization and Operating System
Structure,’’ Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation, Seattle,
WA, ACM, New York (1996), pp. 123–136.

18. R. W. Wisniewski, P. F. Sweeney, K. Sudeep, M.
Hauswirth, E. Duesterwald, C. Cascaval, and R. Azimi,
‘‘Performance and Environment Monitoring for Whole-
System Characterization and Optimization,’’ Proceedings
of the First IBM P¼ac2 Conference, Yorktown Heights,
NY, Thomas J. Watson Research Center, IBM Corporation
(October 6–8, 2004), pp. 15–24.

19. K. Hui, J. Appavoo, R. Wisniewski, M. Auslander, D.
Edelsohn, B. Gamsa, O. Krieger, B. Rosenburg, and M.
Stumm, ‘‘Position Summary: Supporting Hot-Swappable
Components for System Software,’’ Proceedings of the
Eighth Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Schloss Elmau, Germany (May 20–23,
2001), p. 170.

20. A. Baumann, J. Appavoo, D. da Silva, O. Krieger, and R.
W. Wisniewski, ‘‘Improving Operating System Availabil-
ity with Dynamic Update,’’ Proceedings of the Workshop
of Operating System and Architectural Support for the On
Demand IT Infrastructure (OASIS), Boston, MA (October
9, 2004) pp. 21–27.

21. R. Graybill, High Productivity Computing Systems, In-
formation Technology Processing Office, DARPA, http://
www.darpa.mil/ipto/programs/hpcs/.

22. B. N. Bershad, S. Savage, P. Pardyn, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers,
‘‘Extensibility, Safety and Performance in the SPIN
Operating System,’’ Operating Systems Review 29, No. 5,
267–284 (1995).

IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005 APPAVOO ET AL. 439



23. M. Seltzer, Y. Endo, C. Small, and K. A. Smith, An
Introduction to the Architecture of the VINO Kernel,
TR–34–94, Harvard University (1994).

Accepted for publication October 25, 2004.

Jonathan Appavoo
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(jappavoo@us.ibm.com). Jonathan has a Master of Computer
Science from the University of Toronto, where he is enrolled
in the Ph.D. program. He is an employee at IBM Thomas J.
Watson Research Center where he is working with the K42
team. His research focuses on multiprocessor operating
system performance with a particular interest in scalable data
structures.

Marc Auslander
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(Marc_Auslander@us.ibm.com). Mr. Auslander is an IBM
fellow, member of the National Academy of Engineering, an
ACM Fellow, and an IEEE Fellow. He received the A.B. in
mathematics from Princeton University in 1963. He joined
IBM in 1963 and the IBM Thomas J. Watson Research Center
in 1968. He was an original member of the group that
designed and built the first IBM RISC machine and first RISC
optimizing compiler. He has also made contributions to AIX,
other operating systems, and the PowerPC architecture. He is
currently working on the K42 operating system. His research
interests include multiprocessor operating systems, compilers,
and processor architecture.

Maria Butrico
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(butrico@us.ibm.com). Maria Butrico joined IBM in 1984 and
is currently a Senior Software Engineer. She received a B. S.
degree in Computer Science from Pace University in 1984 and
an M. S. degree in Computer Science from Columbia
University in 1990. Her interests include operating system,
database systems, distributed systems and middleware. She
received an Outstanding Technical Achievement Award for
her work on the Virtual Shared Disk.

Dilma M. da Silva
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(dilmasilva@us.ibm.com). Dilma M. Silva received her BS
and MS degrees in Computer Science from University of Sao
Paulo, Brazil, and her PhD from Georgia Tech. From 1996 to
2000 she was an assistant professor in the Department of
Computer Science at University of Sao Paulo, Brazil. She is
currently a Research Staff Member at IBM Thomas J. Watson
Research Center. Her research interests include operating
systems and dynamic system configuration.

Orran Krieger
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(okrieg@us.ibm.com). Dr. Krieger is a manager at IBM T.J.
Watson Research Center. He received a BASc from the
University of Ottawa in 1985, a MASc from the University of
Toronto in 1989, and a PhD from the University of Toronto in
1994, all in Electrical and Computer Engineering. He was one
of the main architects and developers of the Hurricane and
Tornado operating systems at the University of Toronto, and
was heavily involved in the architecture and development of
the Hector and NUMAchine shared-memory multiprocessors.

Currently, he is project lead on the K42 operating system
project at IBM T.J. Watson Research Center, and an adjunct
associate professor in computer science at CMU. His research
interests include operating systems, file systems, and
computer architecture.

Mark F. Mergen
IBM Thomas J. Watson Research Center, 1101 Kitchawan
Road, Route 134, Yorktown Heights, NY 10598
(mergen@watson.ibm.com). Dr. Mergen has worked on and
managed a variety of systems and language projects at IBM
Research, including the open-source Jikes Research (Java)
Virtual Machine, the research effort leading to the High-
Performance Compiler for Java (HPCJ) product, the research
prototype leading to the first 64-bit AIX product release, and
PowerPC architecture with virtual memory software to create
the innovation of database memory. He is currently working
on the K42 open-source, scalable, customizable OS kernel
project, with interests in hypervisor interfaces, virtualization,
and clustering. He has B.S. (mathematics) and M.D. degrees
from the University of Wisconsin at Madison.

Michal Ostrowski
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598 (e-mail
mostrows@watson.ibm.com). Michal Ostrowski is a member
of the Advanced Operating Systems (K42) group at Thomas J.
Watson performing research and development activities on
the K42 operating system, currently focusing on developing a
framework for using Linux kernel code in K42 and developing
frameworks and mechanisms for efficient asynchronous I/O
interfaces. He completed his Master’s degree at the University
of Waterloo in 2000.

Bryan Rosenburg
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(rosnbrg@us.ibm.com). Dr. Rosenburg received his Ph.D.
degree in computer sciences at the University of Wisconsin-
Madison in 1986, and immediately thereafter joined the IBM
T.J. Watson Research Center as a Research Staff Member with
the operating system group of the RP3 NUMA multiprocessor
project. He has been a member of the K42 team since its
inception. His current research interests are in the lowest
levels of operating system architecture: interrupt handling,
context switching, interprocess communication, and low-level
scheduling.

Robert W. Wisniewski
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(bob@watson.ibm.com, http://www.research.ibm.com/
people/b/bob/). Dr. Wisniewski is a research scientist at
Watson working with the K42 operating system team and with
the continuous program optimization team. He is exploring
scalable, portable, and configurable next generation operating
systems and the ability of performance monitoring to
automatically feedback and improve system behavior. He
received his Ph.D. in 1996 from the University of Rochester on
‘‘Achieving High Performance in Parallel Applications via
Kernel-Application Interaction’’. His research interests include
scalable parallel systems, first-class system customization,
and performance monitoring.

Jimi Xenidis
IBM Thomas J. Watson Research Center, 1101 Kitchawan Rd,
Route 134, Yorktown Heights, NY 10598
(jimix@watson.ibm.com). Mr. Xenidis is a Software Engineer
at IBM Research working with several groups in addition to
the K42 Project. His research interests include Operating
Systems, Linkers and Libraries, and Machine
Virtualization. &

APPAVOO ET AL. IBM SYSTEMS JOURNAL, VOL 44, NO 2, 2005440

Published online April 7, 2005.


