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ABSTRACT
This paper presents a system-level method for achieving the
rapid deployment and high-density caching of serverless
functions in a FaaS environment. For reduced start times,
functions are deployed from unikernel snapshots, bypass-
ing expensive initialization steps. To reduce the memory
footprint of snapshots we apply page-level sharing across
the entire software stack that is required to run a function.
We demonstrate the e!ects of our techniques by replacing
Linux on the compute node of a FaaS platform architecture.
With our prototype OS, the deployment time of a function
drops from 100s of milliseconds to under 10ms. Platform
throughput improves by 51x on workload composed entirely
of new functions. We are able to cache over 50, 000 function
instances in memory as opposed to 3, 000 using standard OS
techniques. In combination, these improvements give the
FaaS platform a new ability to handle large-scale bursts of
requests.
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1 INTRODUCTION
Computational caching is a strategy systems can employ to
address computational redundancy by applying pre-computed
state to advance running execution [43]. At the heart of
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any computational caching approach is a change in the sys-
tem’s representation of execution that converts computa-
tional state into a data object amenable to exposing redun-
dancies [7, 13, 14, 27].
One application model that is particularly amenable to

computational caching is that of serverless functions, wherein
high-level scripts are deployed on-demand by a remote FaaS
platform. For example, the function start time can be short-
ened by using a language interpreter that has already been
initialized with the source code and dependencies of the
function [20].

The traditional caching techniques employed by FaaS plat-
forms (i.e., holding idle interpreter processes isolated within
a dedicated container or VM) are resource-intensive [25].
Consequently, research systems have demonstrated light-
weight methods for computational caching within FaaS plat-
forms, such as deploying execution from images of check-
pointed processes [39] or forking execution from existing
processes [15, 19]. Fundamentally, these systems demon-
strate that caching can both shorten execution start times
and reduce the memory footprints of cached function in-
stances. In our opinion, any user-level caching approach will
be insu#cient as a general solution for serverless platforms.
For example, forking requires cooperation from within the
interpreter, which limits the set of interpreters that can be
used. In addition, kernel-managed state required for execu-
tion sandboxing cannot be captured at user-level, therefore,
extending the path of a deployment.

In this paper, we present Serverless Execution via Unikernel
SnapShots (SEUSS), a method for achieving the rapid deploy-
ment and high-density caching of serverless functions in a
multi-tenant FaaS environment. The goal of SEUSS is to pro-
vide a caching solution for serverless functions that supports
a diverse set of language runtimes, executes functions in
isolation, and e#ciently captures computational state across
both the application and system levels. We achieve these
properties by deploying functions from unikernel snapshots.
In SEUSS, function logic is packed with a language inter-

preter and library OS into an isolated unikernel. The $at
address space of the unikernel enables a straightforward
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method for capturing and caching the entire memory foot-
print and register state of the function. Function state can be
captured in a black-box fashion at an arbitrary point during
execution, as an in-memory snapshot image. New execution
can be rapidly deployed from a snapshot, dramatically short-
ening the function’s start time by skipping the following
paths: booting the unikernel, initializing the language run-
time, and importing and compiling the function code and
dependencies.

Dedicating an entire system stack for each individual func-
tion introduces large amounts of replicated state. SEUSS is
able to signi"cantly reduce the memory use of functions by
applying page-level sharing ubiquitously across the entire
software stack that is required to run high-level function
code (i.e., the application logic, language interpreter, user
libraries, and supporting kernel). This reduction not only
fully recovers the cost of replicating kernel state per function,
but greatly improves over the current techniques of platform
function caching.

Through ourmethod, anticipatory optimizations are achieved
by preemptively warming the internal pathways and data
structures of the unikernel stack prior to capturing a snap-
shot image. This intuitive technique has the dual bene"t of
reducing the memory footprint and shortening the start time
of execution deployed from a snapshot (§3).

We implement SEUSS within a prototype kernel and eval-
uate its bene"t within the context of a full-feature FaaS plat-
form architecture. Replacing Linux with our SEUSS kernel,
we are able to improve the number of cached function con-
texts from 3, 000 to over 54, 000 on a single compute node.
The cost of a cache miss for a function drops from 500ms to
7ms. Using SEUSS, we demonstrate support for bursts of re-
quests with little impact on background workloads, whereas
the Linux implementation fails to adequately support either.

Our key insight is that changing the representation of exe-
cution enables powerful optimizations to squash redundancy
across both application and systems pathways. We assert
that the SEUSS method is simple and general enough that it
can be readily adopted by production-grade systems.

2 BACKGROUND
In the Function-as-a-Service (FaaS) model, a serverless func-
tion is a short code segment written for a high-level lan-
guage interpreter, such as Node.js, Python, or Java. In this
model, functions are executed by a remote FaaS platform in
response to invocation requests. Serverless functions pro-
mote application designs that are composed out of many
short-lived executions, which are deployed rapidly as sin-
gletons, in sequences, or in parallel [20]. For programmers,
serverless functions o!er a powerful primitive for accessing
on-demand computation across arbitrary scales [21].

For the FaaS platform, the operational shift away from the
application developer allows the system to control how func-
tions are deployed. For example, functions can be deployed
within dedicated containers [17], virtual machines [6, 33, 40],
process-level encapsulation [49], or language-level isola-
tion [10]. To simplify management, client functions are typi-
cally restricted to a small set of language interpreters.
Booting interpreters and compiling source code can lead

to long initialization overheads for function deployments.
Therefore, to achieve low-latency start times, the FaaS plat-
form must cache intermediate stages along a function’s in-
vocation lifetime for reuse (Figure 1). To enable fast deploy-
ments for many di!erent functions, FaaS platforms are re-
quired to hold large amounts of state cached in memory. For
example, by assuming a small set of interpreters, platforms
can manage pre-initialized pools of running interpreters (T1
in Figure 1). Moreover, the stateless nature of functions
enables the platform to cache the execution environment
of a speci"c function (e.g., the container or VM where the
function ran) for immediate reuse across future invocations
(T2 in Figure 1). The requirement to cache many isolated
environments in memory, many of which are limited in reuse
to single function, presents a unique challenge that modern
operating systems have been slow to address [25].
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Figure 1: Stages of a function invocation

3 SEUSS METHOD
SEUSS is a system-level method for the rapid deployment of
serverless functions in a multi-tenant FaaS environment. Its
goal is to provide a general solution for serverless functions
that supports a diverse set of language runtimes, executes
functions in isolation, and e#ciently caches application and
system state to enable fast deployments. We achieve these
desired properties by deploying functions from unikernel
snapshots.

Unikernel Contexts (UCs)
Our key insight is that the act of unikernelization transforms
process-like computation into a format that is amenable to
computational caching. Unikernels provide the mechanism
that we use to encapsulate and observe the execution state of
a serverless function wherever it manifests in the software
stack.
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In a unikernel, the application and its supporting system
functionality (e.g., "le system, user libraries, and network
stack) are combined into a single, $at address space. In SEUSS,
each unikernel context (UC) consists of a high-level language
interpreter (e.g., Node.js, Python) con"gured to import and
execute function code. UCs act as our unit of deployment
for individually isolated function executions, the security
implications of which are discussed in §5.
The apparent drawback of unikernelization is that it can

introduces large amounts of replicated state and redundant
initialization procedures by replicating state and functional-
ity that was once shared. However, these redundancies are
detected and reduced through our use of snapshots, snapshot
stacks, and anticipatory optimizations.

Snapshots
A snapshot is an immutable data object which expresses
the instantaneous execution state of a UC (i.e., its address
space and registers). In SEUSS, snapshots act as templates
from which UCs can be deployed. Since snapshots are im-
mutable memory images, an arbitrary number of UCs can
be launched from a single snapshot concurrently and over
time. By capturing a fully-initialized UC in a base snapshot,
every deployed UC can avoid the overheads of booting the
unikernel and setting up an interpreter.
Encapsulating execution in a UC acts to minimize the

amount of execution state external to the UC. Hence, the
actions of snapshotting and deploying from a snapshot be-
come simple operations on address spaces via their backing
data structures. Furthermore, when snapshots can be trig-
gered and gathered externally, the act of capturing a UC
requires no semantic understanding of the internal state
of the UC. In other words, snapshots can treat the software
within the UC as a black box. Our approach stands in contrast
to a fork-based approach which requires explicit application-
level support and coordination with the kernel. For example,
a snapshot approach works identically across di!erent inter-
preters, including interpreters that do not natively support
fork (such as Node.js).

Snapshot Stacks
Snapshot stacks express a lineage between snapshots across
time, much like a fork tree captures a lineage relationship of
processes. Snapshot stacks work by treating each snapshot
as a page-level di! on the previous snapshot in a snapshot
stack. For this, we use traditional copy-on-write semantics
to capture into a snapshot only the pages that were modi"ed
by the target UC.
Snapshot stacks are designed to increase the number of

functions that can be cached in memory by factoring out

common execution state shared across the UCs. To better un-
derstand the advantage of snapshot stacks, consider the fol-
lowing example: a FaaS platform wants to snapshot the fully-
initialized state of JavaScript functions Foo() and Bar().
Armed with only the snapshot mechanism, the platform
requires two UC snapshots, one for each function. If the in-
terpreter is 100MB and each function adds 1MB, we require
202 MB of storage. With snapshot stacks, three snapshots are
used, one for the initialized JavaScript interpreter, a second
for the Foo() di! and a third for the Bar() di!. This requires
102 MB as the interpreter is shared between the two function
snapshots.

Anticipatory Optimizations
We de"ne Anticipatory Optimization (AO) as the act of in-
tentionally running computation prior to capturing a snap-
shot with the goal of removing redundant space and time
usage from subsequent execution. Functions based on the
same managed runtime will exercise similar pathways to
setup and execute a function. AO provides the opportunity
to further migrate initialization procedures and memory
into the shared snapshots. The redundancies we target in-
clude dynamically-generated data structures internal to the
interpreter or subsystems of the unikernel, which would oth-
erwise require signi"cant e!ort to optimize-out manually.

In SEUSS, we apply AO by preemptively warming the in-
ternal pathways and data structures of the UC software stack
prior to capturing the base runtime snapshot. AO decreases
both the start up and execution times by enabling executions
spawned from snapshots to avoid costly allocation and ini-
tialization procedures. Furthermore, the technique improves
the cacheability of function-speci"c snapshots by reducing
the number of written pages captured in each snapshot. With
AO, the memory footprint of the base snapshot grows, but
this space trade-o! results in the improved performance and
decreased footprint of all snapshots and UC instances de-
scended from the base snapshot. See §7 for our evaluation
of AO.
Our experience with applying AO to our unikernel en-

vironments suggests it provides an intuitive tool for enact-
ing signi"cant performance optimizations. We use semantic
knowledge about the task of deploying high-level function
code to anticipate and pre-execute common procedures. For
example, we explored the bene"t of sending TCP tra#c into
the unikernel, and running a (dummy) script through the
JavaScript interpreter prior to capturing the base snapshot.
These two AOs resulted in multiplicative reductions in warm
and cold function execution times (illustrated in Figure 1),
as well as the doubling of the snapshot cache density (§7).
Importantly, the AOs we employ were discovered through
basic reasoning about the high-level procedure of importing
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and deploying function code, without knowledge or concern
for the subtle inner workings of the interpreter and kernel.

4 SEUSS IN ACTION
This section describes the high-level procedure for deploying
serverless functions using SEUSS on a FaaS compute node,
as illustrated in Figure 2.
As part of the early system initialization, the unikernel

is booted into the language interpreter and an invocation
driver (script) is run, which creates HTTP/REST endpoint.
The system sends commands and function code into the
unikernel via this script. A runtime snapshot is taken ( B
in Figure 2) after the invocation driver has started. These
runtime snapshots may be relatively large in memory use
(hundreds of MBs) but there are few of them: only one per
supported interpreter. When a new UC is deployed from a
snapshot, the internal driver is started in a listening state
ready to accept a new connection.

To deploy serverless functions, SEUSSmaintains a cache of
snapshots as well as a cache of idle UCs. Function invocation
requests are received from a remote FaaS platform controller,
after which the system can take one of three paths to process
each invocation: cold, warm, or hot. When no cached snap-
shot exists for the particular function being invoked, its UC
is deployed from the base runtime snapshot, and the function
source is imported into the UC and interpreted by the run-
time ( C in Figure 2). Once the function source compilation
step is completed, a function-speci"c snapshot is captured
( S in Figure 2). Next, the run arguments are imported into
the UC, and the execution of the function begins, completing
a cold path invocation.
When a function-speci"c snapshot exists for an invoked

function, the warm path is taken by creating a UC from
that snapshot, skipping the code import and compilation
stages, importing the run arguments, and "nally beginning
function execution ( W in Figure 2). Once the execution of
a function has "nished, its UC can either be destroyed or
cached for future invocations of that function on a new set
of arguments. The hot invocation path consists of importing
a new set of run arguments into an already constructed UC
( H in Figure 2).

5 SECURITY
Security must be a central design concern in multi-tenant
cloud environments. In SEUSS, unikernels are used to isolate
co-running function instances from each other and from the
trusted kernel. Our prototype uses standard x86 user/kernel
protection domains to isolated the untrusted UCs (ring 3)
from the trusted OS (ring 0). Our approach is compatible
with other hardware-enforced protection mechanisms, such
as isolating unikernels within virtual machines (§9).

S
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Figure 2: The high-level operations of a SEUSS OS deployed
on a FaaS compute node.

Additional protection is achieved by narrowing the do-
main interface between the untrusted unikernel and the host
to a restricted set of system calls [18, 36, 47, 49]. A narrow
domain interface limits the surface area that a compromised
guest can use to launch attacks (i.e., the majority of kernel
functionality is handled within the isolated domain) and al-
lows the system to more easily monitor and detect malicious
behavior. For example, the hypercall interface used in our
prototype, ukvm [47], exposes only 12 system calls while the
standard security of a Docker container gives access to over
300 Linux syscalls [3].
Our use of snapshots preserves isolation between guests

by restricting sharing to read-only pages within the historical
timeline of a function. Runtime snapshots are captured before
any function-speci"c information has been imported into
the unikernel, allowing functions of di!erent users to share
the same base snapshot. UCs deployed from these snapshots
have copy-on-write access to the shared set of read-only
pages within the snapshot. Therefore, all writes are captured
onto new pages that are dedicated exclusively to the UC that
issues them.

The pervasive use of page-sharing does mean that our ap-
proach is susceptible to side-channel attacks and hardware-
level vulnerabilities. For example, the Rowhammer exploit
could be used to corrupt memory in a snapshot which is
shared across many thousands of functions. Our approach
is compatible with existing Rowhammer defenses [16]. In
contrast to KSM [8], page-sharing in SEUSS is not applied
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retroactively, reducing the concern for deduplication-based
side-channel attacks [28]. However, the time to process a
memory read can be used as a side-channel to leak infor-
mation about the activity of co-running guests. While this
is an open concern for our approach, applicable software
techniques have been shown to mitigate memory-based side-
channel attacks [51].

6 IMPLEMENTATION
In this section, we describe our prototype operating system,
SEUSS OS (Figure 3), which provides a high-performance
implementation of the SEUSS method within a full-feature
FaaS platform architecture. SEUSS OS is designed to run
natively on the backend compute nodes of a FaaS platform.
The following is a high-level overview of the design and
implementation:

• Our SEUSS OS prototype is x86_64 multicore kernel,
built from the EbbRT [35] framework, that runs within
a KVM-QEMU virtual machine.

• The unikernel stack of a UC is implemented using
Rumprun [5], an existing port of Python or JavaScript,
and an OpenWhisk invocation driver.

• UCs execute in user mode (ring 3) with page-table
based hardware protection.

• A network layer in SEUSS OS masquerades tra#c go-
ing in and out of UCs, allowing for external TCP con-
nections initialized from within the guest functions.

snapshot capture region

KVM-QEMU

SEUSS operating system

VCPU TX/RX

EbbRT LibraryOS
virtio

Rumprun Unikernel

Node.js V8 JavaScript engine

OpenWhisk driver <*.js>

Solo5
Ring 3

Ring 0

Figure 3: Single-core vertical slice of the software stack of
our SEUSS OS prototype

So!ware Stack
SEUSS OS is written in C++ and extends EbbRT [35] library
OS framework, totaling 7, 971 lines of new code 1. EbbRT
provides the bottom-most software layer, On top of EbbRT,

1Generated using David A. Wheeler’s ’SLOCCount’ [44].

we have implemented the functionality to deploy and multi-
plex UCs, capture snapshots, and route UC network tra#c
to the external network.
SEUSS OS runs in protection ring 0 (kernel mode), while

UC instances execute in protection ring 3 (user mode). Inter-
nal to every UC is the Rumprun [5] unikernel linked with a
port of Node.js or Python. This version of Rumprun had been
previously ported to run in userspace on top of Solo5 [4]
middleware library, which de"nes the minimal set of domain-
crossing hypercalls.
An important requirement of SEUSS is that it supports

a full set of high-level language interpreters. In our imple-
mentation, we adopt a general-purpose unikernel [22] as the
foundation of a UC. This unintuitive design choice presents a
stark contrast to the popular notion of unikernels, which are
associated with low-millisecond boot times and tiny mem-
ory footprints [11, 23, 32, 33]. A general-purpose library OS
will incur longer boot times and larger memory overheads,
but provides wide support for the various interpreters of a
serverless platform 2.
EbbRT provides the majority of low-level functionality

that SEUSS OS requires (e.g., a multicore event-driven run-
time, a virtio paravirtualized NIC, and a zero-copy TCP/IP
network stack). Rumprun provides a POSIX-like unikernel
based on the NetBSD source with a common set of shared sys-
tem libraries and a ramdisk "lesystem. Compared to other
highly-specialized unikernels, Rumprun is readily able to
support language runtimes used in our prototype. Solo5
made our job of supporting Rumprun unikernel instances on
SEUSS OS far simpler through its minimal set of hypercalls
and its use of cooperative scheduling and poll based IO.

Snapshots & Snapshot stacks
SEUSS OS uses direct access to hardware page tables to cap-
ture snapshots, deploy UCs, and to enable page-level sharing
across snapshot stacks and UCs.

Triggering Snapshots. In our prototype, we use the x86 de-
bug register to trigger the creation of a snapshot. When the
exception occurs, execution switches into a kernel mode han-
dler that records the state of the (interrupted) UC into a new
snapshot object. When "nished, execution transitions back
into user mode and continues transparently to the running
UC. Through this method, we can pinpoint the exact instruc-
tion within the unikernel where the snapshot is captured.
This technique proved invaluable when exploring various
anticipatory optimizations (§7).

2If engineering resources allow for building highly-specialized unikernels
per interpreter, SEUSS snapshotting and associated optimizations can still
be leveraged.
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Capturing Snapshots. SEUSS OS keeps snapshots light-
weight by only capturing the pages modi"ed since the UC
was created. To achieve this, we use traditional hardware
semantics to track recently changed pages via the x86 dirty
bits. Upon snapshotting, the complete page table structure
is captured but only the dirty pages are cloned. Snapshots
also retain the identi"cation of the base snapshot that the
captured UC was spawned from, which can then be used to
resolve faults across later UCs. Depending on the semantics
of a page fault, SEUSS OS may allocate a new page, clone a
page from within the backing snapshot stack, or resolve the
fault with a read-only mapping to a page within the source
snapshot stack. Given these semantics, a snapshot can only
be deleted safely when no other snapshots or UCs depend on
it. We address this concern in our prototype by only deleting
function-speci"c snapshots that have no active UCs.

Deploying UCs. The procedure of deploying function exe-
cution from a snapshot starts with creating a new UC, which
includes a shallow copy of snapshot page table structure.
Next, the root of the new UC page table is mapped to the
core and the TLB is $ushed. Execution switches into the UC
and begins at the instruction where the snapshot was trig-
gered. Execution begins by triggering a breakpoint exception
and overwrite the exception frame with the register values
contained within the snapshot. Upon return, the unikernel
is running.

Memory Management. One issue with extensive use of
copy-on-write is that memory becomes highly overcommit-
ted and application demand may cause the system to run
out of physical memory. This is a problem, for example, with
the heavy use of fork() in Linux, whereby an OOM daemon
may be triggered and may kill system critical processes. This
is not a problem in our design, because UCs for function
invocations are transient and can always be killed by the sys-
tem without impacting the system’s ability to make forward
progress. While more complexity may be necessary in the
future, our OOM daemon for SEUSS is trivial; we reclaim
idle UCs that do not currently host a live invocation as soon
as the available physical memory drops below a pre-de"ned
threshold.

Networking
Each UC is con"gured with an identical IP and MAC address,
enabling it to be trivially re-deployed across time or in paral-
lel across cores. A default UC con"guration also creates the
potential to migrate snapshots across machines ( §9).
A network layer monitors tra#c going in and out of the

UC and enables internal and external communication by for-
warding and masquerading tra#c down through the SEUSS
OS network stack. The internal network allows the SEUSS
OS invocation procedure to communicate with the running

unikernel (e.g., to send the input arguments to the invocation
driver). The external network proxy monitors the unikernels’
access to the outside world.

A per-core network proxy maintains mappings for both the
internal and external networks for each unikernel instance
active on that core. Incoming tra#c is screened, and the
tra#c destined for unikernels is sent through an additional
translation process to determine the worker core where the
UC is resident. TCP destination ports act as the unique key
for mapping packets to an active UC. We currently do not
support port mapping of UDP or IPv6 packets, but the ap-
proach would be similar. This design only supports outgoing
TCP connections initiated from within the unikernel.

FaaS Platform Integration
To preserve full functionalitywith the FaaS platform,we have
designed SEUSS OS to act as an OpenWhisk protocol compli-
ant drop-in replacement for Linux, while keeping all other
platform functionality una!ected. To accomplish this, we
have built an intermediate shim process, written in C++ and
run on Linux. The shim is responsible for reading requests
from the OpenWhisk message bus (Kafka) and translating
them to internal messages which are sent to a SEUSS OS VM.
The advantage of this approach is that it avoids the need to
support a platform-speci"c protocol within our lightweight
OS implementation of SEUSS. The disadvantage is that it
adds an additional network hop to the packet processing
path. The shim processes can be written in any language
to take advantage of the wealth of existing client libraries
for the services that make up the FaaS platform (e.g., Kafka,
CouchDB, ZooKeeper).

7 EVALUATION
We evaluate our SEUSS OS prototype (§6) compared to Linux
across a series of micro and macro benchmark experiments.

Experimental Infrastructure. For our evaluations, we use a
four-node cluster of physical machines connected via a 10GbE
network on a private VLAN through a commodity switch.
Each machine contains two 8-core Intel Xeon E5-2660 proces-
sors (16 cores in total) running at 2.20 GHz, and a Solar$are
Communications SFC9120 Ethernet card. The processors
have been con"gured to disable Turbo Boost, hyper-threads,
and dynamic frequency scaling. For software, we use Ubuntu
18.04 LTS (Bionic Beaver), Linux v4.15.0, Docker v18.09, and
OpenWhisk v0.9.0.
We deploy the FaaS compute node within a VM to main-

tain an identical hardware con"guration for both the SEUSS
OS and Linux comparisons. One physical machine acts as the
dedicated host for a single qemu-kvm VM instance. The VM
is con"gured with 16 VCPUs (1:1 with the host), 88 GB of
memory, a virtio/vhost paravirtualized network device, and
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Rumprun Unikernel Snapshot Size (MB) Size After AO (MB)
Node.js Invocation Driver 109.6 114.5
JavaScript NOP function 4.8 2.0
Invocation (after AO) Latency (ms) Memory Footprint (MB)

Cold Start: 7.5 2.05
Warm Start: 3.5 1.53

Hot Start: 0.8 0.05
Table 1: SEUSSMicrobenchmarks. Top:Memory footprint of
snapshots before and after Anticipatory Optimization (AO).
Bottom: Invocation latency and memory footprint of NOP
JavaScript functions averaged across 475 invocations.

an in-memory (ramdisk) "lesystem. When running Linux
within the VM, the software stack is identical to the Linux
host.

Microbenchmarks: SEUSS Internals
We evaluate the performance of the SEUSS primitives for de-
ploying a serverless function (Table 1). Opposed to evaluating
complex real-world functions, we run a simple JavaScript
NOP function that minimizes the time spent in the appli-
cation, allowing us to focus on system-induced overheads.
The results in this section are captured after we apply the
anticipatory optimizations discussed in §7.

Invocation Latency. Table 1 presents the latency to deploy
the NOP JavaScript function via a cold, warm, and hot invo-
cation path (as described in §4). For the invocation latency,
we measure from the moment the invocation request is re-
ceived by the SEUSS OS node to the moment the function
has "nished executing and the result is returned from the
UC back to SEUSS OS. External network latencies and FaaS
control plane overheads are not included in this duration.

The cold invocation (7.5ms) includes the time to construct
and deploy the UC from the runtime snapshot, set up a TCP
connection with the UC, pass in and compile the NOP func-
tion code, capture the function snapshot, pass in an empty
invocation argument and execute. Capturing the NOP func-
tion snapshot (2 MB) took around 400 µs. The function ran
for roughly 0.5ms. The warm invocation (3.5ms) deploys
from the function snapshot and, therefore, includes only the
overhead to connect to the UC, pass in the invocation argu-
ments, and run. In the hot invocation (0.8ms), an idle UC is
reused, removing the overhead of UC creation and warming
the internal UC pathway. From this data, we see that the
time to import and compile even a single-line NOP function
(roughly 5ms of the cold start) is the largest overhead. This
overhead will grow in proportion to the code size of the
function being run, making warm and hot starts even more
bene"cial.

Memory Footprint. Table 1 presents the base snapshot sizes
for the Node.js unikernel (114.5 MB) and the NOP function
snapshot (2 MB), which acts as a page-level diff of the
Node.js snapshot. Even for a NOP function, hundreds of

No AO Network AO Network + Interpreter AO
Cold Start 42 ms 16.8 ms 7.5 ms
Warm Start 7.6 ms 5.5 ms 3.5 ms

Table 2: Latency improvements across di!erent AO

pages are touched while importing and compiling the code.
The bottom right of Table 1 presents a consequential number
of pages copied during the execution of each of the three
invocation types. This highlights a limitation of a page-based
COW approach at a "ne granularity; It is likely that far less
state was generated but spread across many page boundaries.
We plan to consider the runtime e!ects of COWon a complex
function workload in future work.

Anticipatory Optimizations. A critical part of our approach
is a series of anticipatory optimizations (AO) that aim to
accrue useful execution state within the base runtime snap-
shot. The way we achieve this is simple: before taking the
base environment snapshot we warm the internal pathways
and data structures of the software stack by using seman-
tic knowledge of our common-path operation. Namely, that
each function execution involves importing code via the net-
work and compiling it before it can be run. Following this
high-level operation, we employ two levels of AO. First, we
send an HTTP request over the unikernel’s network prior to
taking the base environment snapshot (Network path in Ta-
ble 2). Second, we send a “dummy” JavaScript function into
the unikernel which is interpreted and run prior to taking
the base environment snapshot (Exec path + Network path
in Table 2).

Exercising the network stack and interpreter moves signif-
icant "rst-time execution o! the critical path. Pre-exercising
the network paths alone reduces cold start runtimes from
42.0ms to 16.8ms. Pre-executing both the kernel IO path-
ways and the state generated by the JavaScript interpreter
while executing function code brings cold start times down
to 7.5ms, close to warm start times before AO, and warm
start times drop from 7.6ms to 3.5ms. Reducing the perfor-
mance gap between cold and warm starts is critical for when
cold starts dominate the workload (§7).
Our approach of pre-executing likely paths prior to cap-

turing the shared snapshot helps factor memory out of the
function snapshots. As shown in Table 1, AO was able to
halve the memory footprint of a NOP JavaScript function
snapshot from 4.8 MB to 2.0 MB (conversely AO bloats the
Node.js base runtime snapshot by 4.9 MB). As a result, we are
able to double our snapshot cache size from 16, 000 to 32, 000
NOP function snapshots in our FaaS throughput macro eval-
uations (§7).

Microbenchmarks: Function Caching
In this experiment, we compare the overheads of SEUSS to
standard system-level techniques used for isolating function
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Isolation Method Creation Rate (per second) Cache Density
Firecracker microVM 1.3 450
Docker w/ overlay2 fs 5.3 3000
Linux process 45 4200
SEUSS UC 128.6 54000
Table 3: Cache density limit and parallel (16-way) creation
rate for the Node.js runtime environments on a 88GB, 16
CPU virtual machine. The SEUSS prototype can deploy UCs
quickly because deployment consists mainly of a memory
copy of page table structures.

executions (i.e., processes, containers, and VMs).We consider
both the latency to create new isolated instances and the
memory footprints for idle instances held in memory.

Methodology. Each execution context consists of a Node.js
JavaScript interpreter that is running the OpenWhisk invo-
cation driver. Upon initialization, each instance sits blocked
on a port awaiting a new connection (no code has been im-
ported yet). We evaluate this Node.js context deployed in the
following manner: standard processes, Docker containers,
lightweight VMs, and SEUSS UCs.
Processes: As processes provide insu#cient isolation, the

purpose of this result is to show the baseline memory
sharing and startup latency of Node.js on Linux.

Containers: Using the (Alpine Linux) Node.js Docker con-
tainer image with the overlay2 storage driver.

microVMs: Using the Kata Container backend for Docker,
we deploy the same Node.js container image within a
dedicated Firecracker VM [6].

Cache Density. The number of Node.js instances that can sit
idle on a node is important from the perspective of caching in-
terpreters (allowing function code to be quickly be imported)
and from the perspective of functions blocked on external IO.
We determined the maximum number of Node.js environ-
ment instances that our virtual compute node can support
by sequentially deploying instances until the memory of the
VM is saturated.

As shown in Table 3, we are able to deploy around 4200
Node.js processes within our VM. When isolated in individ-
ual Docker containers, the total number of Node.js instances
drops to around 3000. Unsurprisingly, the use of a container
isolated within a virtual machine (with its own Linux kernel)
results in an increase of over 100 MB to the per-instance
memory footprint, thereby reducing the number instances
that our VM could support to around 450. In comparison,
SEUSS is able to deploy over 54, 000 Node.js UCs. This den-
sity is enabled by the high-degree of redundancy between
the identical UC instances, which we avoid through sharing
with the snapshot images.

Creation Rates. To enable a performant caching strategy,
the techniques employed to create new execution contexts
should be both fast and scalable. The creation latency is

critical when re-populating the cache with new instances,
especially when the system is under heavy load. To observe
the maximum rate of instance creation, we deployed new
instances in parallel across all 16 cores and measured the
time it took to reach the previously observed density. Table 3
presents the results.

With processes, it took 93 s to saturate the node, resulting
in an average rate of 45 instances created per second. This
creation rate dropped to 5.3 instances per second when de-
ploying Docker containers in parallel. Upon investigation,
we observe container creation has two distinct scalability
issues. First, the creation latency for an individual container
is proportional to the number of total container instances ac-
tive in the system (an observation that has been corroborated
by others [33]). In our sequential deployment (density test),
the creation time for a single Node.js container increased
linearly from 541ms (with no other containers on the sys-
tem) to averaging 1.5 s when over 1000 containers. Second,
creation latency also su!ers relative to the number of parallel
creations taking place at the time. In our parallel creation test,
the creation times is proportional to the number of concur-
rent creations taking place, resulting in an average creation
latency of 8.5 s when deploying container instances across
all 16 cores.
When deploying lightweight virtual machines, the mini-

mal latency to deploy a single Node.js instance grew to over
3 seconds, due to the requirement to boot the Linux kernel
prior to deploying the container and runtime. This resulted
in a creation rate of 1.3 instances per second.
With SEUSS, we were able to construct Node.js UCs at

an average rate of 128.6 per second, a rate that is almost 2.4
times faster than Linux processes. As we will show in the
following experiment, the internal mechanisms of SEUSS
OS for deploying a UC imply a much faster creation rate
than this. The rate we present here includes the time for
the SEUSS OS shim process to communicate an invocation
request over the network to the VM. While this design re-
$ects the deployment path within a FaaS environment, the
single TCP connection used by our shim process acts as a
bottleneck limiting the maximum creation rate.

Microbenchmarks: Discussion. This evaluation demonstrates
that the SEUSS technique is a favorable strategy for caching
function execution state as snapshots. Active UCs and snap-
shots enable the rapid deployment of function execution
while consuming little memory due to our aggressive re-
duction of redundancies at the page-level. In comparison,
the Linux-based isolation techniques we evaluate have sig-
ni"cant creation times and scalability limits that are espe-
cially problematic when considering the highly-parallel and
latency-sensitive requirements of serverless computing.
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To conclude the micro benchmark evaluation, we discuss
the expected best and worst invocation overheads induced
by the two deployment strategies explored in our macro
benchmark experiments (§7): SEUSS snapshots vs Docker
containers. In the optimal case, function execution can be-
gin in just a few hundred microseconds using an idle UC
or container that has been fully initialized to the particular
function. SEUSS has the added option of deploying a new
UC from a function-speci"c snapshot. The next best option
for Linux is to use an idle runtime cached within a container
and then import the function code. If a container does not
already exist, a new one must be created. In this worst case,
we observed Node.js container creation to take on average
between 1.5ms to 8.5 s, depending on the load of the sys-
tem. In comparison, deploying from a runtime snapshot is a
sub-millisecond operation. In addition to being much faster,
the use of snapshots is far more scalable than containers, as
many UCs can be deployed in parallel from a single snapshot
image whereas a container is occupied for the duration of an
invocation. Container occupancy is especially consequential
when dealing with sudden bursts of requests while under
load §7.

We are not trying to imply that containers are intrinsically
more expensive for this use case, but simply that they have
not yet been optimized for the large-scale and low-latency
enabled by FaaS. However, since the container abstraction
is spread across many di!erent subsystems of the Linux
kernel, optimizing their performance to this degreewill likely
involve many engineering challenges.
With VMs, we do not observe the same scalability issues

with creation times as we saw with containers. However,
signi"cantly fewer VM instances were deployed in this test
due to their increased memory footprint. As we discuss in §8,
techniques for page-sharing across VM instances will make
them compatible with the SEUSS approach.

Macro Benchmarks: FaaS Platform Performance
In this next evaluation, we analyze the impact of SEUSS on
parallel function invocations on an Apache OpenWhisk clus-
ter. We use our SEUSS OS prototype as a drop-in replacement
for Linux on the backend compute node. We developed an
external benchmark tool which we use to evaluate the re-
quest latency and aggregate throughput of the platform with
the two di!erent backends.

Methodology. We dedicate two of the four physical machines
to host OpenWhisk, one machine to host the benchmark,
and one machine to host an HTTP server used as an external
endpoint for function I/O (§7). Of the two OpenWhisk ma-
chines, one hosts the control plane elements of the platforms
(i.e., the controller, API server, message service, and internal
databases) deployed within containers on the Linux host.

The second OpenWhisk machine hosts the QEMU-KVM VM
instance which runs either the Linux or SEUSS OS compute
node.

Load Generation Benchmark. We’ve developed a custom
FaaS load generation benchmark. The benchmark works in
trials, with each trial consisting of three con"guration param-
eters: invocation count (N ), function set size (M), and worker
threads (C). Each trial consists of N invocations distributed
across a set ofM functions, which are sent in a random or-
der (for repeatability, the send order is pre-computed and
persisted across trials). During a trial, C worker threads pull
invocation requests (one at a time) from a shared work queue
and issue a synchronous request to the FaaS platform API to
process the invocation. The maximum number of requests
in $ight at a given time is at most C , at which point the
benchmark will block until a request is returned.

Apache OpenWhisk Con"guration. Each benchmark trial
is performed on a fresh deployment of OpenWhisk that has
been populated with the set of (M) user functions run by
the benchmark. We have disabled all platform-enforced quo-
tas and rate limits in OpenWhisk. We also prevent Docker
containers from being paused when they are not in use (re-
sulting in more stable performance on Linux when under
heavy load). For the throughput tests (§7), we have disabled
the ’stemcell’ container cache, as the automatic initializa-
tion of containers hurt platform throughput when under
heavy load. The ’stemcell’ cache is re-enabled for the burst
experiment (§7).

Linux Container Limit. On our Linux compute node, we set
the cache size limit to 1024 containers. We had originally set
the cache size closer to the observed limit of 3000 containers
(Table 3) but found that a majority of the invocation requests
processed by the platform would return an error. Upon inves-
tigation, we observed a scalability bottleneck in the virtual
Ethernet mechanism and in-kernel packet processing that
was being employed. The use of a virtual Ethernet means a
single broadcast packet (e.g. ARP, DHCP) sent over a bridge
interface with N connected endpoints must be processed
in the kernel N separate times [46]. With 3000 endpoints,
the result was a high rate of dropped packets on the bridge,
causing the TCP connections between the controller process
and the invocation server within the containers to timeout.
Even with 1024 containers—the default limit of endpoints on
a Linux bridge—we still witness connections failures during
parellel invocation processing (§ 7).

Platform Throughput. This experiment is designed to stress
the FaaS platform’s ability to e!ectively cache and deploy
an increasingly large set of unique functions. We consider a
function ’unique’ when it requires individual isolation (i.e.,
associated 1:1 with a distinct client account). In each trial of
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Figure 4: OpenWhisk Platform Throughput. X-axis shows
the set size of functions being invoked.

Figure 5: OpenWhisk end-to-end request latency of a NOP
JavaScript function across three function set sizes. Graph
shows the 1st, 25th, 50th, 75th, 99th percentiles and the
mean latency (dot). Note of the large di!erence in Y-axes
ranges.

the experiment we double the set size of unique functions
being invoked. While each function is logically unique, the
actual code being run is the same JavaScript NOP evaluated
in our microbenchmarks (§7). We chose a NOP function to
stress the system-induced overheads by minimizing the time
spent on the client.

Figure 4 presents the achieved throughput of OpenWhisk
using a SEUSS OS compute node and Linux compute node.
Trials are represented as points along the x-axis. For each
trial, we doubled the number of unique functions that the
benchmark invokes (ranging from 64 to 65536). The bench-
mark sends a continuous stream of invocation requests from
32 threads until the measured throughput reaches a point of
stability.

Soon after we increase the set size of functions the Linux
cache becomes saturated. At this point hot and cold invo-
cation latencies spike and platform throughput plummets.
On the mostly unique workload (right-most points on the
plot), the SEUSS OS has up to a 52→ speedup over Linux.
The advantage here is that a cold invocation on SEUSS OS
begins from an initialized Node.js snapshot as opposed to a
container creation. Conversely, when the cache is saturated
on Linux, every cold start requires both a cache eviction
(container deletion) and a new container creation. The com-
parable di!erence in cold and warm path invocations when
the cache is under-utilized (64 functions) and oversaturated
(2048 functions), can be seen in Figure 5.

At low cache utilization (seen in the subplot of Figure 4)
both platforms perform comparably well as the vast majority
of requests get "hot" invocations. In the trials with the small-
est set sizes (the left-most points on the plot), the throughput
of Linux is 21% higher than that of SEUSS OS. This is be-
cause the Linux node provides better hot start latency, as our
prototype introduces an additional network hop between
the shim process and the VM (§6), which adds about 8ms
to the round-trip latency. Important to note that this is a
shortcoming of our implementation and not inherent to our
method.
These macro benchmark evaluations (§7) con"rm that

SEUSS can result in radically faster FaaS deployments (es-
pecially for cold starts), and dramatically denser function
caching that enables warm and hot start invocations. In the
face of increasing function set size, the SEUSS OS node is
able to sustain high throughput long after the Linux node
hits saturation. SEUSS radically outperforms Linux when
deploying an uncached function, as the time to deploy from
a snapshot is orders of magnitude faster than constructing a
container. In addition, cached functions (i.e., hot starts) are
often processed faster on SEUSS as Linux is quickly bogged
down with container construction overheads. The container
cache is primarily limited by the bridged network shared
across containers. While the bridge bottleneck can likely
be addressed with software changes, we believe the fun-
damental limitations of page sharing across containerized
processes will prevent any container-based caching strategy
from reaching the density achieved by SEUSS. In the next
experiment we examine how high-density caching enables
high-demand workloads that are otherwise unsupported by
the platform.

Platform Resiliency to Request Bursts. In this experiment, we
evaluate the platform’s performance when exposed to the
sudden arrival of invocation requests. Instead of NOP func-
tions, we aim to simulate a more typical FaaS workload by
mixing CPU-heavy functions with functions that block on
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external I/O. As part of the experiment, we expose the sys-
tem to a continuous stream of blocking IO functions, keeping
the platform at a stable point of moderate utilization. On top
of this stream, we issue a series of concurrent invocation
bursts sent at a "xed frequency. The invocations within a
burst are all made to the same CPU-bound function (func-
tions is unqiue across bursts) with each burst simulating a
compute-intensive workload triggered by a single applica-
tion. The purpose of this approach is to observe when and if
the background workload is a!ected.

Burst Every 32 Seconds

Figure 6: Request burst sent every 32 seconds; Top: Linux.
Bottom: SEUSS; Dots represent individual requests: x-axis is
request time sent, y-axis is request latency (log scale). Failed
requests are marked with an x.

Experiment Setup. To generate the background utilization
stream, we deploy our benchmark using 128 threads that
make requests to a total of 16 unique IO-bound functions.
The benchmark is rate-throttled to a limit of 72 requests per
second 3. Each IO-bound function makes an external net-
work call to a remote HTTP server, which blocks for 250ms
before sending an OK reply (the function "nishes once the
reply is received). The CPU-bound burst functions each per-
form a computation that takes around 150ms. Bursts are
sent at a "xed frequency of every 32, 16, or 8 seconds. On the
Linux node, we con"gure the OpenWhisk ’stemcell’ cache
to 256 Node.js containers. This container cache is bene"cial
for handling the sudden bursts of never-before-seen invoca-
tions. At the same time, the overheads of constructing these
background containers directly competes with the container
cache limits and interferes with cold start times.

Burst Resiliency on Linux . At the slowest burst frequency,
32 s between bursts (Figure 6), the Linux container cache

3About 40% of the container cache is consumed by the background stream
on Linux.

is repopulated between bursts. In this case, the sudden ar-
rival of requests are quickly serviced by initialized envi-
ronments. However, beginning around the 5th burst, the
container cache limit is hit and some of the requests begin
to error (marked in the "gures with a ’x’). When the burst
frequency is increased to 16 s (Figure 7) and 8 s (Figure 8),
the container cache does not have time to repopulate be-
tween bursts, therefore, only the "rst burst is handled with
low latency. When a stemcell container is unavailable, the
invocations begin to see "cold start" overheads of between
10 s and 60 s. More concerning, the reliability of the Linux
node su!ers dramatically as the container cache becomes
fully saturated. Across all three burst frequencies, requests
begin to time-out and error once the container cache limit is
reached. As evidenced by the gaps in the background stream
of the graphs, there are periods of times where the Linux
node gets overwhelmed and stops processing requests all
together.

Burst Every 16 Seconds

Figure 7: Request burst sent every 16 seconds; Top: Linux.
Bottom: SEUSS; Dots represent individual requests: x-axis is
request time sent, y-axis is request latency (log scale). Failed
requests are marked with an x.

Burst Resiliency on SEUSS. With the SEUSS OS node, Open-
Whisk handles every request across all three burst frequen-
cies (no requests return an error). The background stream
sees reliably lower latency on SEUSS than on Linux, and is far
less disturbed by the increased arrival rate. Only at the high-
est burst frequency (Figure 8) can we observe a disturbance
in the background stream as the CPUs become contented by
the high request concurrency (and further exacerbated by
EbbRT’s non-preemptive event model [35]). As each burst
adds only one additional snapshot to the cache, we would
presumably require tens of thousands of bursts before there
would be any cache contention on the SEUSS OS node. As
shown in Figure 4, SEUSS OS provides high-throughput even
for an all-cold invocation workload.
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Burst Every 8 Seconds

Figure 8: Request burst sent every 8 seconds; Top: Linux. Bot-
tom: SEUSS; Dots represent individual requests: x-axis is re-
quest time sent, y-axis is request latency (log scale). Failed
requests are marked with an x.

8 RELATEDWORK
Recent research systems have explored the use of computa-
tional caching as a way to accelerate FaaS computation. Re-
playable Execution [39] uses process-level checkpoint/restore
to deploy pre-warmed JVM instances within a running con-
tainer. Unlike SEUSS, their techniques only target a base
runtime checkpoint and do not extend to function-speci"c
caching. SOCK [15] and SAND [19] demonstrate both short-
ened deployment time and decreased memory footprints by
forking execution from existing interpreter processes and
applying COW sharing across their address spaces.

Our approach di!ers from process-fork based techniques
in a fundamental way. SEUSS snapshots treat the uniker-
nel as a black box, enabling the external capture of arbitrary
unikernel environment state. In comparison, forking requires
careful coordination between the system and the user-level
process being forked. In addition, a process-fork approach is
limited to interpreters that internally fork (Node.js—one of
the most popular runtimes for serverless—does not support
POSIX fork [2]). Furthermore, process-level isolation is in-
su#cient for mutually-untrusted functions, therefore, any
process-based solution must include an additional approach
for isolation or a relaxation of the security model. For exam-
ple, migrating forked processes to new containers as part of
the deployment procedure, or restricting forked processes
to a single client (i.e., a single container). As we show in our
evaluation, Linux containers introduce considerable scalabil-
ity bottlenecks when used for isolating individual function
executions (§7).

The techniques underlying SEUSS have been used by previ-
ous research systems for use cases extending beyond server-
less computing. Library operating systems (unikernels) have

been explored in the context of edge-computing [30], net-
work function virtualization [24, 50], application sandbox-
ing [9, 18, 36], and lightweight virtual domains [23, 31, 33, 45].
KylinX [48] explores fork-like techniques on unikernels and
reduces memory footprints through dynamic page mappings.
For virtual machines, Kaleidoscope [12], Potemkin [38], and
Tardigrade [29] have explored fast fork-like VM cloning and
copy-on-write memory sharing. Process-level checkpointing
has been explored in the context of process migration [1],
fast re-initialization [41], and replay debugging [37].

9 FUTUREWORK
This work leverages computational caching to achieve fast
function starts, higher density function caching, and sup-
port for request bursts on a FaaS platform. Future FaaS plat-
forms will continue to require these properties but at a scale
and degree of parallelism that far exceeds that of a single
compute node. We view the natural evolution of SEUSS as
spanning across nodes to provide a distributed & replicated
global cache4. The read-only and deploy-anywhere proper-
ties of unikernel snapshots suggest they can be cloned and
deployed across machines with similar hardware pro"les.
A distributed SEUSS would enable advanced sharing tech-
niques to speed up remote deployments, such as VM state
coloring [12] or on-demand paging [26].
A computational caching framework allows us to study

more aggressive anticipatory optimization approaches. For
example, we are exploring the use of continuous hardware
tracing along with machine learning to automatically iden-
tify optimization opportunities within snapshots. As in our
prior work, we are looking at how cached snapshots can
be synthesized from a combination of historical data and
prediction mechanisms [42].

In our SEUSSOS prototype, we adopted Rumprun, a general-
purpose unikernel, as the foundation of our UC. Its POSIX-
like interface greatly reduced development e!ort because the
interpreters we targeted could run out-of-the-box without
the e!ort that would be necessary when porting them to
a specialized unikernel. Going forward, we are transition-
ing to running applications on UKL (Unikernel Linux [34]),
which targets upstream adoption into the Linux kernel for
long-term maintainability. Towards the goal of increased se-
curity and broadened applicability for SEUSS, as future work
we plan to explore deploying UKL-based functions onto a
specialized KVM monitor.

10 CONCLUSION
At a high-level, SEUSS e!ectively segregates the computa-
tional state of an application into two parts: common state

4We will then be obliged to rename the method to DR-SEUSS.
12



SEUSS: Skip Redundant Paths to Make Serverless Fast EuroSys ’20, April 27–30, 2020, Heraklion, Greece

which has long term value in its ability to eliminate re-
dundant computation, and execution-speci"c state which
is ephemeral and discardable. Our results demonstrate that
this separation can be used to dramatically improve the per-
formance of serverless function execution.
In SEUSS, unikernel snapshots speed up invocations by

deploying functions within fully-initialized environments.
By applying page sharing across the entire software stack,
the memory footprint of snapshots are considerably smaller
than processes, containers or microVMs, enabling a greater
number of function instances to be cached on a node.
The techniques employed by SEUSS are simple enough

that they should be easily adopted within production-grade
operating systems and hardware-enforced encrypted sand-
boxes. Furthermore, our experience suggests that the ap-
proach explored in this paper can provide powerful bene"ts
to applications outside of the serverless paradigm.
By combining the bene"ts of low latency cold starts and

simpli"ed immutable memory caching, SEUSS is able to han-
dle sudden request bursts that are currently unsupported
by the traditional approach. These results show that the
serverless function need not be considered a heavyweight
computational primitive. When highly-parallel executions
can be deployed in milliseconds, serverless functions will
support general-purpose computing across arbitrary scales.
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