
Stellux: Exploring Fine-Grain Privilege Access in a
Clean-Slate Kernel

Albert Slepak
Boston University (student)
Boston, Massachusetts, USA

aslepak@bu.edu

Thomas Unger
Boston University

Boston, Massachusetts, USA
tommyu@bu.edu

Jonathan Appavoo
Boston University

Boston, Massachusetts, USA
jappavoo@bu.edu

Abstract
Executing code with hardware privilege is inherently risky.
The desire to mitigate this risk was a major motivation for
exploring alternative kernel architectures, such as Micro-
kernels [2][1] and Exokernels [3]. Everybody knows that
operating system kernels execute with hardware privilege
and applications do not – more formally, there exists a cou-
pling between codebases (operating system / application)
and modes of execution (supervisor / user). Because we have
accepted this coupling as inviolable, our options for separat-
ing privileged and unprivileged execution have been limited
to a binary, course-grained, design-time decision: whether
specific functionality should reside within the application
or the kernel codebase (and thus, the corresponding exe-
cutable programs). This constraint has limited our approach
to separating privileged and unprivileged execution.
We believe it is time to challenge the received wisdom

of this coupling and to explore building systems that make
privilege access an independent variable, i.e., making it pos-
sible to transfer privilege without transferring codebase. As
applied to the challenge of minimizing the trusted compute
base, we believe it offers an easy-to-use tool for removing
large portions of code from privileged execution, turning the
present approach from a cleaving into a dissection.
Our lab previously developed a mechanism that offers a

fine-grained way for application threads to toggle in and out
of hardware privilege execution at runtime. This mechanism
is called Dynamic Privilege[4] (see Figure 1), and credentialed
application threads can access it via a system call.

Let’s consider a concrete example to illustrate the opportu-
nity afforded by Dynamic Privilege to reduce privilege code
execution. Page-table code traditionally lives in the kernel.
While there is the occasional instruction that requires hard-
ware privilege (such as a read or write of a control register,
the invalidation of a page, and enabling/disabling interrupts),
much of this code simply traverses trees in memory and per-
forms bit-operations. With Dynamic Privilege, a credentialed
user process (perhaps written in C, C++, Rust or others) can
make a system call to access privilege, then execute a privi-
leged instruction to read the register holding the base of the
current page table (such as MOV CR3, RAX on x86_64). The
thread can then memcpy the page table into its own address

Figure 1: Black: Traditional OSs couple privilege level
changes with codebase switches between application
and kernel; atomic transfer instructions crystallize this
coupling in hardware. Red: Dynamic Privilege decou-
ples these variables, allowing independent mode trans-
fers at runtime. Green: This enables low-level hard-
ware access to the extended ISA and memory.

space where it transfers back to user privilege to operate on
that datastructure. When ready, the thread transfers back
into kernel privilege just long enough to memcpy the table
into kernel memory, or perhaps update the page table base
register. This is an example of howwe proposemore carefully
dissect out code that actually needs to run with privilege.

Equipping the Stellux kernel with Dynamic Privilege from
the outset allows deferring decisions about the execution
mode of a codepath to runtime. This alleviates the burden
of making design-time decisions and enables incremental
prototyping. Codepaths that would traditionally be executed
in privileged mode can be gradually segmented and shifted
to run more in user mode. Specifically, the ability to switch
privilege at runtime leads to a further reduction of privileged
code execution, as the kernel can run mostly in a "lowered,"
unprivileged state and "elevate" itself only to perform in-
structions that are privileged due to hardware requirements.
While previous work demonstrated the feasibility of dynamic
privilege switching by retrofitting it into existing operating
systems like Linux, our current work differs by building a
clean-slate operating system, StelluxOS, from the ground

2024-09-21 04:37. Page 1 of 1–2.



up with dynamic privilege as a foundational principle. By
integrating dynamic privilege switching from the inception
of OS design, we can fundamentally rethink and reshape the
architecture without being hindered by legacy constraints.
This allows us to further reduce the use of privileged execu-
tion and explore new paradigms in OS construction, such
as reorganizing kernel components to run predominantly
in unprivileged mode and elevating privileges only when
absolutely necessary due to hardware requirements.
Our case study focuses on building an operating system

from scratch, aiming to extract as much of the kernel as
possible into user space through the "lowering" mechanism.
Only the bare minimum is performed in the privileged do-
main, such as setting up the Global Descriptor Table (GDT)
and enabling syscalls. Afterwards, the kernel immediately
lowers itself into an unprivileged state to continue full initial-
ization and schedule further tasks. In our current prototype,
we have demonstrated that we can perform the following
in user mode, elevating privileges in a controlled manner
only for specific privileged CPU instructions: setting up and
installing the Interrupt Descriptor Table (IDT), mapping and
initializing the Local APIC, configuring and starting theHigh-
Precision Event Timer (HPET), initializing the kernel heap
allocator and page frame allocator, setting up the sched-
uler, and bringing up secondary cores. Additionally, it has
been extremely easy to move kernel components from the
privileged domain into unprivileged mode, achievable by
modifying only a couple lines of code. Even at this early
stage of prototype development, this model has significantly
reduced the use of the privileged execution domain com-
pared to any existing operating system design. We anticipate
that this approach will yield more significant benefits in the
later stages of operating system development. By sandboxing
the majority of kernel components, the system can achieve
enhanced fault tolerance, as failures within non-privileged
kernel components would not compromise the entire system.
This approach could also simplify the development process
by allowing kernel modules to be developed and tested in
user mode, leveraging existing user-space debugging and
testing tools.

Ourwork aims to re-examine long-held assumptions about
operating system privilege models. By experimenting with
dynamic privilege level switching within the kernel, we hope
to uncover new insights and methodologies for building
more robust, secure, and flexible operating systems. While
challenges remain in departing from traditional models, we
believe this line of inquiry is a promising avenue for future
research and development in operating systems principles.

.

References
[1] Steven Hand, Andrew Warfield, Keir Fraser, Evangelos Kotsovinos, and

Daniel JMagenheimer. 2005. Are virtual machinemonitorsmicrokernels
done right?. In HotOS.

[2] Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The
Lessons from 20 Years of Research andDeployment. ACMTrans. Comput.
Syst. 34, 1, Article 1 (apr 2016), 29 pages. https://doi.org/10.1145/2893177

[3] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M.
Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert
Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application
Performance and Flexibility on Exokernel Systems. In Proceedings of
the Sixteenth ACM Symposium on Operating Systems Principles (Saint
Malo, France) (SOSP ’97). Association for Computing Machinery, New
York, NY, USA, 52–65. https://doi.org/10.1145/268998.266644

[4] Thomas Unger. 2024. Dynamic Privilege. Ph. D. Dissertation. Boston
University, Boston, MA.

2024-09-21 04:37. Page 2 of 1–2.

https://doi.org/10.1145/2893177
https://doi.org/10.1145/268998.266644

	Abstract
	References

