
Clustered Objects

by

Jonathan Appavoo, B.Sc., M.Sc.

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2005 by Jonathan Appavoo, B.Sc., M.Sc.

ii

Clustered Objects

Jonathan Appavoo, B.Sc., M.Sc.

for the degree of Doctor of Philosophy

Department of Computer Science

University of Toronto, 2005

Supervisor: Michael Stumm

In this dissertation we establish that the use of distribution in the implementation of a shared

memory multi-processor operating system is both feasible and able to substantially improve perfor-

mance of core operating system services. Specifically we apply distribution in the form of replication

and partitioning in the construction of K42, a shared memory multi-processor operating system.

Clustered Objects, a software construction for the systematic and selective application of distribu-

tion to objects of K42’s object oriented system layer, is presented. A study of the virtual memory

services of K42 is conducted in which distribution is applied to key virtual memory objects to

enable performance improvements. The distributed versions of these objects substantially improve

scalability, and specifically improve throughput of a standard multiuser benchmark by 68% on a

24 way multi-processor. Additionally, a methodology for the dynamic hot-swapping of Clustered

Object instances is presented as a means for enabling dynamic adaptation. Motivated by the de-

sire to hot-swap between centralized and distributed implementations of Clustered Objects, the

methodology presented is correct, efficient and integrated with the Clustered Object support.

iii

iv

Contents

Abstract iii

Glossary vii

Chapter 1 Introduction 1

1.1 Problem Statement . 1

1.2 Motivation . 6

1.3 Research Context: Tornado and K42 Operating Systems 6

1.4 Contributions . 9

1.5 Outline of this Dissertation . 12

Chapter 2 Background and Related Work 13

2.1 Early Multi-Processor OS Research Experience . 16

2.2 Distributed Data Structures and Adaptation . 24

2.2.1 Distributed Data Structures . 24

2.2.2 Adaptation for Parallelism . 32

2.2.3 Summary . 34

2.3 Modern Multi-Processor Operating Systems Research 35

2.3.1 Characteristics of Scalable Machines . 35

2.3.2 Operating Systems Performance . 37

Chapter 3 Motivation and Clustered Object Overview 45

3.1 Motivation: Performance . 45

3.2 Clustered Objects . 50

v

Chapter 4 Examples of Clustered Object Implementations 53

4.1 Case Study: K42 VMM Objects . 53

4.1.1 Process Object . 55

4.1.2 Page Managers and the Global Page Manager 60

4.1.3 Region . 64

4.1.4 File Cache Manager . 74

4.2 Clustered Object Manager . 89

4.3 Summary . 91

Chapter 5 Clustered Objects 93

5.1 Overview . 93

5.2 Clustered Object Development Strategies . 95

5.3 K42 Clustered Object Facilities . 96

5.3.1 Clustered Object Root Classes . 97

5.3.2 Clustered Object Representative Classes . 100

5.4 Clustered Object Protocols . 104

5.4.1 Allocation and Initialization . 106

5.4.2 Inter-Rep Protocols . 109

5.4.3 Destruction and RCU . 110

5.5 Summary . 118

Chapter 6 Hot-swapping 119

6.1 Overview . 120

6.1.1 Algorithm Overview . 120

6.2 Details . 121

6.2.1 Forward . 124

6.2.2 Block . 125

6.2.3 Transfer . 125

6.2.4 Complete . 126

6.3 Summary . 126

Chapter 7 Performance 127

7.1 SDET . 128

vi

7.2 Postmark . 129

7.3 Parallel Make . 130

7.4 Discussion of Workload Experiments . 130

7.5 Hot-swapping . 133

7.5.1 Basic Overheads . 133

7.5.2 Hot-swapping Overhead . 134

7.5.3 Application of Hot-swapping . 134

7.6 Summary . 137

Chapter 8 Concluding Remarks 139

8.1 Summary of Contributions . 139

8.2 Principles for Developing Distributed Objects . 140

8.2.1 Think Locally . 140

8.2.2 Be Incremental . 142

8.2.3 Be Conservative – Encapsulate and Reuse . 142

8.2.4 Inherit with Care . 143

8.3 Infrastructure for Distributed Implementations . 144

8.4 The Feasibility of Multi-Processor Performance . 146

8.5 Future Work . 148

Bibliography 150

vii

viii

Glossary

COS: Clustered Object System: the name of the Clustered Object infrastructure in K42.

COSMgr: Clustered Object System Manager: a distributed Clustered Object which implements

the core features of the COS.

FCM: File Cache Manager: the object which manages the resident pages for an individual file.

FR: File Representative: the object which represents an open file in the kernel and is used to

initiate IO operations to a file system.

Global PM: Global Page Manager: the object which manages the physical page frames across

the entire system.

HAT: Hardware Address Translation Object: the object used to represent and manipulate hard-

ware page tables. K42 utilizes a per-processor, per-process page tables.

miss-handling: the process initiated when a clustered object is accessed on a processor on which

there is no local translation for the object. The translation mechanism invokes a method of the

Root of the clustered object to carry out the object’s miss-handling behavior. Miss-handling

is leveraged for lazy Representative creation and as a general mechanism for redirecting calls

on a clustered object.

PM: Page Manager: the object which manages the physical page frames allocated to an individual

Process.

Process Object: the object which represents a running process.

RCU: Read-Copy-Update: a synchronization discipline which utilizes quiescent states to safely

partition changes to a data structure.

ix

Region: the object which represents a mapping of a portion of a processes address space to a

portion of a file.

Representative: the object which serves as the access point for a clustered object instance. Single

or multiple Representatives can be associated with a single clustered object instance.

Root: the internal central object which serves as the anchor for a clustered object instance. All

Representatives have a pointer to the root of the Clustered Object instance to which they

belong.

VMM: Virtual Memory Management: a core service of any modern operating system. Manages

mapping of virtual addresses to physical page frames which contain the data to be accessed.

x

Chapter 1

Introduction

1.1 Problem Statement

Despite decades of research and development into Shared Memory Multi-Processor (SMP) operating

systems, achieving good scalability for general purpose workloads, across a wide range of processors,

has remained elusive. “Sharing” lies at the heart of the problem. By its very nature, sharing

introduces barriers to scalability and comes from three main sources. First, sharing can be intrinsic

to the workload. For example, a workload may utilize a single shared file to log all activity of

multiple processes, or a multi-threaded application may use a shared data array across multiple

processors. Secondly, sharing also arises from the data structures and algorithms employed in

the design and implementation of the operating system (OS). For example, an operating system

may be designed to manage all of the physical memory as a single shared pool and implement

this management using shared data structures. Thirdly, sharing can occur in the physical design

and protocols utilized by the hardware. For example, a system utilizing a single memory bus and

snooping based cache coherence protocol requires shared bus arbitration and global communications

for memory access, even for data located in independent memory modules.

General purpose operating systems provide a basic framework for efficiently utilizing computer

hardware. To facilitate computer use, the operating system provides an abstract model of a com-

puter system through a set of common interfaces realized by operating system services. A critical

issue in the development of operating system services is to enable efficient application utilization of

hardware resources. Operating systems for multi-processors must ensure correctness and scalability

of the system services in order to allow the parallelism afforded by the hardware to be exploited for

both general purpose and explicit parallel workloads. A thorough overview of operating systems

1

1.1 Chapter 1: Introduction 2

and basic concurrency can be found in a number of undergraduate-level textbooks on this subject

matter [113,121,127,130,135].

Operating systems are unique, from a software perspective, in their requirement to support and

enable parallelism rather than exploiting it to improve their own performance. An operating system

must ensure good overall system utilization and high degrees of parallelism for those applications

which demand it. To do this, operating systems must: 1) utilize the characteristics of the hardware

to exploit parallelism in general purpose workloads, and 2) facilitate concurrent applications, which

includes providing models and facilities for applications to exploit the parallelism available in the

hardware.

It is critical that an OS reflect the parallelism of the workloads and individual applications to

ensure that the OS facilities do not hinder overall system or individual application performance.

This point is often overlooked. Smith alludes to the requirements of individual applications, noting

that the tension between protection and performance is particularly salient and difficult in a parallel

system and that the parallelism in one protection domain must be reflected in another [123]. In other

words, to ensure that a parallel application within one protection domain can realize its potential

performance, all services in the system domains that the concurrent application depends on must

be provided in an equally parallel fashion. It is worth noting that this is true not only for individual

applications but also for all applications forming the current workload on a parallel system: the

demands of all concurrently executing applications must be satisfied with equal parallelism in order

to ensure good overall system performance.

Achieving scalable performance requires minimizing all forms of sharing, which is also referred

to as maximizing locality. On shared memory multi-processors (SMPs), locality refers to the degree

to which locks are contended and data — including the locks themselves — are shared amongst

threads running on different processors. The less contention on locks and the less data is shared,

the higher the locality. Maximizing locality on SMPs is critical, because even minute amounts of

(possibly false) sharing can have a profound negative impact on performance and scalability [19,49].

The work of this dissertation is focused on the application of techniques to the construction

of systems software to improve locality. We assert that, with considerable effort, we can reduce

sharing in the operating system in the common case and achieve good scalability on a wide range

of processors and workloads, where performance is limited by the hardware and inherent scalability

of the workload. The most obvious source of sharing that is within the control of the operating

system designer is the data structures and algorithms employed by the operating system. However,

1.1 Chapter 1: Introduction 3

Gamsa observes that, prior to addressing specific data structures and algorithms of the operating

system in the small, a more fundamental restructuring of the operating system can reduce the

impact of sharing induced by the workload by minimizing sharing in the operating system struc-

ture [49]. Gamsa’s work uses an object-oriented model to create individual, independent instances

of operating system resources which can be instantiated as necessary to meet many of the parallel

demands of the workload. This allows accesses to independent resources to be directly reflected to

independent software structures, thus avoiding unnecessary sharing due to shared meta structures.

The above approach alone, however, does not eliminate sharing, but rather helps limit it to the

paths and components which are shared due to the workload. For example, consider the perfor-

mance of a concurrent multi-user workload on K42, a multi-processor operating system constructed

using Gamsa’s design. Assume a workload that simulates multiple users issuing unique streams of

standard UNIX commands with one stream issued per processor. Such a workload, from a user’s

perspective, has a high degree of independence and little intrinsic sharing. Despite the fact that

K42 is structured in an object-oriented manner, with each independent resource represented by an

independent object instance, at four processors, throughput is 3.3 times that of one processor and

at 24 processors, throughput is 12.5 times that of one processor. Ideally, the throughput would

increase linearly with the number of processors. Closer inspection reveals that the workload induces

sharing on OS resources, thus limiting scalability. We contend that in order to ensure the remaining

sharing does not limit our performance, we must use distribution, partitioning and replication to

remove sharing in the common paths. Using distributed implementations for key virtual memory

objects, and running the same workload as above, the OS yields a 3.9 times throughput at four

processors and a 21.1 times throughput at 24 processors. (See Chapter 7 and Figure 7.1 for de-

tails of these results.) The work presented in this dissertation describes techniques and methods

for building such data structures and applying them to the operating system in order to achieve

scalable performance for standard workloads.

The development of high-performance, parallel systems software is non-trivial. The concurrency

and locality management needed for good performance can add considerable complexity. Fine-

grain locking in traditional systems results in complex and subtle locking protocols. Adding per-

processor data structures in traditional systems leads to obscure code paths that index per-processor

data structures in ad-hoc manners. Clustered Objects were developed as a model of partitioned

objects to simplify the task of designing high-performance SMP systems software [144]. In the

partitioned object model, an externally visible object is internally composed of a set of distributed

1.1 Chapter 1: Introduction 4

Representative objects. Each Representative object locally services requests, possibly collaborating

with one or more other Representatives of the same Clustered Object. Cooperatively, all the

Representatives of the Clustered Object implement the complete functionality of the Clustered

Object. To the clients of the Clustered Object, the Clustered Object appears and behaves like a

traditional object. The distributed nature of Clustered Objects make them ideally suited for the

design of multi-processor system software, which often requires a high degree of modularity and

yet benefits from the sharing, replicating and partitioning of data on a per-resource (object) basis.

Clustered Objects are conceptually similar to design patterns such as facade [47]; however, they have

been carefully constructed to avoid any shared front end, and are primarily used for achieving data

distribution. Some distributed systems have explored similar object models. Specifically, Clustered

Objects are similar to other partitioned object models, such as Fragmented Objects [17, 83] and

Distributed Shared Objects [62, 136], although the latter have focused on the requirements of

(loosely coupled) distributed environments. In contrast, Clustered Objects are designed for (tightly

coupled) shared memory systems. Section 2.2 discusses related work in more detail.

Our use of the word distributed throughout refers to the division of data across a shared memory

multi-processor complex. Distribution does not imply message passing, but rather, distribution

across multiple memory locations all of which can be accessed via hardware supported shared

memory. We distribute data across multiple memory locations in order to: (i) optimize cache

line access, (ii) increase concurrency, and (iii) exploit local memory on architectures which have

non-uniform memory access, where some memory modules may be cheaper to access from a given

processor.

A key to achieving high performance on a multi-processor is to use per-processor data structures

whenever possible, so as to minimize inter-processor coordination and shared memory access. In this

dissertation per-processor data structures refers to the use of a separate instance of a data structure

for each processor. The software is constructed, in the common case to access and manipulate the

instance of the data structure associated with the processor on which the software is executing. The

use of per-processor data structures is to improve performance by enabling distribution, replication

and partitioning of stored data. In general, access to of any of the data structure instances by any

processor is not precluded given the shared memory architectures we are targeting. In contrast,

the ability to access all data structure instances via shared memory is often used to implement

coordination and scatter-gather operations as necessary.

Typically there are two performance characteristics that are used when evaluating parallel pro-

1.2 Chapter 1: Introduction 5

gram performance: 1) absolute performance, and 2) performance improvement due to parallelism

(speedup or associated scalability measures) [37]. In this dissertation we will focus on the latter, but

to ensure that we are not seeing improved scalability at the cost of unreasonable base uniprocessor

performance, we present the results from a traditional Operating System (Linux, in particular)

for comparison for the full system workloads. In general, when we consider performance, we are

interested in evaluating the operating system’s ability to satisfy concurrent user-level service re-

quests, associated with a given user-level workload running on some number of processors. To do

this we evaluate performance by running a workload on a range of processor configurations. As

we increase the number of processors, we scale the user-level workload, and measure performance

as either throughput or execution time. From this data, we plot either throughput, speedup or

slowdown. Note that, although all of our implementation work is limited to the operating system,

we do not explicitly measure performance of the operating system, but only measure application

performance, which indirectly includes OS overheads. We make no modifications to applications,

hence we can observe the impact of OS effects.

In this dissertation we describe the design and implementation of distributed data structures

in the construction of a shared memory multi-processor operating system. We standardize Clus-

tered Objects via a set of protocols which provide a distributed object-oriented model, permitting

incremental development while fully leveraging hardware-supported shared memory. We present

the application of distribution, via distributed Clustered Objects we implemented, to optimize a

critical systems service, namely the memory management subsystem. Distributed implementa-

tions can offer better scalability. However, distributed implementations typically optimize certain

operations, improving their scalability, but often increase costs of other operations at the same

time. They also typically suffer greater overheads when scalability is not required. In order to

provide a means of coping with the tradeoffs of using distributed implementations, we also present

a technique we developed for dynamically replacing a live Clustered Object instance with a newly

created compatible instance. This mechanism can be used to switch between non-distributed and

distributed implementations dynamically at run time and additionally enable other forms of dy-

namic adaptation.

1.3 Chapter 1: Introduction 6

1.2 Motivation

We contend that MP OS scalability is important and is becoming increasingly relevant. An in-

creasingly large number of commercial 64-way or even 128-way MPs are being used as Web or

Data Base (DB) servers. Next generation game stations will be 4-way SMP’s, but it is not hard

to envision 32- or 64-way SMP desktop PC’s and game stations in the not too distant future with

the expected increases in transistor density supporting relatively large-scale SMT/CMP chips. The

High End Computing (HEC) community is recognizing the importance of using large-scale SMP’s

to overcome performance bottlenecks: the Department of Energy has expressed interest in using

K42 as their core operating system for their HEC needs, and K42 is being used in one of the sys-

tems being built for DARPA’s High Productivity Computing Systems Program. While our efforts

have focused on SMP operating system software, the techniques we describe are applicable to any

transaction-driven service (i.e. OS, Web server, DB, etc.) where parallelism is not generated within

the service, but is a result of parallel requests by the workload using the service. The importance

of scalability can also be witnessed by the large efforts that have gone into parallelizing Linux and

commercial operating systems, such as AIX, SunOS, and Irix over the last several years1.

1.3 Research Context: Tornado and K42 Operating Systems

The work presented in this dissertation has been conducted in the context of two operating systems

projects, Tornado and K42. The Tornado operating system was designed and implemented by the

systems research group at the University of Toronto, primarily focusing on the exploration of

techniques for supporting large Non-Uniform Memory Access (NUMA) multi-processors. Research

into the Tornado operating system ended in 1999. The K42 operating system project began in 1998

at IBM. K42 is based on Tornado and the University of Toronto research group has collaborated

with the IBM research group in K42’s development. Specifically, the University of Toronto research

group has been working on the K42 source base since 1999 and has focused on the scalability

aspects of K42. The majority of the implementation and experimentation we have conducted and

documented in this thesis has been done in K42. The remainder of this section gives a brief overview

of K42. Over the course of the work covered in this dissertation I have been working as part of

both the University of Toronto research group and the IBM research group. In 2003 I joined the

1In industry, large efforts have been spent on improving scalability of operating systems, albeit with disappointing
results. Unfortunately very little of this work has been published.

1.3 Chapter 1: Introduction 7

IBM group in a full time capacity and continue to work on K42.

In this dissertation we will explicitly disambiguate the work done by the larger University of

Toronto group, the work done by the larger IBM research group and my individual work. When

referring to my work, as supervised by Professor Stumm, I will use the terms, ’I’, ’we’ and ’our’.

The attribution of work done by the larger groups of the University of Toronto and IBM will be

made explicitly.

Providing a well-structured kernel is a primary goal of the K42 project, but performance is

the central concern. Some research operating system projects have taken particular philosophies

and have followed them rigorously in order to fully examine their implications. While the IBM

research group follows a set of design philosophies in K42, compromises are made for the sake

of performance. The principles that guide the design include: 1) structuring the system using

modular, object-oriented code, 2) designing the system to scale to very large shared-memory multi-

processors, 3) avoiding centralized code paths and global data structures and locks, 4) leveraging

performance advantages of 64-bit processors, 5) moving as much system functionality as possible to

application libraries, and 6) moving system functionality from the kernel to server processes. The

first four are direct consequences of the Tornado [48] work and the contributions of my dissertation.

Two of the goals of the K42 project are:

• Performance: A) Scale up to run well on large multi-processors and support large-scale

applications efficiently. B) Scale down to run well on small multi-processors. C) Support

small-scale applications as efficiently on large multi-processors as on small multi-processors.

• Adaptability: A) Allow applications to determine (by choosing from existing components or

by writing new ones) how the operating system manages their resources. B) Autonomically

have the system adapt to changing workload characteristics.

K42 is structured around a client-server model (see Figure 1.1). The kernel is one of the core

servers, currently providing memory management, process management, IPC infrastructure, base

scheduling, networking and device support. In the future the IBM research group plan to move

networking and device support into user-mode servers.

The layer above the kernel contains applications and system servers, including the NFS file

server, name server, socket server, pseudo terminal (pty) server, and pipe server. For flexibility,

and to avoid IPC overhead, as much functionality as possible is implemented in application-level

libraries. For example, all user-level thread scheduling is done by a user-level scheduler linked into

1.4 Chapter 1: Introduction 8

Application

Server

Application

File

K42 OS libraries
K42 OS libraries

File
Server

Linux device drivers/IP stack

Linux

Linux emulation

Kernel

Server

K42

Name

Linux libraries/glibc

Linux API/ABI

Figure 1.1: Structural Overview of K42

each process.

All layers of K42, the kernel, system servers, and user-level libraries, make extensive use of

object-oriented technology. All inter-process communication (IPC) is between objects in the client

and server address spaces. A stub compiler is used to interpret custom syntax decorations on the

C++ class declarations to automatically generate IPC calls from a client to a server, and these IPC

paths have been optimized to have good performance. The kernel provides the basic IPC transport

and attaches sufficient information for the server to provide authentication on those calls.

From an application’s perspective, K42 supports the Linux API and Linux ABI. This is accom-

plished by an emulation layer that implements Linux system calls by method invocations on K42

objects. When writing an application to run on K42, it is possible to program to the Linux API or

directly to the native K42 interfaces. All applications, including servers, are free to reach past the

Linux interfaces and call the K42 interfaces directly. Programming against the native interfaces

allows the application to take advantage of K42 optimizations. The translation of standard Linux

system calls is done by intercepting system calls and implementing them with K42 code.

1.4 Chapter 1: Introduction 9

1.4 Contributions

Designing and implementing K42 as a fully functioning operating system has been a large effort

involving a number of people. This section identifies my individual contributions.

K42 is a descendant of the Tornado operating system designed and implemented at the Univer-

sity of Toronto. Tornado was based on a set of synergistic structuring principles and OS mechanisms

for the construction of scalable multi-processor operating systems [49]. Gamsa et al. presented

some initial micro-benchmark performance results for Tornado (as illustrated in Figure 3.2), which

primarily leveraged an object-oriented decomposition and manually applied distribution to its in-

frastructure [48, 49]. Tornado made very limited use of distribution with respect to its individual

objects and higher level services.

It was concluded that better performance and scalability was achieved by utilizing an object-

oriented structure, with independent objects representing individual resources. Such a structure

allows independent service requests to be serviced by independent objects, thus reducing sharing

within the OS. Recognizing that some objects will inherently be accessed in a shared fashion,

Gamsa implemented a set of low level mechanisms which he felt would facilitate constructions of

distributed implementations. My work began as a study exploring the use of these mechanisms

to construct distributed implementations of some example objects [3]. The bottom two layers of

Figure 1.2 isolate Gamsa’s contributions to the Clustered Object research. Fundamentally, only a

single distributed Clustered Object implementation was used in Tornado, which we developed based

on my initial study. The following mechanisms were developed by Gamsa with a particular focus on

the base scalability of these mechanisms, ensuring that no shared memory or global synchronization

is required [48]:

• The use of per-processor indirection tables, mapped to the same virtual address but backed

by independent physical memory, to enable efficient translation of a global Clustered Object

identifier to a processor-specific Representative without requiring remote memory access in

the common case.

• Manipulation of C++ virtual method dispatch to enable lazy establishment of the per-

processor translations of a Clustered Object, enabling both per-object lazy instantiation and

ensuring that the overhead in the common case is a pointer dereference and a virtual method

dispatch, without requiring remote memory accesses.

1.4 Chapter 1: Introduction 10

RCU Based Garbage CollectionObject Oriented OS Decomposition

by Gamsa

Clustered Object Classes Destructions and RCU Protocols Inter−Rep Protocols Allocation and Initialization Protocols Hot−swapping

BASIC CLUSTERED OBJECT SUPPORT

Focus and
contribution of
this dissertation

K42 CLUSTERED OBJECTS

BASIC OS MECHANISMS

CLUSTERED OBJECT PROGRAMMING SUPPORT, INTERFACES, AND PROTOCOLS

Distributed Hash Table Constituent Clustered Object ManagerVM Objects

Process Object Global Page Manager Region Object

Per−Processor IPC

File Cache Manager

Per−Processor Memory AlloctorPer−Processor Page Tables

Miss−handling Mechanisms
Translation Tables &

Previous work

Figure 1.2: Clustered Object Research Map

• The generation of auxiliary objects and infrastructure which implement a security model

and utilize an efficient, interprocess protected procedure call mechanism [51] to expose the

services of a Clustered Object located in one address space, to threads executing in another,

in a scalable and secure manner.

My dissertation focuses on the implementation of Clustered Objects, including software support

for their development in the form of a set of base classes that formalize the internal structure of a

Clustered Object and facilitate the construction of both distributed and centralized implementa-

tions. We specifically study the use of distributed implementations to optimize the Virtual Memory

system of K42.

In order to address the needs of large SMP’s, K42 adopted Tornado’s fundamental structure. We

continued our work on Clustered Objects on K42, as its initial code base was being developed, re-

implementing some of the lower level Clustered Object mechanisms. Of the lower two levels depicted

in Figure 1.2, we specifically implemented from scratch new versions of the Translation Tables,

Miss-handling Mechanisms, and RCU-Based Garbage Collection for K42. We then implemented

an interface to these basic Clustered Object services in terms of a Clustered Object System (COS)

manager and a set of base C++ classes. This software supported a design of Clustered Objects

derived from my initial study of Clustered Objects in Tornado, supporting both centralized (shared)

and distributed implementations. We then adapted all existing K42 system objects into centralized

Clustered Objects2 so they could easily be migrated to distributed implementations later. From

that point on, all system objects constructed by any developer of K42 were Clustered Objects

utilizing my infrastructure. It was critical to my work to have established the ubiquitous use of

2A centralized or shared Clustered Object does not utilize distribution, but rather uses one Representative for all
processors and as such is functionally similar to a standard C++ object.

1.4 Chapter 1: Introduction 11

Clustered Objects for all K42 objects. It has allowed me to consider the construction of a compatible

distributed implementation for any existing object.

We then refined the basic Clustered Object mechanisms and developed more advanced base

classes for Clustered Object development. These base classes codify a set of protocols for de-

struction, inter-rep communication (the co-ordination of the Representatives of a single Clustered

Object instance), lazy allocation, initialization, and hot-swapping (the dynamic replacement of one

Clustered Object instance with another). As illustrated in Figure 1.2, this portion of my work

(third layer from the bottom) is the next level of Clustered Object support, which permits the

development of compatible shared and distributed Clustered Object implementations on top of the

basic mechanisms.

The next component of my work entailed the development of distributed Clustered Object im-

plementations of key K42 objects. We specifically focused on distributed implementations of the

Virtual Memory Management (VMM) Objects of K42, in order to optimize the performance of

SDET, a general purpose operating system workload [125]. We explored various techniques for in-

crementally developing compatible distributed implementations of the following K42 VMM objects:

Process, Page Managers, Region and File Cache Managers. Of these, I have individually developed

all but the Page Managers3 from scratch. We investigated their performance characteristics and

tuned them with respect to SDET.

The hot-swapping of Clustered Object instances is ongoing research which began as a study of

how to construct the mechanisms to support the dynamic replacement of an instantiated Clustered

Object with another at run-time [5]. My main contribution was the development of the Clustered

Object infrastructure used to implement the hot-swapping protocol, along with jointly designing the

protocol itself. Hui [63], implemented a specialized Clustered Object which utilizes the Clustered

Object infrastructure to implement the hot-swapping protocol. Since then we have continued to

evolve the hot-swapping support and protocol. The hot-swapping work is still at its early stages

and to date we have a set of mechanisms but have not explored the design and implementation of

policies which utilize the mechanisms in order to adapt the system in a more autonomic fashion.

Although Clustered Objects do encapsulate and hide distribution of an implementation from

the clients of an object, they do not alleviate the complexity in the internal implementation (even

though they localize the concern). Developing a distributed Clustered Object has all the challenges

3Another member of the IBM K42 team developed the first distributed implementation of the Page Managers in
order to address a measured performance problem.

1.5 Chapter 1: Introduction 12

of building a tightly coupled distributed application. In 1998, we presented an initial evaluation

of Clustered Objects and their internal design [3]. One of the results of that work was an internal

model for Clustered Objects which formalized the internal components and their relationships.

That model was used as the basis for a new Clustered Object implementation in K42.

In summary, in this work we have:

1. developed infrastructure and protocols necessary to support the development of Clustered

Objects. When designing such support, we guided decisions based on performance and gen-

erality, with the goal of providing an infrastructure which can be applied and reused by others

when developing Clustered Objects.

2. applied distributed data structures and algorithms at the granularity of individual system

objects in order to improve performance of a core system service, namely virtual memory

management.

3. enabled the dynamic replacement of Clustered Objects to permit online adaptation in order

to be able to adapt to changing workloads.

One might question the utility of spending great effort on distributed data structures if pro-

hibitive sharing exists in the applications. However, distributed data structures are required even

when the user applications are not parallel in nature. In subsequent chapters, we show that in

order to obtain good scalability for standard multi-user workloads, fundamental operating system

data structures must be partitioned and distributed. Even if the user applications are not parallel

in nature, the operating system itself can critically limit overall scalable performance.

1.5 Outline of this Dissertation

The next chapter reviews related research. Chapter 3 highlights the motivation for this work and

provides an overview of the Clustered Object research. Chapter 4 describes application of distribu-

tion to the construction and optimization of K42, focusing on a case study of the virtual memory

management services. Chapter 5 describes in detail the protocols and infrastructure created to sup-

port Clustered Object development. Chapter 6 discusses a technique for dynamically replacing an

object on the fly. Chapter 7 presents relevant performance results. Chapter 8 concludes, discussing

various observations and future work.

Chapter 2

Background and Related Work

Much of the research into multi-processor operating systems has been concerned with how to

support new, different or changing requirements in OS services, specifically focusing on user level

models of parallelism, resource management and hardware configuration. We will generically refer

to this as support for flexibility. In contrast, the research done at the University of Toronto has

pursued a performance oriented approach. The group has suggested two primary goals for the

success of multi-processor operating systems:

1. Provide a structure which allows good performance and scalability to be achieved with stan-

dard tools, programming models and workloads without impacting the user or programmer.

Therefore the OS must support standards while efficiently mapping any available concurrency

and independence to the hardware without impacting the user level view of the system.

2. Enable high performance applications to side step standards to utilize advanced models and

facilities in order to reap maximum benefits without being encumbered by traditional inter-

faces or policies which do not scale.

Surveying the group’s work over the last several years, two general requirements for high per-

formance systems software have been identified:

1. Reflect the Hardware:

• Match scalability of the hardware in the systems software. Ensure software representa-

tions, management and access methods do not limit system scale, for example, software

service centers required to manage additional hardware resources should increase with

the scale of the system.

13

2.0 Chapter 2: Background and Related Work 14

Name Leading Authors Year Institution

Hydra [36,79,141,142] W. Wulf 1974 Carnegie Mellon University

StarOS [36], A. K. Jones 1979 Carnegie Mellon University

Medusa [100], J. K. Ousterhout 1980 Carnegie Mellon University

Tunis [45] R.C. Holt 1985 University of Toronto

Dynix/PTX [13,52,65] Sequent 1985 Sequent

Mach [16, 66, 107, 108,
145]

R. Rashid 1986 Carnegie Mellon University

Psyche [115–118] M. L. Scott 1988 University of Rochester

Clouds [39,40] P. Dasgupta 1988 Georgia Institute of Technology

Sprite [59] J. K. Ousterhout 1988 University of California Berkeley

Presto [15] B.N. Bershad 1988 University of Washington

Distributed
Shared Objects
(DSOs) [8, 62,136]

A. S. Tannenbaum 1988 Vrije University

Elmwood [77] T.J. Leblanc 1989 University of Rochester

Choices [22,23,72] R.H. Campbell 1989 University of Illinois

Synthesis [86–88] H. Massalin 1989 Columbia University

Fragmented Objects
(FOs) [17,83,120]

M . Shapiro 1989 INRIA

Mosix [10,11] A. Barak 1989 Hebrew University of Jerusalem

Topologies, Dis-
tributed Shared
Abstractions
(DSAs) [34,35,99,114]

K. Schwan 1990 Georgia Institute of Technology

Concurrent Aggre-
gates (CAs) [33]

A. A. Chien 1990 Massachusetts Institute of Technology

Paradigm/Cache Ker-
nel [30,31]

D. R. Cheriton 1991 Stanford University

pSather [80] C. Lim 1993 University of California Berkeley

KTK/CTK [53,122] K. Schwan 1994 Georgia Institute of Technology

Hurricane [134] M. Stumm 1994 University of Toronto

Hive [27] J. Chapin 1997 Stanford University

Disco [20] M. Rosenblum 1997 Stanford University

Tornado [48,49] B. Gamsa 1998 University of Toronto

Table 2.1: Table of main operating systems research discussed.

2.1 Chapter 2: Background and Related Work 15

K42/COs

Kernel

Performance Oriented OS
Structuring and Policies

Flexible OS
Structure and
Policies

UNIX
Compatible

Structure
Distributed

Methodologies

Tornado

MachElmwood

Hydra

Presto

Hive

Dynix/PTX
IRIX

Solaris
Choices

Psyche

Clouds

Synthesis
Sprite

StarOS
Medusa

KTK

Synchronization
Tunis

Mosix
Disco

Hurricane

Commercial Systems

pSather, CAs)
(FOs, DSOs, DSAs,

Paradigm/Cache

Figure 2.1: Illustration of related work with respect to K42 and Clustered Objects

• Reflect unique performance characteristics of MP hardware to maximize performance.

Mirror locality attributes of the hardware in the software structures and algorithms:

avoid contention on global busses and memory modules, avoid shared cache-line access

and efficiently utilize replicated hardware resources.

2. Reflect the Workload:

• Map independence between applications into systems structure.

• Match the concurrency within applications in the systems structures.

In this chapter we review relevant work. We begin with a review of early MP OS research, then

look at systems work directly related to the use of distributed data structures and finally conclude

with a look at modern research into MP OSes. Figure 2.1 illustrates a map of the related work

with respect to K42 and Clustered Objects; Table 2.1 lists the work in chronological order.

2.1 Chapter 2: Background and Related Work 16

2.1 Early Multi-Processor OS Research Experience

Arguably the most complex computer systems are those with multiple processing units. The advent

of multi-processor computer systems presented operating systems designers with four intertwined

issues:

1. true parallelism (as opposed to just concurrency),

2. new and more complex hardware features, such as multiple caches, multi-staged interconnects

and complex memory and interrupt controllers,

3. subtle and sensitive performance characteristics, and

4. the demand to facilitate user exploitation of the system’s parallelism while providing standard

environments and tools.

Based on the success of early multiprogramming and time sharing systems and what was

viewed as fundamental limits of uniprocessor performance, early systems researchers proposed

multi-processors as the obvious approach to meeting the increasing demands for general purpose

computers. The designers of Multics, in 1965, went so far as to say:

“...it is clear that systems with multiple processors and multiple memory units are

needed to provide greater capacity. This is not to say that fast processor units are un-

desirable, but that extreme system complexity to enhance this single parameter among

many appears neither wise nor economic.”

Perhaps the modern obsession with uniprocessor performance for commodity systems is the strongest

evidence of our inability to have successfully leveraged large scale multi-processors for general pur-

pose computing. Large multi-processors are predominately now considered as platforms for spe-

cialized super-computing applications. We believe, however, this is changing. In an attempt to

meet increasing performance demands and address memory latencies, there is renewed interest in

utilizing parallel processing for commodity systems. For example, it is expected that the next

generation Sony Playstation will have between 4 and 16 parallel processing units. Given this one

expects future workstations and servers to adopt even more aggressive configurations.

Real world experimentation with general purpose multi-processors began as simple dual proces-

sor extensions of general purpose commercial uniprocessor hardware [7]. The general approach was

to extend the uniprocessor operating system to function correctly on the evolved hardware. The

2.1 Chapter 2: Background and Related Work 17

primary focus was to achieve correctness in the presence of true parallelism. This typified the ma-

jor trend in industrial operating systems. They start with a standard uniprocessor system, whose

programming models and environments are accepted and understood, and extend it to operate on

multi-processor hardware. Various techniques for coping with the challenges of true parallelism

have been explored, starting with simple techniques which ensured correctness, but yielded little or

no parallelism in the operating system itself. As hardware and workloads evolved, the demand to

achieve greater parallelism in the operating systems forced OS implementors to pursue techniques

which would ensure correctness but also achieve higher performance in the face of parallel workload

demands.

The fundamental approach taken was to apply synchronization primitives to the uniproces-

sor code base in order to ensure correctness. Predominantly the primitive adopted was a shared

memory lock, implemented on top of the atomic primitives offered by the hardware platform. The

demand for higher performance led to successively finer grain application of locks to the data struc-

tures of the operating systems. Doing so increased concurrency in the operating system at the

expense of considerable complexity and loss of platform generality. The degree of locking resulted

in systems whose performance was best matched to systems of a particular scale and workload de-

mands. Despite having potentially subtle and sensitive performance profiles, the industrial systems

preserved the de facto standard computing environments and achieved reasonable performance for

small scale systems, which have now become widely available. It is unclear if the lack of acceptance

of large scale systems is due to the lack of demand or the inability to extend the standard computing

environments to achieve good performance on such systems for general purpose workloads.

In general, the industrial experience [41, 69, 71, 81, 82, 90, 102, 103, 112] can be summarized

as a study into how to evolve standard uniprocessor operating systems with the introduction of

synchronization primitives. Firstly, this ensures correctness and secondly, permits higher degrees

of concurrency in the basic OS primitives.

In contrast to the industrial research work, the majority of the early academic research work,

focused on flexibility and improved synchronization techniques. Systems which addressed flexibility

include: Hydra [36, 79, 141, 142], StarOS [36], Medusa [100], Choices [22, 23, 72], Elmwood [77],

Presto [15], Psyche [115–118], Clouds [39, 40]. With the exception of Hydra, StarOS and Medusa,

very few systems actually addressed unique multi-processor issues or acknowledged specific multi-

processor implications on performance. In the remainder of this section we highlight work which

either resulted in relevant performance observations or attempted to account for multi-processor

2.1 Chapter 2: Background and Related Work 18

performance implications in operating system construction.

In 1985 the Tunis [45] operating system, created by another group at the University of Toronto

under the direction of Professor R. C. Holt, was one of the first systems to focus on the importance of

locality rather than flexibility. One of the aims of the project was to explore the potential for cheap

multi-processor systems, constructed from commodity single board microprocessors interconnected

via a standard backplane bus. Each microprocessor board contained local memory and an additional

bus-connected memory-board providing shared global memory. Given the limited global resources,

the designers focused on structuring the system more like independent local operating system

instances. This would prove to be a precursor of later work like Hurricane, which attempted to

apply distributed system principles to the problem of constructing a shared memory multi-processor

operating system [134]. Although limited in nature, Tunis was one of the first operating systems

to provide uniprocessor UNIX compatibility while employing a novel internal structure.

The early 1980’s not only saw the emergence of tightly coupled shared memory multi-processor

systems such as the CM* [100], but also loosely coupled distributed systems composed of commodity

workstations interconnected via local area networking. Projects such as V [32] and Accent [107]

attempted to provide a unified environment for constructing software and managing the resources

of a loosely coupled distributed system. Unlike the operating systems for the emerging shared

memory multi-processors, operating systems for distributed systems could not rely on hardware

support for sharing. As such, they typically were constructed as a set of autonomous light-weight

independent uniprocessor OS’s which cooperated via network messages to provide a loosely coupled

unified environment. Although dealing with very different performance tradeoffs, the distributed

systems work influenced and intertwined with SMP operating systems research over the years. For

example one of the key contributions of V [32] was micro-kernel support of light-weight user-level

threads that were first-class and kernel visible.

In the mid 1980’s, the Mach operating system was developed at Carnegie Mellon University

based on the distributed systems Rig and Accent [16, 66, 107, 108, 145]. One of the key factors

in Mach’s success was the early commitment to UNIX compatibility while supporting user-level

parallelism. In spirit, the basic structure of Rig, Accent and Mach is similar to Hydra and StarOS.

All these systems are built around a fundamental IPC (Inter-Process Communication) model. For

example, in the case of Mach, the basic IPC primitives are ports and messages. Processes provide

services via ports to which messages are sent using capabilities and access rights. Mach advocates

an object oriented-like model of services which are provided/located in servers. Rashid states

2.1 Chapter 2: Background and Related Work 19

that Mach was, “designed to better accommodate the kind of general purpose shared-memory

multi-processors which appear to be on their way to becoming the successors of traditional general

purpose uniprocessor workstations and timesharing systems” [107]. Mach’s main contribution with

respect to multi-processor issues was its user-level model for fine-grain parallelism via threads and

shared memory within the context of a UNIX process. This model became the standard model for

user level parallelism in most UNIX systems. Otherwise, Mach takes the traditional approach of

fine-grain locking of centralized data structures to improve concurrency on multi-processors1. The

later Mach work does provide a good discussion of the difficulties associated with fine-grain locking,

discussing issues of existence, mutual exclusion, lock hierarchies and locking protocols [16].

Another system developed in the 1980’s, which was specifically designed for UNIX compatibility

and multi-processor support, was the Topaz system at Digital Research [91, 92, 131]. Topaz was

structured as a micro-kernel and a set of independent system servers. All communication was done

with a Remote Procedure Call IPC provided by the micro-kernel. Topaz supported two types of user

address spaces. One was a single threaded address space with an execution environment compatible

with Ultrix, Digital’s version of UNIX. The second was a Topaz custom address space, which

additionally supported multiple threads of execution. A key research contribution of Topaz was to

study the support required for multiple threads within a single UNIX process and its implications

on the UNIX system interface. The Topaz system and Topaz-specific applications were developed

in Modula2+ [111]. Modula2+ had explicit language support for concurrency, including: explicit

thread support, explicit locking support, reference counted pointers, and a trace and sweep garbage

collector. The Topaz authors report that the use of Modula2+’s support for concurrency and its

object-oriented like encapsulation were particularly beneficial for systems construction. They state

that on a 5-processor Topaz system, ideal scalability was rarely achieved. They note that for one

file system copy application, a factor of 4.7 speedup was achieved, and that for parallel compilation

a factor of 2 to 3 was achieved. No details are given in the literature pertaining to the scalability of

Topaz. It is worth noting that Topaz provided UNIX compatibility while pursuing multi-processor

support with an alternate system structure. Tornado and K42 have similar goals but with a greater

focus on studying the structures required for scalability.

Gottlieb et al. [55] present operating system-specific synchronization techniques based on replace-

add hardware support. The techniques attempt to increase concurrency by avoiding the use of

1Industrial systems such as Sequent’s Dynix [13,52,65], one of Mach’s contemporaries, employed fine-grain locking
and exploring its challenges.

2.1 Chapter 2: Background and Related Work 20

traditional lock or semaphore-based critical sections. The techniques they propose are generalized

in later work by Herlihy [60,61]. Edler et al. [43] in the Symunix II system claim to have used the

techniques of Gottlieb et al. as part of their design for supporting large-scale shared memory multi-

processors. Unfortunately, it is not clear to what extent the implementation of Symunix II was

completed or to what extent the non-blocking techniques were applied. The main focus of Edler’s

work [43] was on Symunix II’s support for parallelism in a UNIX framework, and specifically issues

of parallel virtual memory management.

The later work of Massalin [86–88] explicitly studies the elimination of all locks in system soft-

ware via the use of lock-free techniques. Massalin motivates the application of lock-free techniques

for operating systems, pointing out some of the problems associated with locking:

Overheads: Spin locks waste cycles and blocking locks have costs associated with managing the

queue of waiters.

Contention: Lock contention on global data structures can cause performance to deteriorate.

Deadlocks: Care must be taken to avoid deadlocks and this can add considerable complexity to

the system.

Priority Inversion: Scheduling anomalies associated with locking, especially for real-time sys-

tems, introduce additional complexity.

One of the key methods used for applying lock-free techniques was the construction of system

objects which encapsulated a standard data structure and associated synchronization implemented

with lock free techniques. Massalin argues that such an encapsulation enables the construction of a

system in which the benefits of lock free techniques can be leveraged while minimizing the impact

of its complexity. Despite showing that the lock-free data structures have better raw uniprocessor

performance, with respect to instructions and cycles, compared to versions implemented with locks,

scalability is not established. Massalin’s work was done in the context of the Synthesis operating

system on a dual processor hardware platform, so the degree of parallelism studied was very limited.

Furthermore, although the Synthesis work advocates reducing the need for synchronization, there

is little guidance given or emphasis placed on this aspect2. The lock-free structures developed

2Primarily, two approaches are advocated; 1) Code Isolation and 2) Procedure Chaining. Massalin argues for
the specialization of code paths which operate on independent data in a single threaded fashion thus avoiding the
need for synchronization. This approach however, is explored in a limited fashion in Synthesis and relies on run-time
code generation. Tornado’s object-oriented structure, on which K42 is based, explores the parallel advantages of
independent data in a more generalized and structured manner [49]. Procedure Chaining, the enqueueing of parallel
work, does not improve concurrency or reduce sharing but simply enforces serialization via a scheduling discipline.

2.1 Chapter 2: Background and Related Work 21

do not in themselves lead to less sharing or improved locality and hence, although having better

performance than lock based versions, the large scale benefits are likely limited.

Although the scalability of lock-free techniques is not obvious, the work does add evidence

for the feasibility of constructing an operating system around objects which encapsulate standard

data structures along with synchronization semantics. Such an approach enables the separation of

concerns with respect to concurrency, system structure and reuse of complex parallel optimizations

in the Synthesis operating system.

The MOSIX researchers have similarly observed the need to limit and bound communication

when tackling the problems of constructing a scalable distributed system [10, 11]. MOSIX focuses

on the scalability issues associated with scaling a single UNIX system image to a large number of

distributed nodes. The MOSIX work strives to ensure that the design of the internal management

and control algorithms impose a fixed amount of overhead on each processor, regardless of the

number of nodes in the system. Probabilistic algorithms are employed to ensure that all kernel

interactions involve a limited number of processors and that the network activity is bounded at

each node.

Unlike many of the other distributed systems, MOSIX is designed around a symmetric archi-

tecture where each node is capable of operating as an independent system, making its own control

decisions independently. Randomized algorithms are used to disseminate information such as load

without requiring global communication that would inhibit scaling. This allows each node to base

its decisions on partial knowledge about the state of the other nodes without global consensus.

Although MOSIX is targeted at a distributed environment with limited sharing and coarse-

grain resource management, its focus on limiting communication and use of partial information

to ensure scalability is worth noting. Any system which is going to scale in the large must avoid

algorithms that require global communications and leverage partial or approximate information

where possible.

While studying the performance of Sprite, Ousterhout et al. independently observed difficulties

associated with constructing a scalable operating system kernel [59]. Like Mach [16, 66, 107, 108,

145], the Sprite kernel, although designed for distributed systems, was designed to execute on

shared memory multi-processor nodes of a network. It employed both coarse and fine-grain locking.

The researchers at Berkeley conducted a number of macro and micro benchmarks to evaluate the

scalability of Sprite on a five processor system. They made the following observations:

• The system was able to demonstrate acceptable scalability for the macro benchmarks up to

2.1 Chapter 2: Background and Related Work 22

the five processors tested. Considerable contention was experienced in the micro benchmarks

however, indicating that macro benchmark results will not extend past seven processors.

• Even a small number of coarse-grain locks can severely impact performance. A running Sprite

kernel contains 500 to 1000 locks, but consistently two coarse-grain locks suffered the most

contention and were primary limiting factors to scalability. At five processors, a coarse-grain

lock was suffering 70% contention (i.e.,70% of attempts to acquire the lock failed).

• Coarse-grain locks are a natural result of incremental development and locking. Developers,

when first implementing a service, will acquire the coarsest grain lock in order to avoid

synchronization bugs and simplify debugging, and only subsequently do they split the locks

to obtain better scalability.

• Lock performance is difficult to predict even for knowledgeable kernel developers who designed

the system. The Sprite developers found that locks which they expected to be problematic

were not and unexpected locks were. Further, performance was brittle with performance cliffs

occurring at unpredictable thresholds; for example, good performance on five processors and

poor performance on seven.

• Ousterhout et al. advocate better tools to help developers understand and modify locking

structures.

In 1991 Cheriton et al. proposed an aggressive distributed shared memory parallel hardware

architecture called Paradigm and also described OS support for it based on multiple co-operating

instances of the V micro-kernel, a simple hand-tuned kernel designed for distributed systems con-

struction, with the majority of OS function implemented as user-level system servers [31]. The

primary approach to supporting sharing and application coordination on top of the multiple micro-

kernel instances was through the use of a distributed file system. The authors state abstractly that

kernel data structures, such as dispatch queues, are to be partitioned across the system to minimize

interprocessor interference and to exploit efficient sharing, using the system’s caches. Furthermore,

they state that cache behavior is to be taken into account by using cache-friendly locking and data

structures designed to minimize misses with cache alignment taken into consideration. Finally they

also assert that the system will provide UNIX emulation with little performance overhead. It is

unclear to what extent the system was completed.

2.1 Chapter 2: Background and Related Work 23

In 1994, as part of the Paradigm project, an alternative OS structure dubbed the Cache Kernel

was explored by Cheriton et al. [30]. At the heart of the Cache Kernel model was the desire to

provide a finer grain layering of the system, where user-level application kernels are built on top of

a thin cache kernel which only supports basic memory mapping and trap reflection facilities via an

object model. From a multi-processor point of view, however, its architecture remained the same as

the previous work, where a cluster of processors of the Paradigm system ran a separate instance of

a Cache Kernel. The authors explicitly point out that such an architecture simplifies kernel design

by limiting the degree of parallelism that the kernel needs to support. The approach results in

reduced lock contention and eliminates the need for pursuing aggressive locking strategies. Cheriton

et al. also allude to the fact that such an approach has the potential for improving robustness via

limiting the impact of a fault to a single kernel instance and only the applications that depend on it.

Although insightful, the Cache Kernel work did not explore or validate its claims. Hurricane [134]

and Hive [27], contemporaries of the Cache Kernel did explore these issues in greater detail, adopting

the high-level architecture proposed by the Paradigm group.

To summarize the experiences of the early multi-processor operating systems research, it is

worthwhile reviewing the experiences of the RP3 researchers [18], who attempted to use the Mach

micro kernel to enable multi-processor research. The RP3 authors state that a familiar programming

environment was a factor in choosing Mach as it was BSD Unix compatible while it still promised

flexibility and multi-processor support. The RP3 hardware was designed to minimize contention

in the system by providing hardware support for distributing addresses of a page across physical

memory modules, under control of the OS. There was no hardware cache coherence, but RP3

did have support for specifying uncached access on a page basis and user mode control of caches,

including the ability to mark data for later software controlled eviction. The OS strategy was to

start with the Mach micro-kernel, which supported a standard UNIX personality on top of it, and

progressively extend it to provide gang scheduling, processor allocation facilities and the ability to

exploit the machine-specific memory management features.

The RP3 researchers found that they needed to restructure the Mach micro kernel and UNIX

support in order to utilize the hardware more efficiently and in order to improve performance,

specifically needing to reduce memory contention. Some interesting points made include:

• Initially, throughput of page faults on independent pages degraded when more than three

processors touched new distinct pages because of contention created by the spin lock algorithm

used in the page-fault handling subsystem. Spin locks create contention in the memory

2.2 Chapter 2: Background and Related Work 24

modules in which the lock is located and performance worsens with the number of spinners.

“Essentially, lock contention results in memory contention that in turn exacerbates the lock

contention.” [25] By utilizing memory interleaving, it was possible to distribute data, in effect

reducing the likelihood of co-locating lock and data and hence improving performance.

• Contention induced by slave processors spinning on a single shared word degraded boot

performance to 2.5 hours. Eliminating the contention reduced boot time to 1/2 hour.

• The initial use of a global free-list did not scale, distributed per processor free-lists were

introduced to yield efficient memory allocation performance.

The RP3 authors found bottlenecks in both the UNIX and Mach code with congestion in

memory modules being the major source of slowdown. To reduce contention, the authors used

hardware specific memory interleaving, low contention locks and localized free lists. We contend

that the same benefits could have been achieved if locality had been explicitly exploited in the basic

design.

As stated earlier, UNIX compatibility and performance were critical to the RP3 team. In the

end, the flexibility provided by Mach did not seem to be salient to the RP3 researchers. Mach’s

internal traditional shared structure limited performance and its flexibility did not help to address

these problems.

Based on the work covered in this section, we note that high performance multi-processor

operating systems should:

1. enable high performance not only for large scale applications but also for standard UNIX

workloads which can stress traditional implementations, and

2. avoid contention and promote locality to ensure scalability.

2.2 Distributed Data Structures and Adaptation

In this section we focus on the research related to the use of distributed data structures and

associated work on adaptation.

2.2.1 Distributed Data Structures

A number of systems proposed the use of distributed data structures, albeit with various motiva-

tions. In this section we review some of the more prominent systems related work.

2.2 Chapter 2: Background and Related Work 25

Distributed Systems: FOs and DSOs

Fragmented Objects(FOs) [17, 83, 120] and Distributed Shared Objects(DSOs) [8, 62, 136] both

explore the use of a partitioned object model as a programming abstraction for coping with the

latencies in a distributed network environment. Fragmented Objects represent an object as a set

of fragments which exist in address spaces distributed across the machines of a local area network,

while the object appears to the client as a single object. When a client invokes a method of an

object, it does so by invoking a method of a fragment local to its address space. The fragments,

transparently to the client, communicate amongst each other to ensure a consistent global view of

the object. The Fragmented Objects work focuses on how to codify flexible consistency protocols

within a general framework.

In the case of Distributed Shared Objects, distributed processes communicate by accessing a

distributed shared object instance. Each instance has a unique id and one or more interfaces. In

order to improve performance, an instance can be physically distributed with its state partitioned

and/or replicated across multiple machines at the same time. All protocols for communication,

replication, distribution and migration are internal to the object and hidden from clients. A coarse-

grain model of communication is assumed, focusing on the nature of wide area network applications

and protocols such as that of the World Wide Web. For example, global uniform naming and binding

services have been addressed.

Clustered Objects are similar to FO’s and DSO’s in that they distribute/replicate state but

hide this from clients by presenting the view of a single object. Clustered Object representatives

correspond to FO’s fragments.

Language Support: CAs and pSather

Chien et al. introduced Concurrent Aggregates(CAs) as a language abstraction for expressing par-

allel data structures in a modular fashion [33]. This work is concerned with the language issues of

supporting a distributed parallel object model for efficient construction of parallel applications in a

message passing environment. Similar to several concurrent object-oriented programming systems,

an Actor model [1] is adopted. In this model, objects are self-contained, independent components

of a computing system that communicate by asynchronous message passing. Such models typically

impose a serialization of message processing by the use of message queues, thus simplifying the

programmer’s task by eliminating concurrency issues internal to an object. Chien et al. studied

2.2 Chapter 2: Background and Related Work 26

a language extension called an Aggregate that permits object invocation to occur in parallel. An

instance of an Aggregate has a single external name and interface, however each invocation is trans-

lated by a run-time environment to an invocation on an arbitrary representative of the Aggregate.

The number of representatives for an Aggregate is declared by the programmer as a constant. Each

representative contains local instances of the Aggregate fields. The language supports the ability

for one representative of an Aggregate to name/locate and invoke methods of the other represen-

tatives in order to permit scatter and gather operations via function shipping and more complex

cooperation.

pSather explores language and associated run-time extensions to support data distribution on

NUMA multi-processors for Sather, an Eiffel-like research language [80]. Specifically, pSather adds

threads, synchronization and data distribution to Sather. Unlike the previous work discussed,

pSather advocates orthogonality between object orientation and parallelism; it introduces new lan-

guage constructs independent of the object model for data distribution. Unlike Chien’s Concurrent

Aggregates, it does not impose a specific processing/synchronization model, nor does it assume the

use of system-provided consistency models/protocols like Distributed Shared Objects or Fragmented

Objects. In his thesis, Chu-Cheow proposes two primitives for replicating reference variables and

data structures such that a replica is located in each cluster of a NUMA multi-processor [80]. Since

the data distribution primitives are not integrated into the object model, there is no native support

for hiding the distribution behind an interface. There is also no support for dynamic instantiation

or initialization of replicas, nor facilities for distributed reclamation. Note that this work assumes

that every replicated data element will have a fixed mapping of one local representative for every

cluster with respect to the hardware organization and that initialization will be done for all replicas

once prior to the data element’s use.

The pSather work explores the advantages of several distributed data structures built on top

of the pSather primitives. This was done in the context of a set of data parallel applications on

a NUMA multi-processor. Given the regular and static parallelism of data parallel applications,

the semantics of the data structures explored are limited and restricted. The data structures

considered include: a workbag (a distributed work queue), a distributed hash table, a distributed

matrix and a distributed quad tree. The primary focus is to validate pSather implementations

of various applications; this includes the construction of the distributed data structures and the

applications themselves. Although the primary focus of the pSather work is on evaluating the

overall programmer experience, using the parallel primitives and the library of data structures

2.2 Chapter 2: Background and Related Work 27

developed, the performance of the applications is also evaluated with respect to scale. The author

highlights some of the tradeoffs in performance with respect to remote accesses given variations in

the implementation of the data structures and algorithms of the applications. He points out that

minimizing remote accesses, thus enhancing locality, is key to good performance for the applications

studied. Unfortunately, it appears that the author does not compare the performance of the

distributed data structures to centralized implementations, so it is difficult to get a feeling for the

exact benefits of distribution.

Finally, it is not clear that the distributed data structures that are explored in the pSather work

are appropriate for systems software, which is dynamic and event-driven in nature, as opposed to

the regular and static parallelism of scientific applications. For example, consider the semantics of

the distributed hash table:

• The state stored in the hash table is monotonically increasing; once inserted, an item will

never be removed.

• Each local hash table employs coarse-grain locking.

• There are no facilities for modifying stored state.

• There are no facilities for hashing distributed state.

The restrictions are not necessarily problematic for data parallel applications which would utilize

such a hash table to publish progressive results of a large distributed calculation. However, it would

be difficult to use such a hash table as a cache of page descriptors for the resident memory pages

when implementing an operating system. Systems code, in general, cannot predict the parallel

demand on any given data structure instance, and hence the data structure creation, initialization,

sizing and concurrency must be dynamic in nature. Additionally, systems software must be free to

exploit aggressive optimizations which simple semantics may not permit. For example, once it is

determined that a distributed hash table is going to be used, there may be other optimizations that

present themselves by distributing the data fields of the elements that are being stored. In the case

of page descriptors, rather than just storing a reference to a page descriptor, in the local replicas of

the hash table, one might want to allow each replica to store local versions of the access bits of the

page descriptor in order to avoid global memory access and synchronization on the performance

critical resident page fault path.

2.2 Chapter 2: Background and Related Work 28

Topologies and DSAs

In the early 1990’s there was considerable interest in message passing architectures, which typically

leveraged a point to point interconnection network and the promise of unlimited scalability. Such

machines, however, did not provide a shared memory abstraction. They were typically used for

custom applications, organized as a collection of threads which communicate via messages, aware

of and tuned for the underlying interconnection geometry of the hardware platform.

In an attempt to ease the burden and generalize the use of such machines, Bo et al. proposed

OS support for a distributed primitive called a Topology [114]. A Topology attempts to isolate

and encapsulate the communication protocol and structure among a number of identified commu-

nicating processes via a shared object-oriented abstraction.A Topology’s structure is described as

a set of vertices and edges where the vertices are mapped to physical nodes of the hardware and

edges capture the communication structure between pairs of nodes corresponding to vertices. An

example would be an inverse broadcast which encapsulates the necessary communication protocol

to enable the aggregation of data from a set of distributed processes. The Topology is implemented

to minimize the number of nonlocal communications for the given architecture being used. They

are presented as heavy-weight OS abstractions requiring considerable OS support for their manage-

ment and scheduling. Applications make requests to the operating system to instantiate, configure

and use a Topology. Each type encapsulates a fixed communication protocol predefined by the OS

implementors. Applications utilize a Topology by creating, customizing and invoking an instance,

binding the application processes to the vertices, specifying application functions for message pro-

cessing, specifying the state associated with each vertex and invoking the specified functions by

sending messages to the instance.

In subsequent work, motivated by significant performance improvements obtained with dis-

tributed data structures and algorithms on a NUMA multi-processor for Traveling Sales Person

(TSP) programs [99], Clémençon et al. proposed a distributed object model called Distributed

Shared Abstractions (DSAs) [34,35]. This work is targeted at increasing the scalability and porta-

bility of parallel programs via a reusable user level library which supports the construction of

objects that encapsulate a DSA. Each object is composed of a set of distributed fragments sim-

ilar to the Fragmented Objects and Distributed Shared Objects discussed earlier. The run-time

implementation and model are, however, built on the previous work on Topologies.

Akin to the work in pSather, Clémençon et al. specifically cited distribution as a means for

2.2 Chapter 2: Background and Related Work 29

improving performance by improving locality and reducing remote accesses on a multi-processor.

The authors asserted the following benefits:

• potential reduction in contention when accessing an object in parallel, since many operations

on the object will access only locally stored copies of its distributed state,

• decreases in invocation latencies, since local accesses are faster than remote accesses, and

• the ability to implement objects so that they may be used on both distributed and shared

memory platforms, therefore increasing the portability of applications using them.

As implied by the last two points, and influenced by their earlier work, Clémençon et al. assumed a

message passing communication model between fragments. Despite the message passing focus, the

performance results and analysis presented are relevant to the work done by our research group at

the University of Toronto [3–5,48,50].

Clémençon et al. observed two factors which affect performance of shared data structures on a

NUMA multi-processor:

1. contention due to concurrent access (synchronization overhead), and

2. remote memory access costs (communication overhead).

They observed that distribution of state is key to reducing contention and improving locality. When

comparing multiple parallel versions of the TSP program, they found that using a centralized work

queue protected by a single spin lock limited speedup to 4 times whereas a 10 times speed up

was possible with a distributed work queue on a system with 25 processors. Further, they found

that, by leveraging application specific knowledge, they were able to specialize the distributed

data structure implementation to further improve performance. They demonstrated that despite

additional complexities, distributed implementations with customized semantics can significantly

improve application performance. Note that, in the results presented, Clémençon et al. do not

isolate the influence of synchronization overhead versus remote access in their results3.

Based on performance studies of TSP on two different NUMA systems, Clémençon et al. state

that, “Any large scale parallel machine exhibiting NUMA memory properties must be used in a

fashion similar to distributed memory machines, including the explicit distribution of the state

and functionality of programs’ shared abstractions.” [35] They further note that machines with

3Concurrent centralized implementations which employ fine-grain locking or lock free techniques were not
considered.

2.2 Chapter 2: Background and Related Work 30

hardware cache coherence, such as the KSR [46], do not alleviate the need for distribution. Cache

coherence overheads further enforce the need for explicit distribution of state and its application-

specific management, in order to achieve high performance. Based on initial measurements done on

small scale SGI multi-processors, Clémençon et al. predicted that, given the trends in the disparity

between processor speeds and memory access times, distributed data structures will be necessary

even on small scale multi-processors. They point out an often over-looked aspect of the use of

shared memory multi-processors:

Multi-Processors are adopted for high performance and shared memory multi-processors

are claimed as superior to message passing systems as they offer a simple convenient

programming model. However, to achieve high performance on shared memory multi-

processors, they require the use of complex distributed implementations akin to those

used on message passing systems.

This mirrors our own experience in using shared-memory multi-processors and motivates our Clus-

tered Object work, which attempts to limit the impact of the added complexity through encapsu-

lation and reuse.

The actual detailed model and implementation of the DSA run-time appears to have been

strongly influenced by: 1) the previous Topology work, 2) assumptions about application use, and

3) the desire to be portable to distributed systems. This resulted in a heavy-weight facility which

is only appropriate for coarse-grain, long-lived, fully distributed application objects whose access

patterns are well known. Limiting characteristics include:

• expensive message based interface to objects where object access is 6 times more expensive

than procedure invocation,

• a restricted scheduling and thread model,

• support only for inter-fragment communication via remote procedure calls and no support

for direct shared memory inter-fragment access,

• expensive binding operations that preclude short lived threads,

• no support for efficient allocation or deallocation of objects, and

• manual initialization that is serial in nature.

2.2 Chapter 2: Background and Related Work 31

The use of the DSA library seems to have been very limited with only the distributed work queue

explored in the context of the TSP application. Given limited use and lack of experience in a

distributed systems environment, it is unclear if the restrictive, fully distributed message passing

model is justified.

In summary there are three key results from the DSA work:

1. A shared memory multi-processor parallel application’s performance can greatly benefit from

the use of distributed data structures.

2. Better performance can be achieved by exploiting application-specific knowledge to tailor

distributed implementations, as opposed to generic object implementations or general dis-

tributed methodologies which impose fixed models for the sake of generality.

3. Locality optimization can be effectively employed at the level of abstract data types.

Clustered Objects

In 1995, our research group at the University of Toronto proposed the use of Clustered Objects [101]

to encapsulate distributed data structures for the construction of NUMA multi-processor systems

software. Like the Concurrent Aggregates, Fragmented Objects, Distributed Shared Objects and

Distributed Shared Abstractions, Clustered Objects enable distribution within an object-oriented

model with the motivation to enable NUMA locality optimizations, like those advocated by pSather

and DSAs.4 Unlike the previous approaches, Clustered Objects were designed for systems level

software and uniquely targeted at ubiquitous use, where every object in the system is a Clustered

Object with its own potentially unique structure. They are designed to support both centralized

and distributed implementations, fully utilizing the hardware support for shared memory where

appropriate. They do not impose any constraints on the access model or computational model either

externally or internally to an object. The supporting mechanisms are light-weight and employ lazy

semantics to ensure high performance for short-lived system threads. Clustered Objects are a key

focus of this dissertation and are discussed in more detail throughout this document.

4Based on the experience of developing two multi-processor systems and associated systems software, the University
of Toronto group independently came to similar observations and conclusions to that of the DSA authors [34,35,99],
identifying the importance of locality to shared memory multi-processor performance and the possibility of utilizing
distribution to improve locality.

2.2 Chapter 2: Background and Related Work 32

Distributed Hash Tables

Finally, there has been a body of work which has looked at the use of distributed hash tables

in the context of specific distributed applications, including distributed databases [44], cluster

based internet services [57], peer-to-peer systems [38] and general distributed data storage and

look up services [24]. In general, the work done on distributed data structures for distributed

systems is primarily concerned with the exploration of the distributed data structure as a convenient

abstraction for constructing network based applications, increasing robustness via replication. Like

the Fragmented Object and Distributed Shared Object work, the use of distributed hash tables seeks

a systematic way of reducing and hiding network latencies. The coarse-grain nature and network

focus of this type of work results in few insights for the construction of performance critical and

latency sensitive shared memory multi-processor systems software.

2.2.2 Adaptation for Parallelism

Motivated by the sensitive and dynamic demands of parallel software, a number of researchers

have proposed leveraging the strict modularity imposed by object orientation in order to facilitate

adaptability and autonomic systems/computing. Unlike the previous work discussed, which focused

on object orientation for the sake of flexibility in system composition and configuration, the work

on adaptation focuses on using the encapsulation enforced by object boundaries to isolate the

computations which can have sensitive parallel performance profiles. Adaptation is enabled by

introducing mechanisms which allow reconfiguration of the isolated components, either by adjusting

parameters of the component or complete replacement. The most appropriate configuration can

then be chosen in order to maximize the performance based on the current demands. There has

been considerable work in the area of adaptable or autonomic computing. We restrict our discussion

to the work on adaptation for the sake of parallel performance.

In CHAOSarc [54], the authors explore a parallel real-time system for robot control using an

object-oriented decomposition. The work studies predictability within the context of a highly

configurable parallel programming environment. The focus on predictability led to a fine-grain

classification of computation and locking semantics in order to be able to match application de-

mand. This resulted in a large configuration space in which the components used to implement

a computation must match the run-time constraints and aspects of the computation. This lead

Mukherjee et al. to consider reconfiguration of objects and the use of adaptive objects [99].

2.2 Chapter 2: Background and Related Work 33

Mukherjee et al. [99] explore the costs, factors and tradeoffs with building adaptive systems

in the context of implementing parallel solutions to the Traveling Sales Person problem. They

attempt to construct and formalize a theory of adaptation, proposing a categorization of objects as

non-configurable, reconfigurable, and adaptable. Reconfigurable objects permit external changes

to mutable properties which affect their operation. Adaptable objects encapsulate a reconfigurable

object, monitoring facility, adaptation policy and reconfiguration mechanism. The utility of the

formalization proposed is unclear and no concrete implementation or mechanisms for supporting it

is given. The Mukerjee et al. do provide strong motivation with respect to parallel performance of

the TSP applications. They illustrate the benefits of an adaptive lock object which modifies its spin

and blocking behavior based on the demands it experiences versus using a static lock object. A 17%

improvement in application execution time was observed when studying a centralized algorithm of

TSP which uses shared data structures and a 6.5% improvement when considering a distributed

implementation of TSP.

Motivated by the results above, the Gheith et al. attempted to extend the single application

benefits observed to the entire system by enabling adaptation in the system layers. They proposed

an architecture for a reconfigurable parallel micro-kernel called KTK [53]. They assert that:

• Run-time behavior differs across multiple applications and across multiple phases of a single

application.

• Operating system kernel configurations can provide high-performance applications with the

policies and mechanisms best suited to their characteristics and to their target hardware.

Gheith et al. appeal to the standard flexibility arguments of previous object-oriented systems.

• Dynamic kernel reconfiguration can improve performance by satisfying each application’s

needs.

• Efficient application state monitoring can detect changes in application requirements which

are not known prior to program execution time.

The KTK architecture proposes a number of core kernel components which support configuration,

reconfiguration and adaptation. Each object identifies a set of attributes which are mutable and

support some form of arbitration with respect to the attribute change. The micro-kernel should

provide monitoring of kernel components in order to facilitate adaptation policies and also provide

support for application-defined adaptation policies. Although the case for system reconfiguration

2.2 Chapter 2: Background and Related Work 34

is compelling, it is unclear to what extent the KTK prototype achieved the goals set out or to

what extent application performance was improved or facilitated. Motivated by KTK, Silva et al.

attempt to factor the support for reconfiguration of a parallel object-based software into a library

called CTK [122] in order to facilitate a programming model that enables the expression and im-

plementation of program configuration and the run-time support for performance improvements

by changing configuration. Building on the KTK model, CTK adopts a model which incorporates

specification of mutable attributes and policies for attribute change. It also supports efficient on-

line capture of performance data in order to enable dynamic configuration. Utilizing the group’s

previous work, CTK explores a distributed work queue DSA (see 2.2.1) with respect to reconfigu-

ration in Traveling Sales Person solutions. The work proposes the use of a custom language that

incorporates the expression of object attributes and other facilities. CTK focuses on expressive

and general support for the specification of dynamic policies and attribute change. Evaluation

was limited to a single user-level application and the suitability of CTK in an operating system is

unclear.

Based on similar motivations, the K42 group has explored the integration of mechanisms for

enabling run-time adaptation of Clustered Objects [4, 5, 63, 64, 124]. Unlike the KTK and CTK

work, the K42 work focuses on the mechanism for enabling efficient replacement of a distributed

object rather than general issues of adaptation. The K42 work is uniquely focused on ensuring low

overheads so that object replacement can be used pervasively in the systems software. Furthermore,

the K42 work explores the use of adaptation with respect to system objects which are in critical

operating system paths and are subject to unpredictable dynamic concurrent access.

2.2.3 Summary

Previous work on distributed data structures and adaptation suggests that a high performance

operating system should:

• Enable data distribution, as highly concurrent shared memory multi-processor software re-

quires distributed data structures to ensure high concurrency and low latency. Since operating

systems must reflect the concurrency of the workload, they, by definition, need to enable the

highest possible degree of concurrency in order not to limit application performance.

• Utilize object orientation to help cope with the complexity introduced by data distribution,

but ensure low overhead.

2.3 Chapter 2: Background and Related Work 35

• Support adaptation in order to support variability in parallel workloads and OS demands.

2.3 Modern Multi-Processor Operating Systems Research

There have been a number of papers published on performance issues in shared-memory multi-

processor operating systems, but mostly in the context of resolving specific problems in a specific

system [21, 26, 30, 90, 106, 129]. These operating systems were mostly for uniprocessor or small-

scale multi-processor systems, trying to scale up to larger systems. Other work on locality issues

in operating system structure was mostly either done in the context of earlier non-cache-coherent

NUMA systems [28], or, as in the case of Plan 9, was not published [105]. Two projects that

were aimed explicitly at large-scale multi-processors were Hive [27], and Hurricane [134]. Both

independently chose a clustered approach by connecting multiple small-scale systems to form either,

in the case of Hive, a more fault tolerant system, or, in the case of Hurricane, a more scalable system.

However, both groups ran into complexity problems with this approach and both have moved on

to other approaches; namely Disco [20] and Tornado [48], respectively.

2.3.1 Characteristics of Scalable Machines

SMP architectures present the programmer with the familiar notion of a single address space within

which multiple processes exist, possibly running on different processors. Unlike a message-passing

architecture, an SMP does not require the programmer to use explicit primitives for the sharing of

data. Hardware-supported shared memory is used to share data between processes, even if running

on different processors. Many modern SMP systems provide hardware cache coherence to ensure

that the multiple copies of data in the caches of different processors (which arise from sharing) are

kept consistent.

Physical limits, cost efficiency and desire for scalability have led to SMP architectures that are

formed by inter-connecting clusters of processors. Each cluster typically contains a set of processors

and one or more memory modules. The total physical memory of the system is distributed as

individual modules across the clusters, but each processor in the system is capable of accessing

any of these memory modules in a transparent way, although it may suffer increased latencies

when accessing memory located on remote clusters. SMPs with this type of physical memory

organization are called Non-Uniform Memory Access (NUMA) SMPs. Examples of such NUMA

SMP architectures include Stanford’s Dash [78] and Flash [74] architectures, University of Toronto’s

2.3 Chapter 2: Background and Related Work 36

Hector [140] and NUMAchine [139] architectures, Sequent’s NUMA-Q [119] architecture and SGI’s

Cray Origin2000 [76]. NUMA SMPs that implement cache coherence in hardware are called CC-

NUMA SMPs. In contrast, multi-processors based on a single bus have Uniform Memory Access

times and are called UMA SMPs, but are limited in scale.

When discussing data access on a NUMA multi-processor it is convenient to appeal to an

abstract notion of distance. An access to a data item is considered “near or close” if the data item

is stored in a memory module which has lower latencies for a specific processor, given a NUMA

architecture, and conversely the data item is “far or remote” if it is located in a module for which

the latencies are higher for the accessing processor.

It can be difficult to realize the performance potential of a CC-NUMA SMP. The programmer

must not only develop algorithms that are parallel in nature, but must also be aware of the subtle

effects of sharing both in terms of correctness and in terms of performance. These effects include:

• Access to shared data can suffer increased communication latencies due to the coherence

protocols and distribution of physical memory.

• The use of explicit synchronization is needed to ensure correctness of shared data, which can

also induce additional computation and communication overheads.

• False sharing reduces the effectiveness of the hardware caches and results in the same high

cache coherence overhead as true sharing. (False sharing occurs when independently accessed

data is co-located in the same cache line and requires careful data layout in memory to avoid.)

Memory latencies and cache consistency overheads can often be reduced substantially by de-

signing software that maximizes the locality of data accesses. Replication and partitioning of data

are primary techniques used to improve locality. Both techniques allow processes to access localized

instances of data in the common case. They decrease the need for remote memory accesses and

lead to local synchronization points that suffer less contention.

Other more coarse-grain approaches for improving locality in general SMP software include

automated support for memory page placement, replication and migration [75, 84, 138] and cache

affinity aware process scheduling [42,58,85,126,137].

The two key factors affecting multi-processor software, and in particular OS performance, be-

sides the policies and algorithms employed by the software, are memory system and locking behav-

iors. The key to maximizing memory system performance on a multi-processor is to minimize the

2.3 Chapter 2: Background and Related Work 37

amount of (true and false) sharing, particularly for read-write data structures. Not paying careful

attention to sharing patterns can cause excessive cache coherence traffic, resulting in potentially

terrible performance due to the direct effect of the extra cache misses and to the secondary ef-

fect of contention in the processor-memory interconnection network and at the memory itself. For

example, in a study of IRIX on a 4-processor system, Torrellas found that misses due to sharing

dominated all other types of misses, accounting for up to 50 percent of all data cache misses [132].

Similarly, Rosenblum noted in a study of an eight processor system that 18 percent of all coherence

misses were caused by the false sharing of a single cache line containing a highly shared lock in the

IRIX operating system [110].

In larger systems, the secondary effects become more significant. Moreover, in large NUMA

systems, it is also necessary to take memory access latencies into account, considering that accesses

to remote memory modules can cost several times as much as accesses to local memory modules.

The significance of this was observed by Unrau et al., where, due to the lack of physical locality in

the data structures used, the uncontended cost of a page fault increased by 25 percent when the

system was scaled from 1 to 16 processors [134].

The sharing of cache lines can often be reduced by applying various replication and partitioning

strategies, whereby each processor (or set of processors) is given a private copy or portion of the data

structure. The same strategy also helps increase locality, aiding larger NUMA systems. However,

replication and partitioning requires more work in managing and coordinating the multiple data

structures.

Despite disputes about the details, it is widely accepted that scalable large multi-processor

hardware is realizable, given a hardware-supported distributed shared memory architecture. But

such hardware will have properties that require special attention on the part of systems software if

general purpose workloads are to be supported.

2.3.2 Operating Systems Performance

Poor performance of the operating system can have considerable impact on application performance.

For example, for parallel workloads studied by Torrellas et al., the operating system accounted for

as much as 32% to 47% of the non-idle execution time [132]. Similarly Xia and Torrellas showed

that for a different set of workloads, 42% to 54% of the time was spent in the operating system [143],

while Chapin et al. found that 24% of total execution time was spent in the operating system [26]

for their workload.

2.3 Chapter 2: Background and Related Work 38

To keep the operating system from limiting application performance, it must be highly con-

current. The traditional approach to developing SMP operating systems has been to start with a

uniprocessor operating system and to then successively tune it for concurrency. This is achieved

by adding locks to protect critical resources. Performance measurements are then used to identify

points of contention. As bottlenecks are identified, locks are split into multiple locks to increase

concurrency, leading to finer-grained locking. Several commercial SMP operating systems have

been developed as successive refinements of a uniprocessor code base. Denham et al. provides an

excellent account of one such development effort [41]. This approach is ad hoc in nature, however,

and leads to complex systems, while providing little flexibility. Adding more processors to the

system, or changing access patterns, may require significant re-tuning.

The continual splitting of locks can also lead to excessive locking overheads. In such cases, it

is often necessary to design new algorithms and data structures that do not depend so heavily on

synchronization. Examples include the: software set associative cache architecture developed by

Peacock et al. [102,103], kernel memory allocation facilities developed by McKenny et al. [96], fair

fast scalable reader-writer locks developed by Krieger et al. [73], performance measurement kernel

device driver developed by Anderson et al. [2], and the intra-node data structures used by Stets et

al. [128].

The traditional approach of splitting locks and selectively redesigning also does not explicitly

lead to increased locality. Chapin et al. studied the memory system performance of a commercial

Unix system, parallelized to run efficiently on the 64-processor Stanford DASH multi-processor [26].

They found that the time spent servicing operating system data misses was three times more than

time spent executing operating system code. Of the time spent servicing operating system data

misses, 92% was due to remote misses. Kaeli et al. showed that careful tuning of their operating

system to improve locality allowed them to obtain linear speedups on their prototype CC-NUMA

system, running OLTP benchmarks [67].

In the early to mid-1990’s, researchers identified memory performance as critical to system

performance [26, 29, 89, 110, 132]. They noted that cache performance and coherence are critical

aspects of SMP hardware which must be taken into account by software, and that focusing on

concurrency and synchronization is not enough.

Rosenblum et al. explicitly advocated that operating systems must be optimized to meet the

demands of users for high performance [110]. However, they point out that operating systems are

large and complex and the optimization task is difficult and, without care, tuning can result in in-

2.3 Chapter 2: Background and Related Work 39

creased complexity with little impact on the end-user performance. The key is to focus optimization

by identifying performance problems. They studied three important workloads:

1. Program development workload,

2. Database workload, and

3. Large simulations which stress the memory subsystem.

They predicted that, even for small scale SMP’s, coherence overheads induced by communica-

tion and synchronization overheads would result in MP OS services consuming 30% to 70% more

resources than uniprocessor counterparts. They also observed that larger caches do not help alle-

viate coherence overhead, so the performance gap between MP OSs and UP OSs will grow unless

there is focus on kernel restructuring to reduce unnecessary communication. They pointed out

that, as the relative cost of coherence misses goes up, programmers must focus on data layout to

avoid false sharing, and that preserving locality in scheduling is critical to ensuring effectiveness

of caches. Rescheduling processes on different processors can result in coherence traffic on kernel

data structures.

The research at the University of Toronto has been addressing these same issues. Unlike many

of the previously discussed MP OS research efforts, the University of Toronto chose to first focus on

multi-processor performance, thereby uniquely motivating, justifying and evaluating the operating

system design and implementation based on the structure and properties of scalable multi-processor

hardware. Motivated by the Hector multi-processor [140], representative of the architectures for

large scale multi-processors of the time [12,46,78,104], the group chose a simple structuring for the

operating system which directly mirrored the architecture of the hardware, hoping to leverage the

strengths of the hardware structure while minimizing its weaknesses.

By focusing on performance rather than flexibility, the Hurricane group was motivated to ac-

knowledge, analyze and identify the unique operating system requirements with respect to scalable

performance. Particularly, based on previous literature and queuing theory analysis, the following

guidelines were identified [134]:

Preserving parallelism: The operating system must preserve the parallelism afforded by the

applications. If several threads of an executing application (or of independent applications

running at the same time) request independent operating system services in parallel, then they

must be serviced in parallel; otherwise the operating system becomes a bottleneck, limiting

2.3 Chapter 2: Background and Related Work 40

scalability and application speedup. Critically, it was observed that an operating system is

demand driven and its services do not utilize parallelism, thus parallelism can only come from

application demand. Therefore, the number of operating system service points must increase

with the size of the system and the concurrency available in accessing the data structures must

grow with the size of the system to make it possible for the overall throughput to increase

proportionally.

Bounded overhead: The overhead for each independent operating system service call must be

bounded by a constant, independent of the number of processors. If the overhead of each

service call increases with the number of processors, the system will ultimately saturate, so

the demand on any single resource cannot increase with the number of processors. For this

reason, system wide ordered queues cannot be used, and objects cannot be located by linear

searches if the queue lengths or search lengths increase with the size of the system. Broadcasts

cannot be used for the same reason.

Preserve locality: The operating system must preserve the locality of the applications. It is

important to consider the memory access locality in large-scale systems because, for example,

many large-scale shared memory multi-processors have non-uniform access (NUMA) times,

where the costs of accessing memory is a function of the distance between the accessing

processor and the target memory, and because cache consistency incurs more overhead in a

large system. Specifically it was noted that locality can be increased a) by properly choosing

and placing data structures within the operating system, b) by directing requests from the

application to nearby service points, and c) by enacting policies that increase locality in the

applications’ memory accesses. For example, policies should attempt to run the processes of

a single application on processors close to each other, place memory pages in proximity to

the processes accessing them, and direct file I/O to devices close by. Within the operating

system, descriptors of processes that interact frequently should lie close together, and memory

mapping information should lie close to the processors which must access it to handle page

faults.

Although some of these guidelines have been identified by other researchers [9,123], we are not aware

of other general purpose shared memory multi-processor operating systems which pervasively utilize

them in their design. Over the years, these guidelines have been refined but have remained a central

focus of the body of research work done at the University of Toronto.

2.3 Chapter 2: Background and Related Work 41

Hurricane, in particular, employed a coarse-grain approach to scalability, where a single large

scale SMP was partitioned into clusters of a fixed number of processors. Each cluster ran a separate

instance of a small scale SMP operating system, cooperatively providing a single system image.

Hurricane attempted to directly reflect the hardware structure, utilizing a collection of separate

instances of a small-scale SMP operating system, one per hardware cluster. Implicit use of shared

memory is only allowed within a cluster, we refer to this approach as fixed clustering.. Any co-

ordination/sharing between clusters occurs using a more expensive explicit facility. It was hoped

that any given request by an application could in the common case be serviced on the cluster on

which the request was made with little or no interaction with other clusters. The fixed clustering

approach limits the number of concurrent processes that can contend on any given lock to the

number of processors in a cluster. Similarly, it limits the number of per-processor caches that need

to be kept coherent. The clustered approach also ensures that each data structure is replicated into

the local memory of each cluster.

Despite many of the positive benefits of clustering, it was found that: (i) the traditional within-

cluster structures exhibit poor locality, which severely impacts performance on modern multi-

processors; (ii) the rigid clustering results in increased complexity as well as high overhead or poor

scalability for some applications; (iii) the traditional structures as well as the clustering strategy

make it difficult to support the specialized policy requirements of parallel applications [48].

Related work at Stanford on the Hive operating system [27] also focused on clustering, firstly as

a means of providing fault containment and secondly as a means for improving scalability. Having

experienced similar complexity and performance problems with the use of fixed clustering, the

Stanford research group began a new project in the late 1990’s called Disco [20,56,109]. The Disco

project pursued strict partitioning as a means for leveraging the resources of a multi-processor.

Rather than trying to construct a kernel which can efficiently support a single system image, they

pursue the construction of a kernel which can support the execution of multiple virtual machines

(VMs). By doing so, the software within the virtual machines is responsible for extracting the

degree of parallelism it requires from the resources allocated to the VM on which it is executing.

Rather than wasting the resources of a large scale machine on a single OS instance that is incapable

of efficiently utilizing all the resources, the resources are partitioned across multiple OS instances.

There are three key advantages to this approach:

1. The underlying systems software which enables the partitioning does not itself require high

concurrency.

2.3 Chapter 2: Background and Related Work 42

2. Standard workloads can be run by leveraging the Virtual Machine approach to run standard

OS instances.

3. Resources of a large scale machine can be efficiently utilized with standard software, albeit

without native support for large scale applications and limited sharing between partitions.

To some extent this approach can be viewed as a tradeoff which permits large scale machines to be

leveraged using standard systems software.

Two fundamental points are raised by the Disco research:

1. Standard operating systems do not effectively support large scale multi-processors.

2. Despite point 1, the standard environment offered by commodity systems is compelling enough

to justify partitioning of the hardware.

This implies that a new scalable system must support the standard operating environment of a

commodity system if it is to be effective.

Like the Stanford group, the Toronto researchers also pursued a new project based on their

experiences with fixed clustering. In contrast, however, the Toronto group chose to pursue an

operating systems structure which relaxed the boundaries imposed by clustering when constructing

its new operating system which called Tornado. The fundamental approach was to explore the

structuring of an operating system kernel so that a single system image could be efficiently scaled

without having to appeal to the fixed boundaries of clustering.

Like other systems, Tornado had an object-oriented design, but not primarily for the software

engineering benefits or for flexibility, but rather for multi-processor performance benefits. More

specifically, the design of Tornado was based on the observations that: (i) operating systems are

driven by the request of applications for virtual resources; (ii) to achieve good performance on

multi-processors, requests to different resources should be handled independently, that is, without

accessing any common data structures and without acquiring any common locks; and (iii) the

requests should, in the common case, be serviced on the same processor on which they are issued.

This is achieved in Tornado by adopting an object-oriented approach where each virtual and phys-

ical resource in the system is represented by an independent object, so that accesses on different

processors to different objects do not interfere with each other. Details of the Tornado operating

system are given elsewhere [48,49].

The contributions of the Tornado work include:

2.3 Chapter 2: Background and Related Work 43

1. an appropriate object decomposition for a multi-processor operating system,

2. the development of scalable and efficient support in the object run-time that would enable de-

clustered (distributed) implementations of any object (Objects in Tornado were thus dubbed

Clustered Objects),

3. the development of a semi-automatic garbage collection scheme incorporated in the object run-

time system that facilitates localizing lock accesses and greatly simplifies locking protocols,5

and

4. the development of a core set of low-level operating system facilities which are tuned for

multi-processor performance showing high degrees of concurrency and locality.

The primary core set of low-level OS facilities focused on in Tornado included:

• Scalable efficient multi-processor memory allocation.

• Light-weight protection domain crossing which is focused on preserving locality, utilizing only

local processor resources in the common case.

In Tornado, the majority of the system’s objects did not utilize distribution. Gamsa’s work on

Clustered Objects in Tornado focused on developing the underlying infrastructure and basic mecha-

nisms [48]. My work, developing the Clustered Object model and studying the development and use

of distributed object implementations, began in Tornado [3] utilizing the supporting mechanisms

developed by Gamsa.

In the late 1990’s, IBM began an effort to develop K42, a research operating system to explore

scalability and a novel user-level structure, while providing compatibility with a standard OS. In

an attempt to account for scalability within the basic design and structure, IBM chose to base K42

on Tornado. The University of Toronto licensed Tornado to IBM. Our group at the University of

Toronto has closely collaborated with IBM to design and implement K42, with our research group

focusing on K42’s scalability.

In this dissertation, I explore the use of distributed data structures in K42, continuing my

initial work on Clustered Objects from Tornado. This includes the standardization of the use

of the Clustered Object mechanisms proposed in Tornado via a set of protocols which provide

5With the garbage collection scheme, no additional (existence) locks are needed to protect the locks internal to
the objects. As a result, Tornado’s locking strategy results in much lower locking overhead, simpler locking protocols,
and can often eliminate the need to worry about lock hierarchies. As part of Tornado’s garbage collection scheme,
the Toronto research group independently developed a lock free discipline similar to that of Read-Copy-Update [97].

2.3 Chapter 2: Background and Related Work 44

a distributed object-oriented model, permitting incremental development while fully leveraging

hardware-supported shared memory. Doing so, this work builds upon the lessons of previous

research:

• focus on performance over flexibility,

• maximize concurrency, focusing on structures and algorithms rather than improved synchro-

nization as done in earlier systems,

• maximize hardware locality,

• enable adaptation in order to cope with variability in parallel demands.

In addition to the development of the Clustered Object model and infrastructure, this dissertation

illustrates the viability of using distributed data structures in the construction and optimization

of key OS services, demonstrating considerable improvements in the scalability of standard OS

workload benchmarks. Two key features of K42 that facilitate our work are:

1. an object-oriented decomposition, as advocated by the Tornado work, which reflects workload

independence and enables per-resource instance optimization, and

2. a Linux compatible infrastructure that provides an accepted software environment, allowing

the execution of standard workloads.6

In the next chapter we will look more carefully at the motivation for introducing the complexity

of distribution into an operating system kernel.

6Previous work has shown that using a standard software environment is critical to ensuring relavancy of OS
research performance results.

Chapter 3

Motivation and Clustered Object

Overview

In this chapter, we motivate the use of distribution in the construction of systems software for

shared memory multi-processor operating systems. We then provide an overview of Clustered

Objects, a software construction for the systematic application of distribution in an object-oriented

system. The aim of this chapter is to provide the necessary background for the following chapter

which describes examples of distributed structures that have been implemented in K42 as a part

of this work.

3.1 Motivation: Performance

To fully utilize multi-processor architectures, three issues require special attention:

Concurrency: Software must exploit concurrency to fully utilize the processing resources of

an SMP. Concurrent processes use shared memory to cooperate, but concurrent updates to

shared data must be serialized to ensure consistency. The addition of synchronization in the

form of locks and other atomic primitives can be used to control concurrency. Deciding where

to add synchronization and what type of synchronization to use can be non-trivial. A strategy

that is too coarse can lead to highly contended locks and limited concurrency. On the other

hand, a strategy that is too fine can lead to excessive overheads due to having to acquire and

release many locks. Often, a complete redesign of an algorithm and its data structures can

significantly reduce the amount of shared data and hence the need for synchronization.

45

3.1 Chapter 3: Motivation and Clustered Object Overview 46

Cache Misses: Efficient use of caches is critical to good performance for two reasons. Firstly,

a low cache miss rate ensures that processors do not spend large amounts of time stalling

on memory accesses. Secondly, it reduces the traffic on shared system busses. With per-

processor caches, processors accessing data on the same cache line, either because the data

is being shared directly or because it is being shared falsely, causes the line to be replicated

into multiple caches. Sharing of cache lines by two or more processors causes an increase in

consistency overhead and an increase in cache misses1. Avoiding shared data and carefully

laying out data in memory to avoid false sharing can substantially reduce cache line sharing,

and the associated increase in overheads.

Remote Memory Access: To achieve good performance on Non-Uniform Memory Access

(NUMA) systems, the extra costs of remote memory accesses must be avoided. Caches can

help to reduce the cost of remote accesses, but do not eliminate the costs completely. The first

access to a remote data element has a higher cost. Additionally, true and false read-write

sharing can force invalidation of locally cached copies of remote data. Eliminating shared

data and carefully placing data in the memory modules closest to the processors that access

the data can reduce the number of remote memory accesses.

We define the term locality management to refer to the combination of increasing concurrency,

reducing cache misses and reducing remote memory accesses. Gamsa et al. have outlined a set of

design principles for developing software that manages locality [50], the main points of which are:

• Concurrency

– Replicate read locks and implement write locks as a union of the read locks. This

increases concurrency by making the locks finer grained.

• Cache Misses

– Segregate read-mostly data from frequently modified data to reduce misses due to false

sharing.

– Segregate independently accessed data to eliminate false sharing.

– Replicate write-mostly data to reduce sharing.

1To be more precise, invalidation-based cache coherence protocols require that a processor writing to a line obtain
ownership of the line if it does not already own it (upgrade miss). This results in the invalidation of all copies of the
line in other processors’ caches. Thus all other processors will suffer a miss (sharing miss) on a subsequent access to
the line.

3.1 Chapter 3: Motivation and Clustered Object Overview 47

– Use per-processor data wherever possible to avoid sharing.

– Segregate contended locks from their associated, frequently modified data. This keeps

lock contenders from interfering with the lock holder.

– Co-locate un-contended locks with their associated data to better utilize spatial locality

and reduce the number of cache misses.

• Remote Memory Accesses

– Ensure that read-mostly data is replicated into per-processor memory.

– Migrate read/write data between per-processor memory if accessed primarily by one

processor.

– Replicate write-mostly data where possible and ensure replicas are in per-processor mem-

ory.

• Algorithmic

– Use approximate local information rather than exact global information.

– Avoid barriers

Replication, partitioning, migration and data placement are the key techniques advocated to

implement these principles. Replication refers to the creation of local copies of data that can

be locked and accessed locally. Partitioning is similar to replication but splits data into local

components rather than making copies. Migration allows data to be moved to a location that

provides greatest locality. Data placement refers to the use of padding and custom allocation

routines to control where data is placed on cache lines and in the system’s memory modules so as

to avoid false sharing.

To illustrate the magnitude of the performance impact of contention and sharing, consider the

following experiment: each processor continuously, in a tight loop, issues a request to a server,

utilizing the Inter-Process Communication facility (IPC). The IPC from the client to the server

and the request at the server are processed entirely on the same processor from which the request

was issued, and no shared data needs to be accessed for the IPC. Using K42 on an S85 Enterprise

Server IBM RS/6000 PowerPC bus-based cache-coherent multi-processor with 24 600MHZ RS64-IV

processors and 16GB of main memory, the round trip IPC costs 1193 cycles. It involves an address

3.1 Chapter 3: Motivation and Clustered Object Overview 48

space switch, transfer of several arguments, and authentication on both the send and reply path.2

The increment of a variable in the uncontended case adds a single cycle to this number. Figure 3.1

shows the performance of 4 variants of this experiment, measuring the number of cycles needed for

each round-trip request-response transaction:

1. Increment a counter protected by a lock: each request is to increment a shared counter, where

a lock is acquired before the increment. This variant is represented by the top-most curve:

at 24 processors, each transaction is slowed down by approximately a factor of 19.

2. Increment a counter using an atomic increment operation. This variant shows a steady

degradation where, at 24 processors, each request-response transaction is slowed down by a

factor of about 12.

3. Increment a per-processor counter in an array. This variant has no logical sharing, but

exhibits false sharing since multiple counters reside in a single cache line. In the worst case,

each request-response transaction is slowed down by a factor of about 6. A knee appears at

16 processors due to the fact that 16 counters fit on a single cache-line on the machine used.

4. Increment a padded per-processor counter in an array. This variant is represented by the

bottom-most curve that is entirely flat, indicating good speedup: up to 24 request-response

transactions can be processed in parallel without interfering with each other.

These experiments show that any form of sharing in a critical path can be extremely costly — a

simple mistake can cause one to quickly fall off of a performance cliff. Even though the potentially

shared operation is, in the sequential case, less than one tenth of one percent of the execution

time of the experiment, it quickly dominates performance if it is in a critical path on a multi-

processor system. This kind of dramatic result strongly suggests that we must simplify the task

of the developer as much as possible, providing abstractions and infrastructure that simplify the

development of operating system code that minimizes sharing.

In general, data structures that may have been efficient in earlier systems, and might even

possess high levels of concurrency, are often inappropriate in modern systems with high cache miss

and write sharing costs. Moreover, as the example above demonstrates, a single poorly constructed

component accessed in a critical path can have a serious performance impact. While the importance

of locality has been recognized by many implementors of shared memory multi-processor operating

2The cost for an IPC to the kernel, where no context switch is required, is 721 cycles.

3.1 Chapter 3: Motivation and Clustered Object Overview 49

5 10 15 20
Processors

0

5000

10000

15000

20000

25000

C
yc

le
s

IPC using Counter Protected by Lock
IPC using Atomic Counter
IPC using Independent Counters with False Sharing
IPC using Non-Shared Updateable Counter

Figure 3.1: K42 microbenchmark measuring cycles required for parallel client-server IPC request to update
counter. Locks, shared data access and falsely shared cache lines all independently increase round-trip times
significantly. The knee at 16 processors, when using independent counters with false sharing, is due to the
fact that 16 counters fit on a single L2 cache-line and at 17 processors the load is being distributed to two
cache-lines.

systems, it can be extremely difficult to retrofit locality into existing operating system structures.

The partitioning, distribution, and replication of data structures, as well as the algorithmic changes

needed to improve locality, are difficult to isolate and implement in a modular fashion, given a

traditional operating system structure.

The fact that existing operating system structures have performance problems, especially when

supporting parallel applications, is exemplified in Figure 3.2, which shows the results of a few simple

micro-benchmarks run on a number of commercial multi-processor operating systems3. For each

commercial operating system considered, there is a significant slowdown when simple operations

that should be serviceable completely independently of each other are issued in parallel. Micro-

benchmarks are not necessarily a good measure of overall performance, however these results do

3It should be noted that these results are from 1999 and there have been advances in these commercial systems
which are not reflected in these results.

3.2 Chapter 3: Motivation and Clustered Object Overview 50

1 2 4 8 12 16
1

10

100 page faults

1 2 3 4

1

10

1 2 4 8 12 16
1

10

100

Sl
ow

 D
ow

n fstats

1 2 3 4

1

10

1 2 4 8 12 16
Processors

1

10

100 thread creations

sgi
convex
ibm
sun
tornado

1 2 3 4

1

10

Figure 3.2: Normalized cost (log scale) of simultaneously performing on n processors: n in-core page faults
(top), n fstats (middle), and n thread creations/deletions (bottom) for 5 commercial shared memory multi-
processor operating systems and for Tornado. The graphs on the right simply magnify the left-most part of
the graphs on the left for clarity. A full description of these experiments is available elsewhere [49].

show that the existing systems can have performance problems.

3.2 Clustered Objects

One of the main contributions of this work has been to improve K42’s scalability through the ap-

plication of distribution to core system objects. The simple counter increment experiment demon-

strates, that on a multi-processor, there is a large benefit to using a distributed counter rather than

a single shared one. In the distributed case, each processor increments a per-processor sub-counter

that does not require synchronization or shared memory access. When the value of the counter is

required, the per-processor sub-counters are summed.

When implementing a distributed counter, there are a number of properties that are desir-

able. The distributed nature of the counter should be hidden behind its interface, preserving clean

component boundaries and isolating client code from the distribution. An instance of the counter

should have a single, unique, processor-independent identifier that transparently directs the caller

3.2 Chapter 3: Motivation and Clustered Object Overview 51

to the correct processor-specific sub-counter. Care must be used to ensure that the process for

directing an access to a sub-counter does not require shared structures or incur significant costs in

the common case. Using shared structures to access a per-processor sub-counter would defeat the

purpose of trying to eliminate sharing. Further, if the costs to direct an access to the correct sub-

counter are too expensive, then the use of this approach becomes questionable when the counter

is only accessed on a single processor. To ensure scalability on systems with a large number of

processors, a lazy approach to allocating the sub-counters is necessary. This ensures that the costs

of allocating and initializing the sub-counter only occur on processors that access the counter.

To provide both uniprocessor and multi-processor components within a single object model,

all K42’s objects are implemented using Clustered Objects. Clustered Objects support distributed

designs while preserving the benefits of a component-based approach. A Clustered Object can be

internally decomposed into a group of cooperating subparts, called Representatives, that implement

a uniform interface, but use distributed structures and algorithms to avoid shared memory and

synchronization on its frequent and critical operations. Clustered Objects provide an infrastructure

to implement both shared and distributed implementations of objects, and transparently to the

client, permit the use of the implementation appropriate for the access pattern of the object.

Collections of C++ classes are used to define a Clustered Object, and run-time mechanisms are

used to support the dynamic aspects of the model.

In K42, we have re-implemented the low-level Clustered Object infrastructure (along with an

extended garbage collection scheme) and implemented a new internal model of Clustered Objects

and the associated protocols. Chapter 5 describes Clustered Objects and associated infrastructure

and protocols in detail. The remainder of this section will provide an overview of Clustered Objects.

The overview provides the background for the next chapter, which describes examples of the use

of distribution in the construction and optimization of K42 system objects.

Clustered Objects allow each object instance to be decomposed into per-processor Represen-

tatives4, and therefore provide a vehicle for distributed implementations of objects. Figure 3.3

abstractly illustrates a Clustered Object of a simple distributed integer counter. Externally, a sin-

gle instance of the counter is visible, but internally, the implementation of the counter is distributed

across a number of Representatives, each local to a processor. An invocation of a method of the

Clustered Object’s interface on a processor is automatically and transparently directed to the Rep-

4A Representative can be associated with a cluster of processors of an arbitrary size, from 1 to n, and not
necessarily per processor.

3.2 Chapter 3: Motivation and Clustered Object Overview 52

inc

v
a
l

dec

inc

Cv
a
l

d
ec

Proc 0 Proc 1 Proc 2

inc

v
a
l

d
ec

C

inc

v
a
l

d
ec

C

Figure 3.3: Abstract Clustered Object Distributed Counter

resentative local to the invoking processor. The internal distributed structure of a Clustered Object

is encapsulated behind its interface and transparent to clients of the object. In Figure 3.3, a single

instance of the counter, represented by the outer ring labeled with the counter’s interface (inc,

val and dec), is accessed by code executing on the processors at the bottom of the diagram. All

processors invoke the inc method of the instance. Transparently to the invoking code, the invo-

cations are directed to internal per-processor Representatives, illustrated by the three inner rings

in the diagram. Each Representative supports the same interface but encapsulates its own data

members. This ensures that the invocation of increment on each processor results in the update of

an independent per-processor counter, avoiding sharing and ensuring good increment performance.

In the next chapter we will study our use of distribution in the construction of K42 system

objects. The details of the Clustered Object infrastructure developed are presented in Chapter 5.

Chapter 4

Examples of Clustered Object

Implementations

This chapter reviews the Clustered Objects we have designed and developed in K42 for distributing

data structures in order to optimize performance and promote scalability, and presents associated

experimental results.

4.1 Case Study: K42 VMM Objects

Virtual memory management (VMM) is one of the core services that a general purpose operating

system provides and is typically both complex in function and critical to performance. Complexity

is due primarily to i) the diversity of features and protocols that the virtual memory services must

provide, and ii) the highly asynchronous and concurrent nature of VMM requests. The demand

for performance is primarily on one VMM path – the resident page fault path. Generally, each

executing program must establish access to the memory pages of its address space via page faults.

Acceptable system performance is achieved by ensuring that most page faults can be satisfied

without requiring IO by caching data in memory. Given temporal locality in page access, the page

fault path to pages which are cached (resident) is performance critical (hot) with respect to address

space establishment.

The optimization of the K42 VMM services has served as a case study for the application of

distributed data structures to a core operating system service. As noted before, it is important

that the services of an operating system be capable of reflecting the maximum concurrency of a

workload. As a result, we have taken the opportunity to explore aggressive optimizations to enable

53

4.1 Chapter 4: Examples of Clustered Object Implementations 54

File1 FR File2 FR

File1 File2

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

Address Space with two mapped files

Other PM’s and unmapped FCM’s
...

Process1

Region A Region B

File2 FCMFile1 FCM

PM

Global PM

Kernel

HAT

Objects

Figure 4.1: VMM Object Network representing an address space with two mapped files

concurrent faults to a single page without the need for synchronization and promoting locality in

memory accesses in the common case. In this section, we review how distributed data structures

encapsulated in the Clustered Objects of the K42 VMM are used to achieve the optimizations.

Figure 4.1 illustrates the basic K42 Kernel VMM Objects which are used to represent and

manage the K42 virtual memory abstractions. Specifically, the figure illustrates the instances of

objects and their interconnections that represent an address space with two independent files (File1

and File2) mapped in, as shown abstractly at the top of the diagram above the dashed line. The

associated network of kernel objects is shown below the dashed line.

We have reimplemented each of the diagonally filled objects (Process, Region, File Cache Man-

ager (FCM), Page Manager (PM) and Global Page Manager (Global PM)) in a distributed fashion

and each is discussed in subsequent subsections. The other two objects, HATs, and FRs, are

discussed in the following two paragraphs.

HAT The Hardware Address Translation (HAT) object is responsible for implementing the func-

tions required for the manipulation of the hardware memory management units and is used to add

a page mapping to the hardware-maintained translation services. In K42, a process’s threads are

scheduled on a per-process virtual processor abstraction which the OS maps to physical proces-

sors dynamically. As such, the page tables are managed on a per-virtual processor basis to allow

4.1 Chapter 4: Examples of Clustered Object Implementations 55

flexibility in K42’s address space construction. To do this, the HAT object maintains page tables

on a per-processor basis. Hence, the default HAT implementation is distributed by definition and

naturally does not suffer contention. It thus requires no further distribution.

FR The File Representative (FR) objects are used to represent the file system entity of a par-

ticular file. The kernel uses the FR to communicate with the file system in order to conduct IO.

There are two fundamental types of FRs: one that represents actual standard named files and

one that represents anonymous files associated with computational mappings such as a process’s

heap. In the case of a named file, the FR is only accessed when IO operations are required (page

faults to non-resident pages) and as such is heavy weight and infrequent. The FR implementation

for a named file does use a single, shared, atomically updated counter, but, given that it is only

accessed on a non-performance critical path, we have chosen not to distribute it. In the case of

an anonymous file, the FR is responsible for determining if a page has been swapped to disk. As

such, all faults are directed to the FR to determine whether this is an initial fault or whether the

page has been accessed previously but is currently swapped out to secondary storage. If it is an

initial fault, the FR returns an appropriate return code indicating that the page frame should be

zero filled. Otherwise, it initiates IO to the swap device. Unless anonymous memory is swapped

out, which indicates more serious memory pressure, the common case only requires the access of a

read-mostly data variable on initial faults to an anonymous mapping. To date we have not observed

or optimized performance of K42 under serious memory pressure and did not explore distributing

FRs for anonymous mappings.

We now discuss the objects we distributed.

4.1.1 Process Object

The Process Object represents a running process and all per-process operations are directed to it.

For example, every page fault incurred by a process is directed to its Process Object for handling.

The Process Object maintains address space mappings as a list of Region Objects. When a page

fault occurs, it searches its list of Regions in order to direct the fault to the appropriate Region

Object. The left-hand side of Figure 4.2 illustrates the default non-distributed implementation of

the Process Object. A single linked list with an associated lock is used to maintain the Region

List. To ensure correctness in the face of concurrent access, this lock is acquired on traversals and

modifications of the list.

4.1 Chapter 4: Examples of Clustered Object Implementations 56

Clustered Object

members

Region List
Region List Lock L

Root

other data
members

Region
(e,f)

Region
(c,d)

Region
(a,b)

Process

Region List
Region List Lock L

Rep1

Rep2

Rep0

other data

Region List
Region List LockL

Region
(e,f)

Region
(c,d)

Region
(a,b)

Region List
Region List LockL

Region List
Region List LockL

Figure 4.2: Non-Distributed and Distributed Process Objects

In the non-distributed implementation, the list and its associated lock can become a bottleneck

in the face of concurrent faults. As the number of concurrent threads is increased, the likelihood

of the lock being held grows, which can result in dramatic performance dropoffs as threads stall

and enqueue on the lock. Even if the lock and data structures are not concurrently accessed, the

read-write sharing of the cache line holding the lock and potential remote memory accesses for the

region list elements can add significant overhead.

In order to gain insight into the performance implications of this implementation, let us consider

a micro-benchmark which we will refer to as memclone. Memclone is modeled after a scientific

application that utilizes one thread per processor to implement a distributed computation on a set

of large arrays. Specifically, each thread allocates a large array which it then initializes sequentially

in order to conduct its computation. This is modeled in the benchmark by having each thread

sequentially access each virtual memory page associated with its array. This benchmark was sent

to the IBM K42 group by one of IBM’s Linux collaborators. The collaborators observed that the

time to page fault the data pages of the arrays was limiting scalability on Linux. To understand

the implications of K42’s VMM structure on the performance of such a benchmark, we will briefly

trace the behavior of K42’s VMM objects during execution of the benchmark.

When each thread allocates its large array (on the order of 100 Megabytes) the standard Linux

C library implementation of malloc will result in a new memory mapping being created for each

array. In K42, this will result in a new Region and FCM being created for each array, where the

FCM is attached to an FR which simply directs the FCM to fill newly accessed page frames with

4.1 Chapter 4: Examples of Clustered Object Implementations 57

zeros.

Thus, running the benchmark on n processors will result in the Process Object for the bench-

mark having n Regions, one per array, added to its region list. As each thread of the benchmark

sequentially accesses the virtual memory pages of its array, a page fault will occur for each page

accessed. This will result in a page fault exception occurring on the processor on which the thread

is executing.

K42’s exception level will direct the fault to the Process Object associated with the benchmark,

by invoking a method of the Process Object. The Process Object will search the region list to find

the Region responsible for the address of the page which suffered the page fault and then invoke

a method of the Region. The Region will translate the faulting address into a file offset and then

invoke a method of the FCM it is mapping. The FCM will search its data structures to determine

whether the associated file page is already present in memory. In the case of the page faults induced

by the benchmark, simulating initialization of the data arrays, all faults will be for pages which

are not present. As such, the FCM will not find an associated page frame and will allocate a new

page frame by invoking a method of the PM (Page Manager) to which it is connected. The PM

will then invoke a method of the Global PM to allocate the page frame. To complete the fault, the

FCM initializes the new page frame with zeros, and then maps the page into the address via the

HAT object passed to it from the Process.

When considering K42’s VMM structure, we observe that the memclone benchmark will result

in each thread accessing independent Regions and independent associated FCM’s. Therefore, we

expect these objects to be accessed exclusively by separate processors, and thus suffer no contention

and have good locality. The HAT, PMs and Process objects, however, are commonly accessed by all

page faults and thus may suffer contention-inducing remote accesses. As discussed earlier, the HAT

is not of concern, as, in the common case, it only accesses local processor state in order to establish

the page mapping by manipulating a processor’s local page table. The PM associated with the

Process Object does not do significant work on the page allocation path other than directing the

request to the Global PM1. The only two objects that may suffer real contention are the Process

and Global PM objects. In order to isolate the impact of the Process Object on performance we

will assume that the optimized version of the Global PM is being used (discussed in Section 4.1.2).

The distributed Process Object is designed to cache the region list elements in a per-processor

1The primary role for the PM attached to the process is to record the FCMs backing the computation/heap regions
of a process for the sake of paging.

4.1 Chapter 4: Examples of Clustered Object Implementations 58

Representative (see right-hand side of Figure 4.2). A master list, identical to the list maintained in

the non-distributed version, is maintained in the root. When a fault occurs, the cache of the region

list in the local Representative is first consulted, acquiring only the local lock for uniprocessor

correctness. If the region is not found there, the master list in the root is consulted and the result

is cached in the local list, acquiring and releasing the locks appropriately to ensure the required

atomicity. This approach ensures that in general, the most common operation (looking up a region)

will only access memory local to the processor and not require any inter-processor communication

or synchronization.

It should be noted that the distributed object has greater costs associated with region attach-

ment and removal than the non-distributed implementation. When a new region is mapped, the

new Region Object is first added to the master list in the root and then cached in the local list of

the processor mapping the region. To un-map a region, its Region Object must atomically be found

and removed first from the root and then from all Representatives that are caching the mapping. A

lookup for a region not present in the local cache requires multiple searches and additional work to

establish the mapping in the local list. As in the case of a multi-threaded process such as memclone,

the overhead of the distributed implementation for region attachment and removal is more than

made up for by the more efficient and frequent lookup operations.

In the case of a single-threaded application, all faults occur on a single processor and the

distributed version provides no benefit, resulting in additional overheads both in terms of space

and time. In order to maximize performance we advocate that the hot-swapping mechanisms,

discussed in Chapter 6, be used so that when a process is created, the non-distributed Process

Object is used by default. The distributed implementation should be automatically switched to

when a process becomes multi-threaded, using the hot-swapping facility.

Although one can imagine more complex schemes for implementing distributed versions of the

Process Object, the simple scheme chosen has three main advantages:

1. Its performance characteristics are clear and easy to understand.

2. It preserves the majority of function of the non-distributed version, and also making the

implementation easy to understand and maintain.

3. The distributed logic integrates easily into the non-distributed behavior, relying on a simple

model of caching which is implemented in a straightforward manner on top of the pre-existing

data structures and facilities: a simple list which uses a single lock (identical to the list used

4.1 Chapter 4: Examples of Clustered Object Implementations 59

in the non-distributed version), and the standard Clustered Object infrastructure for locating

data members of the root object and the ability to iterate over the Representatives.

5 10 15 20
Processors

0

50000

100000

150000

200000
A

ve
ra

ge
 T

hr
ea

d
E

xe
cu

ti
on

 T
im

e
(u

se
cs

)
Non-distributed Process Object
Distributed Process Object

Figure 4.3: Graph of average thread execution time for memclone running on K42. One thread is executed
per-processor. Each thread touches 2500 pages of an independent memory allocation. Each page touch results
in a zero-fill page fault in the OS. The performance of using non-distributed and distributed Process Object
is shown (in both cases the distributed Global PM Object is used). Ideal scalability would be represented
by a horizontal line.

Figure 4.3 displays the performance of memclone running on K42 with a non-distributed version

and the distributed version of the Process Object. We have instrumented memclone to measure

the execution time of each thread. Each thread of memclone touches 2500 pages of memory and

one thread is executed per-processor. The average execution time is measured and plotted in the

graph. Ideal scalability would correspond to a horizontal line on the graph. We see that beyond

10 processors, the performance of the non-distributed version degrades rapidly. The distributed

Process Object does perform better, however its scalability is still not ideal. Our tools do not

indicate any contention in a particular object or show a particular path as unduly dominating

4.1 Chapter 4: Examples of Clustered Object Implementations 60

performance. Using a test which concurrently exercises the page fault exception and page mapping

features of each processor, without access to the VMM data structures of the OS, reveals a slow

down which we believe is particular to the S85 Enterprise Server IBM RS/6000, on which our

experiments are run. Without more advanced hardware and software tools however, it is not

feasible to isolate the exact source of the slowdown.

4.1.2 Page Managers and the Global Page Manager

The Page Manager (PM) object manages and tracks the physical page frames associated with a

process and is responsible for satisfying requests for page frames as well as reclaiming pages when

requested to do so. The PMs are organized as a hierarchy, in which the PM associated with each

process is attached to a Global PM which globally manages physical page frames of the system. In

K42, the implementation of the PMs associated with each process are trivial and do little beyond

redirecting calls to the Global PM2. The only real service that the initial PM implementation

provides is to track the list of File Cache Management Objects (FCM’s) created by a process for its

computational regions. For completeness we have distributed this list of FCM’s in a manner very

similar to that of the Global Page Manager described in detail below. In the long run, however,

we expect the PM instances associated with each process to serve a more fundamental role in

implementing a per-process working set model of physical memory management and we expect to

have to reimplement it in the future as necessary.

The Global Page Manager, the object at the root of the hierarchical configuration of co-operating

Page Managers (PMs), is responsible for physical page frame management across all address spaces

in the system3. All memory regions of an address space in K42 are mapped by Region Objects to a

specific file via a File Cache Management Object (FCM). This includes explicitly named files such

as a program executable, as well as the anonymous files associated with computational regions such

as a process heap. FCM’s maintain the resident pages of a file and are attached to a Page Manager

Object, from which they allocate and deallocate physical pages. FCM’s for named files opened

by processes are attached to the Global Page Manager. The Global Page Manager implements

reclamation by requesting pages back from the FCM’s attached to it and from the Page Managers

below it. Each Page Manager below the Global Page Manager is attached to a Process Object and

implements page management for the FCM’s associated with computational regions of the process.

2The main purpose of the PMs associated with each process is to provide a degree of freedom for future exploration
of more complex VMM implementations.

3K42 employs a working set page management strategy.

4.1 Chapter 4: Examples of Clustered Object Implementations 61

Clustered Object Root

FreeList FreeList FreeList

Rep0 Rep1 Rep2

Lock L

PMHash
Table
FCMHash
Table

FreeList

GlobalPageManager
Lock L

PMHash
Table
FCMHash
Table

Lock L

PMHash
Table
FCMHash
Table

Lock L

PMHash
Table
FCMHash
Table

Figure 4.4: Non-Distributed vs Distributed Global Page Manager

The left-hand side of Figure 4.4 illustrates the simple non-distributed implementation of the

Global Page Manager that was first used in K42. It contains a free list of physical pages and two

hash tables to record the attached FCM’s and PMs. All three data structures are protected by a

single, shared lock. On allocation and deallocation requests, the lock is acquired and the free list

manipulated. Similarly, when a PM or FCM is attached or removed, the lock is acquired and the

appropriate hash table updated. Reclamation is implemented as locked iterations over the FCM’s

and PMs in the hash tables with each FCM and PM instructed to give back pages during the

reclamation iterations.

As the system matured, we progressively distributed the Global Page Manager Object in order to

alleviate the contention observed on the single lock. The most recent distributed implementation

is illustrated on the right-hand side of Figure 4.4. The first change was to introduce multiple

Representatives and maintain the free lists on a per-processor basis. The next change was to

partition the FCM Hash Table on a per-processor basis by placing a separate FCM Hash Table

into each Representative and efficiently mapping each FCM to a particular Representative.

In the distributed version, page allocations and deallocations are done on a per-processor basis

by consulting only the per-Representative free list in the common case, which improves scalability.

The current implementation uses a very primitive scheme to balance the free lists across Represen-

tatives. A global free/overflow list is placed in the root of the distributed implementation. Initially,

the Global PM seeds its free memory via requests to a physical frame allocation service of K42, the

description of which is beyond the scope of this thesis. In steady state the free pageable memory

of the system resides on the free lists of the Global PM. When the free list of a Representative ex-

ceeds a preset threshold, the Representative moves a pre-defined number of pages onto the overflow

list maintained in the root. When a Representative cannot satisfy a request, the Representative

4.1 Chapter 4: Examples of Clustered Object Implementations 62

attempts to replenish its free list by moving a pre-defined number of pages from the overflow list.

If the overflow is empty, a new chunk of pages is requested from the pool of un-allocated physical

memory. In the extreme, if no physical memory is available, the Global PM will initiate its paging

algorithms in order to reclaim currently inactive pages. The current approach is preliminary in

nature and by no means complete, relying on a number of hard coded constants and unverified

heuristics. However, a complete study of these policies has not yet proven necessary. The encap-

sulation afforded by the Clustered Object approach has allowed us to incrementally improve and

study the behaviour of the Global PM.

The mapping of FCM’s to an appropriate Global PM Representative is illustrative of the dis-

tributed techniques exploited to avoid contention. To provide efficient Clustered Object allocation,

Clustered Object identifiers are allocated on a per-processor basis such that a Clustered Object

allocated on a given processor is assigned an identifier from a range specific to that processor. Con-

versely, given a Clustered Object identifier, the processor on which it was allocated can be efficiently

determined. This calculation has been implemented as a general service of the Clustered Object

manager. In the case of the distributed Global Page Manager, the allocating processor for an FCM

is treated as its home processor. FCM attachment and detachment to the Global Page Manager

is achieved by invoking the service of the Clustered Object Manager to determine the allocating

processor for the FCM being attached or detached. Then the FCM is recorded in the hash table of

the Global Page Manager Representative associated with that processor. Given that there is only

one instance of the Global Page Manager in the system and that there is a Representative for every

processor, an array of Representative pointers was put into the root of the distributed Global Page

Manager to facilitate more efficient mapping of processor to Representative. The Clustered Object

class infrastructure developed provides facilities for locating a Representative, given a processor

number, but it is designed for general use and is thus more costly. A similar approach is used to

implement PM attachment and detachment.

Currently the Global PM implements a very simple paging algorithm, where page reclamation

is done as an iteration over the Representatives of the Global Page Manager. Each Representative

iterates over the FCM’s recorded in its hash tables, querying each for pages. The Global Page

Manager then iterates over the PMs recorded in its PM hash table. In the long run, we expect to

parallelize this algorithm more aggressively with multiple concurrent threads implementing recla-

mation on a per-processor basis, utilizing the distributed Representative structure of the Global

Page Manager.

4.1 Chapter 4: Examples of Clustered Object Implementations 63

5 10 15 20
Processors

0

50000

100000

150000

200000

A
ve

ra
ge

 T
hr

ea
d

E
xe

cu
ti

on
 T

im
e

(u
se

cs
)

Non-distributed Process and Non-distributed Global PM Objects
Distributed Process and Non-distributed Global PM Objects
Non-distributed Process and Distributed Global PM Objects
Distributed Process and Distributed Global PM Objects

Figure 4.5: Graph of average thread execution time for memclone running on K42. One thread is executed
per-processor. Each thread touches 2500 pages of an independent memory allocation. Each page touch
results in a zero-fill page fault in the OS. The performance of using all four combinations of shared and
distributed implementations of the Process and Global PM objects are shown. Ideal scalability would be
represented by a horizontal line.

4.1 Chapter 4: Examples of Clustered Object Implementations 64

In Figure 4.5, we plot the performance of an instrumented version of memclone, measuring the

average execution time of the threads using the various combinations of Process and Global PM

implementations. Each thread, again, touches 2500 pages of memory and one thread is executed

per-processor. Ideal scalability would be a horizontal line on the graph. Focusing on the two

curves labeled Distributed Process and Non-distributed Global PM Objects and Distributed Process

and Distributed Global PM Objects we can consider the performance impact of the Global PM

implementations. Beyond 8 processors a non-distributed version results in a sharp decrease in

performance. The distributed version yields better scalability however, a gradual decrease in per-

formance is also observed. As discussed in the previous subsection, we believe characteristics of the

S85 hardware are limiting scalability when using our distributed objects for this micro-benchmark.

When we consider all curves of Figure 4.5, it is clear that using only one of the distributed

implementations is not sufficient. The use of both distributed implementations of the Process

Objects and the Global PM Object are required in order to obtain a significant improvement

in scalability. This is indicative of our general multi-processor optimization experience, where

optimizations in isolation often affect performance in non-intuitive ways, such that the importance

of one optimization over another is not obvious. A key benefit of the Clustered Object approach is

that every object in the system is eligible for optimization, not just the components or code paths

that the developer might have identified a priori.

4.1.3 Region

The Region Object is responsible for representing the mapping of a portion of a file to a portion

of a process’s address space. It serves two purposes. Firstly, it translates the address of a page

fault to an appropriate file offset which is being mapped by that portion of the address space. Sec-

ondly, it provides synchronization between various operations to the mapping, so that the following

properties hold:

1. Construction of the mapping (the associated objects and interconnections) does not conflict

with requests to un-map it or access it via page faults.

2. When an un-map request has been made, current in-flight page faults are allowed to complete

prior to destroying the objects that represent the mapping.

3. When an un-map request is made, new page faults to that portion of the address space are

rejected, while the un-mapping operation is being conducted.

4.1 Chapter 4: Examples of Clustered Object Implementations 65

4. Only one un-map request is executed and all others made before the first is completed are

rejected.

5. When an un-map request is made, no new mappings can be established which overlap with

the original, until the un-map operation has completed.

6. Operations on a mapping are suspended while its bounds are changed, e.g., the region is being

truncated.

7. Operations on a mapping are suspended while a copy of the mapping is being created due to

a fork operation (e.g., creates a copy of itself).

To ensure the above properties, the original version of the Region Object was implemented using

a form of reference counting to provide the necessary synchronization. A single request counter

abstraction in the Region object is used to record all relevant requests (method invocations). At the

start of a request an enter operation is performed and on exit a leave operation is performed on the

counter. Depending on the state of the Region the enter operation will: 1) atomically increment

the counter, or 2) fail indicating that the request should be rejected, or 3) internally block the

request. The behaviour of the request counter is controlled by a control interface. Ignoring the

details, the request counter is fundamentally a single shared integer variable which is atomically

incremented, decremented and tested on all relevant methods of the Region object, including the

handleFault method which is on the resident page fault path. 4

If multiple threads of an application are faulting on the same portion of their address space,

we expect that the request counter in the Region Object will suffer contention. To understand

how parallel faults to a common portion of the address might occur, consider a modified version of

the memclone benchmark, in which a common data array is allocated and each thread accesses a

portion of the common array rather than independent arrays. A common array can be allocated

either by explicitly creating a common mapping (e.g., an mmap of /dev/zero) or by a single large

heap allocation (e.g., a single large malloc). This would result in the page faults induced by all

threads of memclone being serviced by a common Region and FCM, potentially causing contention

(with the design of the FCM being discussed in the next subsection).

Beyond the synchronization provided by the Region object, the Region Object is very simple,

requiring a small number of scalar variables which are, in the common case, read only with respect

4In the long run we expect to replace the request count based Region implementation with a Read-Copy-Update
implementation, once a generic service such as QDO, briefly discussed in Chapter 8, is implemented.

4.1 Chapter 4: Examples of Clustered Object Implementations 66

Legend

firstRep pointer

� � � � �� � � �� � � � �� � � �

� � � �� � � �
Request Counter

Proxy List and Request Counter State

Region Root

� � � �� � � �� � � �	 	 	 	
Proxy Region Representativies

The First Region Representative

Figure 4.6: Distributed Region Clustered Object. There is a single “real” firstRep Representative. All
other Representatives are proxies which only contain a request counter. Most calls to the proxy are simply
forwarded to the firstRep, however the handleFault method manipulates the request counter of the proxy and
then forwards its call to a method of the firstRep which implements the main logic of the call. Thus, with
respect to the fault handling path the only read write variable is manipulated locally. The root maintains
the list of proxies as well as the state of the request counters globally in a single integral variable which can
be updated atomically.

to the handleFault method. To this end, we have taken an approach which just focuses on

distributing the request count to alleviate contention it may induce on the resident page fault path

(as illustrated in Figure 4.6). We have constructed a version which creates a single Representative

(the firstRep) when the distributed Region object is created. This Representative is nearly identical

to the original shared version except that the Root for the distributed version is constructed to

create specialized Representatives, which we refer to as proxy Representatives, for any additional

processor that may access the Region instance. For all methods other than the crucial handleFault

method, the proxy Representatives simply invoke the equivalent method on the firstRep since we

don’t expect contention on the other operations. In the case of the handleFault method, which is

the only method that invokes the enter of the request counter, the proxy Representative version

does an enter operation on a request counter local to it and then invokes the body of the standard

handleFault method on the firstRep. Figure 4.7 shows a fragment of the proxy Representative

class of the distributed region. The main point to note is that each proxy instance has its own

request counter. The classes of the distributed region cooperate to ensure that the local request

counters are globally consistent to ensure correctness on all paths in a manner that allows the

4.1 Chapter 4: Examples of Clustered Object Implementations 67

handleFault method to only require manipulation of the local request counter.

A fragment of the class for the firstRep is shown in Figure 4.8. The majority of its implementa-

tion is inherited from the original non-distributed version of the Region. Only the methods relevant

to the manipulation of the request counter are overridden to account for the use of the multiple

request counts. The main point to note is that for an instance of the distributed Region there

is one firstRep Representative which serves as the main coordination point for the distributed re-

quest counters. Its request counter is always manipulated first with respect to the control interface

(e.g., stop, restart, and shutdown). This ensures that the distributed version of these preserves

the semantics of a single request counter. For example, if two stops occur on different processors,

the second (temporally) will fail as expected since both will first attempt the stop operation on

the request counter of the firstRep. However, if they were to have attempted to manipulate an

arbitrary local request counter both may have succeeded leading to potentially un-deterministic

behaviour. As such, the control methods manipulate the local request counter of firstRep and then

invoke routines of the distributed Region’s root to change the global state of the request counters

and manipulate the request counts of any proxies in a consistent manner.

The majority of the complexity and new functionality associated with the distributed Region

has been factored into the root class. Figures 4.9 and 4.10 illustrate fragments of the distributed

Region root class. The root’s methods are constructed to ensure correct behaviour in the face

of dynamic additions of Representatives. As is standard for distributed Clustered Objects, new

accesses to the Region on other processors can require the creation of new Representatives via

a standard instantiation protocol (Clustered Object miss-handling protocol) discussed in detail

in the next chapter. The protocol requires that a developer specify a createRep method in the

root of the Clustered Object which creates and initializes a new Representative for the processor

which accessed the object. In the case of the distributed Region’s root, this method creates a

proxy Representative and then initializes the state of the request counter associated with the new

Representative. The next two paragraphs briefly discuss how the Root of the distributed region

synchronizes Representative creation with concurrent changes to the request counters’ state.

As illustrated by the stopOtherRequests method, the methods that manipulate the state of

the request counter are coded to adhere to synchronization rules which ensure that changing the

state of the request counters and addition of proxies occurs atomically. To achieve this, a single

atomically manipulable data value, currentState, is used, which encodes the global state of all

4.1 Chapter 4: Examples of Clustered Object Implementations 68

#define REDIRECTTO(m) firstRep->m

class ProxyDistRegion : public Region {

DistRegionDefault *firstRep;

ProxyDistRegion *nxt;

RequestCountWithStop requests;

ProxyDistRegion(DistRegionDefault *fRep, ProxyDistRegion *n) :

firstRep(fRep), nxt(n) { }

ProxyDistRegion * getNext() { return nxt; }

sval enterRequest() { return requests.enter(); }

void leaveRequest() { requests.leave(); }

sval stopRequests() { return requests.stop(); }

void restartRequests() { requests.restart(); }

sval shutdownRequests() { return requests.shutdown(); }

public:

virtual SysStatusUval handleFault(AccessMode::pageFaultInfo pfinfo,

uval vaddr,

PageFaultNotification *pn,

VPNum vp)

{

SysStatusUval rc;

if (enterRequest() < 0) {

//N.B. when enter fails, DO NOT leave()

return _SERROR(1214, 0, EFAULT);

}

rc=REDIRECTTO(requestCounted_handleFault(pfinfo,vaddr,

pn,vp));

leaveRequest();

return (rc);

}

virtual SysStatus forkCopy(FRRef& fr)

{ return REDIRECTTO(forkCopy(fr)); }

.

.

.

};

Figure 4.7: Code fragment from the proxy Representative of the distributed Region object. The
single relevant request counter data member requests as well as the handleFaultmethod is shown.
All other methods, such as forkCopy, are unconditionally redirected to the firstRep. Redirection is
achieved by the trivial REDIRECTTO macro which simply dereferences a pointer to the firstRep and
invokes the specified method.

4.1 Chapter 4: Examples of Clustered Object Implementations 69

public:

sval enterRequest() { return requests.enter(); }

void leaveRequest() { requests.leave(); }

// May want to use method pointers for these (or real hot swapping :-))

sval stopRequests()

{

rc=requestCount.stop();

if (rc < 0) return rc;

return COGLOBAL(stopOtherRequests(rc));

}

void restartRequests()

{

COGLOBAL(restartOtherRequests());

requests.restart();

}

sval shutdownRequests()

{

rc=requests.shutdown();

if (rc < 0) return rc;

return COGLOBAL(shutdownOtherRequests(rc));

}

Figure 4.8: Code fragment of some of the distributed Region firstRep implementation. The
the control operations of the request counter have been modified so that each operator now first
manipulates the request counter associated with the firstRep. The operations then invoke a
method of the new root for the distributed counter to manipulate the request counters of the proxy
Representatives that may exist.

4.1 Chapter 4: Examples of Clustered Object Implementations 70

class DistRegionDefaultRoot : public CObjRootMultiRep {

struct State : BitStructure {

__BIT_FIELD(62, proxyListHeadBits, BIT_FIELD_START);

__BIT_FIELD(2, rcState, proxyListHeadBits);

enum RCStates {NORMAL=0, STOP=1, SHUTDOWN=2};

ProxyDistRegion *proxyListHead()

{

// to turn bits back into a pointer must shift them up 2

return (Proxy *)(proxyListHeadBits()<<2);

}

void proxyListHead(ProxyDistRegion *head)

{

// chop off bottom two bits from pointer

proxyListHeadBits(uval64(head)>>2);

}

} currentState;

DistRegionDefault *firstRep;

Figure 4.9: Code fragment showing the key data members of the root class created for the dis-
tributed Region object. The critical member is currentState which is used to encode both the
global state of the request counter as well as the list of Representatives.

4.1 Chapter 4: Examples of Clustered Object Implementations 71

virtual CObjRep * createRep(VPNum vp)

{

ProxyDistRegion *proxy=0;

State oldState,newState;

// Atomically add a proxy

do {

oldState = currentState;

newState = oldState;

if (proxy) delete proxy;

proxy=new ProxyDistRegion(firstRep,newState.proxyListHead());

if (newState.rcState()==State::STOP) {

proxy->requests.stop();

} else if (newState.rcState()==State::SHUTDOWN) {

proxy->requests.shutdown();

}

newState.proxyListHead(proxy);

} while (!CompareAndStore64Synced(¤tState.data,

oldState.data,

newState.data));

return (CObjRep *)proxy;

}

sval stopOtherRequests(sval rc)

{

State oldState, newState;

sval rtn=0;

// update request counter state.

// doing so now ensures that any new

// proxys added will be in the right state

do {

oldState = currentState;

newState = oldState;

newState.rcState(State::STOP);

} while (!CompareAndStore64Synced(¤tState.data,

oldState.data,

newState.data));

// now update the request counters of the proxys

// that exist to match

for (ProxyDistRegion *p=newState.proxyListHead();

p!=0;

p=p->getNext()) {

rtn+=p->stopRequests();

tassertMsg(rtn==0, "oops proxy already stopped\n");

}

return rtn;

}

};

Figure 4.10: Code fragment of the root class created for the distributed Region object. The
createRep method, invoked when a new Representative is required, creates proxy Representatives.
It initializes the proxy Representatives in an atomic fashion, so that their request counters are
consistent with the current global view. Similarly the control operations of the request count must
be appropriately synchronized. The stopOtherRequests is shown as an example.

4.1 Chapter 4: Examples of Clustered Object Implementations 72

the proxies as well as the pointer to the head of the proxy list5. Thus, carefully coded loops, as

illustrated in the createRep method and stopOtherRequests, can be used to ensure that changes

of state and addition of proxies are mutually exclusive. Such loops use standard non-blocking

techniques in which copies of the current state are used to construct the intended change followed

by an atomic compare and swap attempt to commit the changes. If the compare and swap fails

then the change was not successful and must be retried based on the new state.

Furthermore, more subtle issues regarding deadlock are avoided by the implementation. The

standard Clustered Object classes provide a repLock and a list of all Representatives. The lock

is used to ensure mutual exclusion for the creation of Representatives and for simple traversals

of all the Representatives, such as scatter or gather operations. The repLock can be acquired

and the standard list of Representatives can be used to iterate over the Representatives. Doing

so ensures that the list of Representatives stays stable by suspending any attempts to initiate the

Clustered Object miss-handling protocol. In general, if the operation that is being carried out

over the Representatives only requires manipulation of the data members of the Representative

then such an approach of using the repLock and standard list of Representatives does not pose a

problem.

If however, the operations while holding the repLock directly or indirectly invoke other objects,

then it is possible that an attempt to access the original Clustered Object via its Clustered Object

reference may occur. This may cause the initiation of the Clustered Object miss-handling protocol

on the Clustered Object for which the repLock is held, resulting in a deadlock. For example, if the

repLock and standard Representative list were used by the distributed Region to implement the

loop to invoke the stop operation on each Representative’s request count, a deadlock could occur.

While holding the repLock, the thread iterating over the Representatives may block when it invokes

the stop operations in order to wait for concurrent accesses by other threads, which had already

incremented the request count, to complete. However, the threads executing those accesses may

cause an access to the object via its Clustered Object identifier causing the miss-handling protocol

to be initiated. But since the repLock is held by the thread which is waiting for the request count

to reach zero, the thread executing the miss-handling protocol will block resulting in a deadlock.

There is a software engineering advantage to constructing the distributed Region Object using

proxies. Adapting the non-distributed implementation with proxies to construct the distributed

5The design requires access to currentState on the infrequent operations which change the global behaviour of
the counters and when a new representative is created

4.1 Chapter 4: Examples of Clustered Object Implementations 73

5 10 15 20
Processors

0

20000

40000

60000

80000

A
ve

ra
ge

 T
hr

ea
d

E
xe

cu
ti

on
 T

im
e

(u
se

cs
)

Non-distributed Region
Distributed Region

Figure 4.11: Graph of average thread execution time for a modified memclone running on K42. One thread
is executed per-processor. Each thread touches 2500 independent pages of a single large common memory
allocation. Each page touch results in a zero-fill page fault in the OS. The graph plots the performance of
using a non-distributed versus a distributed Region Object to back the single common memory allocation.
Ideal scalability would be represented by a horizontal line.

implementation results in the main logic of the object continuing to reside in the single C++

class of the non-distributed Representative. This avoids having to create a duplicate independent

distributed implementation, thus avoiding the need to maintain two implementations as the system

evolves. Unfortunately this approach cannot always be used, as the more complex the object is,

the less likely a distributed version can be constructed from the shared implementation.

Figure 4.11 displays a graph of the performance obtained when running a modified version of

memclone on K42 using the non-distributed versus the distributed Region object. In the modified

version of memclone, a single large memory allocation is used for a common array, which is accessed

in a partitioned fashion. One thread is executed per-processor and each touches 2500 pages unique

to the thread, however the pages are from a common array created via a single allocation. The zero-

4.1 Chapter 4: Examples of Clustered Object Implementations 74

fill page faults that the threads induce will therefore be serviced not only by a common Process

Object and the Global PM but also by a common Region and FCM which represent the single

memory allocation. In the performance data presented in the figure, all objects other than the

Region backing the allocation are using distributed implementations so that we can focus on the

impact of the Region in isolation. Again, ideal scalability would be manifested as a horizontal line

on the graph. Although the difference between the non-distributed and distributed Region is not

as dramatic as the effects of distributing the Process and PM objects, it is worth noting that even

a simple object, which is not much more than a counter, has an effect on scalability. As discussed

previously, we believe characteristics of the S85 hardware are limiting scalability when using our

distributed objects for this micro-benchmark.

4.1.4 File Cache Manager

All regions of an address space are attached to an instance of a File Cache Manager (FCM), which

caches the pages for that region. (Recall that an FCM may be backed by a named file or swap

space in the case of anonymous regions.) An FCM is responsible for all aspects of resident page

management for the file it caches. On a page fault, a Region Object asks the FCM to which it

is attached to translate a file offset to a physical page frame. The translation may involve the

allocation of new physical pages and the initiation of requests to a file system for the data. With

respect to paging, when a Page Manager asks it to give back pages, an FCM must implement local

page reclamation over the pages it caches. The FCM is a complex object, implementing a number

of intricate synchronization protocols including:

1. race-free page mapping and un-mapping,

2. asynchronous I/O between the faulting process and the file system,

3. timely and efficient page reclamation, and

4. maintenance of fork logic in the case of anonymous regions.

The standard, non-distributed FCM uses a single lock to ease the complexity of its internal im-

plementation. When a file is accessed by a single process, the lock and centralized data structures

do not pose a problem. When many processes or threads of a single process access the file con-

currently, however, then the shared lock and data structures induce inter-processor communication

resulting in degraded page fault performance.

4.1 Chapter 4: Examples of Clustered Object Implementations 75

FCMStartup FCMReal

FCMDefault FCMFixed FCMPrimitive

FCMPrimitiveKernel FCMLTransTableFCMComputation

FCM

FCMCommon

Figure 4.12: Original FCM Class Hierarchy

This section is presented in a style which documents not only what solutions we have derived

to address the challenges of distributing the FCM but also the process for arriving at them. The

construction and optimization of complex systems software components, in a large pre-existing

operating system source base is a challenging task. Our experience illustrates both the complexity

of developing a distributed implementation as well as the practical challenges a developer faces

in introducing such an implementation into K42. Clustered Objects help address some of the

complexity, but by no means makes the task of introducing distribution trivial.

Unlike the Process, Global Page Manager and Region objects, there is no straightforward way

to distribute the FCM’s data without adding considerable complexity and breaking internal proto-

cols. Figure 4.12 illustrates the original FCM class hierarchy. At the top is the FCM class which

defines the basic interface for all FCMs and consists of approximately 35 methods. Each FCM class

from which instances can be created is used to define the page fault and management behaviour for

specific memory mappings (i.e. FCMDefault for standard mapped files, FCMComputation for anony-

mous mappings and others for specialized mappings, such FCMLTransTable for the local clustered

object tables.) The primary branch of the tree from which the majority of runtime instantiations

occur are the subclasses of FCMCommon. The classes utilize implementation inheritance in or-

der to ease development and maintenance. Doing so, however, leads to a locking discipline that

cuts across all the classes of the hierarchy. This introduces subtle inter-dependencies which makes

it very difficult to add a new leaf class that inherits functionality but isolates a given path for

reimplementation with different synchronization semantics.

Given the relationships among the existing classes and complexity inherent to the FCM imple-

mentations, a new distributed FCM could not be easily derived from the shared implementations.

However, it did not seem prudent to invest in the construction of a new distributed FCM without

gaining some initial experience and insight to justify the effort. As such, an initial attempt was

made to validate the use of distribution in the FCM on the page fault path by constructing a

simplified, crippled FCMPartitionedTrivial class which only implemented enough of the FCM

4.1 Chapter 4: Examples of Clustered Object Implementations 76

interface to allow a hand-crafted test case. The test permitted the performance of multiple faulting

threads on a dummy region to be examined. Alleviated from the burden of complete functionality,

only four methods required implementation. However the resulting FCM bears little resemblance

to standard FCMs either in implementation or functionality, as it:

• requires custom hand instantiation and mapping,

• only provides zero filled pinned memory,

• does not support IO interaction with filesystem (iėḋoes not implement asynchronous IO re-

quired for swapping functionality)

• does not support blocking faults,

• cannot be destroyed,

• does not support page reclamation, and

• does not support fork semantics.

For hand constructed experiments, in which multiple threads concurrently accessed a region of

memory, backed by an instance of FCMPartitionedTrivial, improved scalability was observed, in

comparison to FCMDefault. Having validated with simple techniques the benefit of using distribu-

tion on the page fault path, we were motivated to utilize distribution in the standard FCMs. It

is not clear, for a complex object which is on multiple system paths that it is possible to optimize

one path using distribution without degrading other paths, such that end system performance is

improved. Our options were to either completely redesign and implement the FCM hierarchy with

distribution in mind or attempt to somehow integrate distribution in the current scheme. The

former approach provides much greater latitude in dealing with multiple conflicting paths as dis-

tribution can be more fundamentally accounted for via algorithmic redesign. However, given the

nature of complex core system services, redesign has a number of drawbacks:

• Introducing distribution to a complex service usually only adds more complexity.

• Confidence and familiarity in “working software” can be hard won and should not be sacrificed

lightly. Maintenance and debugging of fundamental system services is a key challenge.

Given the above drawbacks, it was decided that an incremental approach would be preferable if it

preserves the fundamental protocols of the current design while enabling higher performance. If

4.1 Chapter 4: Examples of Clustered Object Implementations 77

this approach failed to yield an implementation which was capable of delivering end performance

benefits, the knowledge gained would better guide a complete redesign.

After several failed attempts to directly integrate distribution in the current implementations,

a more modular approach was adopted. A single distributed hash table component was developed

which encapsulated the distribution of the table and associated locking semantics with a well defined

interface. The hash table is not a Clustered Object itself, but rather is designed to be embedded

within a Clustered Object. We refer to such components as Clustered Object Constituents or simply

constituents (see Section 5.2). The distributed hash table constituent is referred to as Dhash. By

encapsulating the locking and distribution with a well-defined interface, it was possible to better

isolate the changes and enable re-implementation of the current FCMs, which utilize a hash table

as its main data structure. This allowed us to preserve the majority of protocols and structure of

the current FCMs. An additional benefit was the development of a general distributed constituent

which could be used in the development of other Clustered Objects.

It is worth noting a contradiction often encountered when implementing system level code. On

the one hand, the demand for performance leads one to explore more complex implementations,

such as a distributed FCM, however to ease the burden, a generalized component, such as Dhash,

is desirable even though such components often sacrifice performance due to their general nature.

OS developers often avoid using general libraries when optimizing, as the need to exploit features

of the specific problem at hand precludes the generalized software. However, we contend that

encapsulated, highly concurrent, distributed implementations, which can ease optimization efforts,

will permit OS developers to explore aggressive multi-processor optimization in an incremental

fashion, thus enabling optimizations that might otherwise be too daunting.

We shall continue our discussion of the optimization of the FCM by first presenting the Dhash

constituent that was developed, and its use in the re-implementation of the FCM.

Dhash Overview

Motivated by the goal of optimizing the page lookup operation of the FCM, we developed a dis-

tributed hash table which has the following properties:

• provides a set of simple self contained synchronization semantics;

• can be included into a Clustered Object; and

• supports a distributed data model for the data elements of the hash table.

4.1 Chapter 4: Examples of Clustered Object Implementations 78

requestCount
log2numBuckets

numValues
buckets

en
tr

ie
s

MasterDHashTable

DHashEntry<MDATA>

. . .

MDATA

LDATA

Logical View of Data Elements

requestCount
log2numBuckets

numValues

public:
 DhashTableBase::getNumNonEmpty()
 DHashTable::findAndLock(key)
 setMasterDHashTable(*mt)
 findOrAllocateAndLock(key,**ld,resize)
 emptyData(*ld,emptyArg)
 doOp(key,lo,oa,od)

LocalDHashTable

buckets

en
tr

ie
s

DHashEntry<LDATA>

protected:
 mask()
 getLg2NumBuckets(numPages)
 hash(key)
 findBucket(key)
 countedFindAndLock(key)
 resize()
 checkResize()
 checkGrow()
 checkShrink()
 getFirst()
 getNext()

Common Routines

requestCount
log2numBuckets

numValues

LocalDHashTable

buckets

en
tr

ie
s

public:
 DhashTableBase::getNumNonEmpty()
 DHashTable::findAndLock(key)
 setMasterDHashTable(*mt)
 findOrAllocateAndLock(key,**ld,resize)
 emptyData(*ld,emptyArg)
 doOp(key,lo,oa,od)

DHashEntry<LDATA>

public:
 DhashTableBase::getNumNonEmpty()
 DHashTable::FindAndLockKey()
 addTable(vp,cs,*lt)
 findOrAllocateAndLock(key,**md,resize)
 getNextAndLockAll(*curr, **md)
 getNextAndLock(*curr, **md)
 lockAllReplicas(*md)
 unlockAllReplicas(*md,keepThisLeLocked)
 emptyData(*md, emptyArg)
 startEmpty(*md, *ec)
 finishEmpty(*ec, emptyArg)
 doEmpty(key, emptyArg)
 doOp(key, mo, lo, keepThisLeLocked, od)
 doOp(*md, lo, oa, od)
 doOpAll(mo, lo, oa)

Figure 4.13: An example Dhash structure.

 MALLOC,.LALLOC>

DHashTableBase

DHashTable<DATA, ALLOC>

MasterDHashTableLocalDHashTable
<LDATA,MDATA,
 LALLOC,MALLOC>

<MDATA,LDATA,

Figure 4.14: Dhash Classes.

4.1 Chapter 4: Examples of Clustered Object Implementations 79

Figure 4.13 illustrates the basic structure of an instantiated Dhash constituent and Figure 4.14

the associated class hierarchy. There are two basic components to the Dhash: a MasterDhashTable

and LocalDhashTables, which are designed to be embedded into a Clustered Object’s root and

Representatives, respectively. After embedding the Dhash into a Clustered Object, calls can be

made to either the LocalDhashTables or the MasterDhashTable directly. Dhash has a number of

interesting features:

1. LocalDhashTables and MasterDhashTable automatically cooperate to provide the semantics

of a single shared hash table for common operations, hiding its internal complexity.

2. All locking and synchronization are handled internally.

3. Fine-grain locking is used, where common accesses require an increment of a reference count

and the locking of a single target data element.

4. All tables automatically and independently re-size themselves.

5. Data elements which have both shared and distributed constituents are supported.

6. Scatter and gather operations are supported for distributed data elements.

Each local table has a pointer back to the master table and the master table has pointers to

all local tables. The basic model of use is to direct queries to the constituent by invoking the

findOrAllocateAndLock method of the local tables, with a key. This method looks for the data

associated with the key in the local table; if it is found, it locks and returns the item back to the

caller. If however the item is not found, it searches the master table. If the data element is found

in the master table, it is locked and a local data copy is made, placed into the local table, locked

and returned to the caller, with the master data element being unlocked prior to return. However,

if the data element is not found in the master table, a new master data entry is allocated, prior to

the local copy being made. There are obviously many potential race conditions and complexities

in the above description (remembering that the allocations may also cause resize of the tables

independently). The code for the local and master tables has been carefully constructed to deal

with these conditions. It is important to note that the distributed nature of the lookup is hidden

from the caller. The caller is always guaranteed to be returned a locked local data element and an

indication of whether the element was newly allocated or found.

The Dhash constituent supports a distributed data model where data elements can have global

data and operations, as well as local data and operations. This allows the implementor to utilize

4.1 Chapter 4: Examples of Clustered Object Implementations 80

Dhash to implement optimized distributed data models. The data being stored in the hash table

might have operations which can operate on local data elements that do not require coherence with

the other copies. However, other operations might require that certain state be global to all copies.

For example, we could design a page descriptor which tracks the state of a physical page frame in

a distributed fashion, where locally the descriptor tracks whether the page has been mapped to an

address space for access. Doing so allows concurrent faults on the page to proceed without having

to lock a shared descriptor. However, this implies that, to determine if a page has been mapped

into an address space, aggregation across all of the local state of the page descriptor is required.

For page descriptors, this is a relatively infrequent operation and allowing faults to occur in parallel

is a greater win. Conversely, the physical address of the page frame is clearly a global fact to the

page descriptor and thus one would like to store it globally and ensure that all local copies of the

descriptor access the global value.

The MasterDhashTable provides master operations which allow both global and distributed

operations on the data elements to be implemented. General support for distributed data allows

the constituent to be used in a diverse set of scenarios. It can be used in a more traditional fashion

in which both the global and local tables simply associate a key with a pointer to a shared data

record, or it can be used to implement more complex distributed data elements in which a key is

associated with replicated data which has specialized data coherence and distributed semantics.

Dhash Interface and Semantics

The operations of Dhash can be broken down into three categories:

Optimized lookup: This is the primary interface for the lookup service provided by Dhash. It

provides an efficient and aggressive distributed lookup service with which a client can query

and store data into the table associated with a key:

LocalDhashTable::findOrAllocateAndLock and MasterDhashTable::findOrAllocateAndLock:

When the local version is invoked, the caller is ensured to have a local data element, as-

sociated with the specified key, returned in a locked state. A data element is considered

to be a holder of the target data. If there is no data present in the table for the key,

the data element returned is in the empty state but locked to provide race free inser-

tion of data. The return code indicates that either a non-empty or empty data element

was returned. Only one caller will ever get back a return status indicating empty and

4.1 Chapter 4: Examples of Clustered Object Implementations 81

1. increment request count on local table, this ensures that the local table will remain
stable.

2. lookup key in local table

3. if found:

(a) lock element

(b) re-confirm match as element was not locked when initial match was made; on
failure unlock element and restart search from 2.

(c) decrement request count of local table

(d) return element and set return status to found

4. else if not found locally

(a) decrement request count of local table

(b) invoke findOrAllocateAndLock of master table; regardless of whether the data
was present in the master table or not a locked master data element associated
with the key is returned. However the return status does indicate if our query
caused the allocation of the element or whether it already existed in the mas-
ter. The head of the hash bucket is used to synchronize insertion using atomic
primitives thus ensuring that only one thread ever allocates a new element.

(c) increment local request count

(d) search local table again to see if the element has been added while we were
searching the master

(e) if it was not found

i. allocate a local data element and lock it

ii. decrement local request count

iii. replicate the master data element to the local element

(f) else lock the element and re-confirm match; on success decrement local count;
on failure unlock element and restart from 4.(d)

(g) unlock the master element

(h) return the local data element and set the return status to indicate if the element
was found or allocated in the master

Figure 4.15: Basic algorithm for LocalDhashTable::findOrAllocateAndLock (does not include table
resizing)

4.1 Chapter 4: Examples of Clustered Object Implementations 82

can thus be ensured that it can atomically take the necessary actions to fill the data

element. Internally, Dhash synchronizes around the associated master data element for

the key. The algorithm is outlined in Figure 4.15. Despite the subtle synchronization

nature of the algorithm, the two properties worth noting are: 1) in the case of the ele-

ment being present, all that is required is an increment of the local request count, hash

lookup, lock of the element and a final decrement of the local request count; and 2)

the subtle internal synchronization is not exposed to the caller, the caller, regardless of

what happens, is ensured to have a local data element returned and that the return code

will indicate if they are responsible for filling the data element. The master version of

findOrAllocateAndLock is similar, but deals with the master table and master data

elements. It can be directly invoked if a client wants to query the master table, or more

commonly invoked by the local version, as indicated in Figure 4.15.

Data element management: These methods are provided for clients to manage the distributed

nature of the data elements in a systematic way while isolating the complexity of the syn-

chronization:

MasterDhashTable::doOp: This is the primary function for applying an operator to a data

element in a distributed fashion. Given a master and local operator as well as locking

directives, this method applies the operators to the specified data element while encapsu-

lating all necessary synchronization. Specifically they can be used to implement scatter

and gather functions.

MasterDhashTable::lockAllReplicas and unlockAllReplicas: Given a locked master

data element these methods can by used to explicitly lock or unlock all its replica’s.

This allows the construction of loops which atomically manipulate the replicas, outside

of the doOp support.

MasterDhashTable::emptyData: This method allows a client to remove a data element by

resetting the data element to the empty state. Internally, the method ensures that the

empty occurs atomically across all replicas of the element. It also ensures that the data

element is destroyed or reused only when it is actually safe to do so, that is, no threads

are actively inspecting the associated memory.

MasterDhashTable::startEmpty, finishEmpty and doEmpty: In some scenarios clients may

require more control over the removal of a data element from Dhash. These methods

4.1 Chapter 4: Examples of Clustered Object Implementations 83

provide this control while still ensuring that the basic internal synchronization rules are

obeyed.

Table management: These methods are provided for clients to iterate over all elements the hash

tables.

MasterDhashTable::doOPAll: Similar to doOp above but applies the specified operators

across all data elements present in the tables.

MasterDhashTable::addReference and removeReference: These are utilities which allow

a client to construct iterations over all the data elements. A client must bracket their

function with addReference at the beginning and removeReference at the end. The

following methods can be used to implement the actual iteration over the elements.

MasterDhashTable::getNextAndLockAll: Once a client has invoked addReference, this

method can be used to iterate over the data elements. This method ensures that all the

replicas of the data elements are locked upon return.

MasterDhashTable::getNextAndLock: Similar to above but only locks the master and not

all the replicas of a data element.

Improvements

One of the advantages of the constituent approach is that we can progressively make improve-

ments without having to modify the Clustered Objects that use Dhash. There are three main

improvements to the Dhash table implementation which have been identified to date:

1. A static fixed size array is used in the master to maintain pointers to the local tables; a

generalization would be to utilize a dynamic array.

2. Currently request counters are used to guard the hash table data structures and ensure that

data elements are not prematurely destroyed. The read-copy-update facilities (see 5.4.3) of

K42 should be used to guard the hash table data structures eliminating the use of request

counters.

3. The data element empty methods require further optimization; empty elements should be

more aggressively removed from hash chains and be made eligible for reuse.

4.1 Chapter 4: Examples of Clustered Object Implementations 84

FCMCommonMultiRep

FCMPrimitiveKernel FCMLTransTableFCMComputation

FCMDefault FCMFixed FCMPrimitive FCMDefaultMultiRep FCMPrimitiveKernelMultiRep

FCMDefaultMultiRepRoot FCMPrimitiveKernelMultiRepRoot

FCMCommonFCMStartup FCMReal FCMPartitiionedTrivial

FCMCommonMultiRepRoot

FCM

Figure 4.16: New FCM Class Hierarchies

The current Dhash implementation, without the above improvements, is sufficient to re-implement

the FCM. The improvements further generalize the utility of Dhash and potentially optimize the

base lookup performance, with respect to cycles. We believe all changes can be made as future

work, without impacting client code given the encapsulation afforded by the modularity.

Dhash FCM

As the system has evolved, various performance requirements on the FCM have been recognized.

Prior to support for shared segments (the use of common page tables when sharing mapped files

such as executables), there was considerable concurrent demand on the FCMs for shared files even

in single threaded multi-user workloads6. Consider the text of a common executable such as a

Unix shell. A process created to run the shell suffers page faults on the processor it is executing

on to establish the page frames of the executable in its page tables. As such, the FCM backing the

shell’s text pages will suffer page faults on that processor, even though the pages will have likely

already been accessed on the same processor due to a prior run. This original scenario motivated

us to develop a distributed FCM based on Dhash, in which the hot path was the remapping of

the resident pages of a long lived file. An FCM implementation using the Dhash constituent in

a straightforward manner is sufficient in this case, as the majority of page faults will result in

accesses only to the local Dhash table in order to remap pages which have already been mapped

on the processor by a previous execution. This scenario can be highlighted by a micro-benchmark,

in which an instance of grep is run on each processor searching a common file. The instance of

6Although there is support for shared segments, which can alleviate remapping requests to the FCMs which back
them, there are still scenarios which prohibit us from using shared segments under various conditions. For example,
the text of a Linux executable compiled on non-K42 systems cannot use shared segments.

4.1 Chapter 4: Examples of Clustered Object Implementations 85

5 10 15 20
Processors

0

1

2

3

A
ve

ra
ge

 E
xe

cu
ti

on
 T

im
e

(s
ec

s)

Non-Distributed FCM
Distributed FCM

Figure 4.17: Graph of Distributed FCM vs Non-Distributed FCM performance: this graph illustrates the
results of running one instance of grep per processor. Each grep searched a common 111MB file for a common
non-matching search pattern. We measured the average time for an instance of grep to complete.

grep will induce concurrent page faults to the FCM, which caches the pages of the executable as

well as concurrent page faults to the data file which is being searched. Figure 4.17 illustrates the

performance of such a micro-benchmark using the non-distributed and the distributed version of

the FCM.

When we consider the performance of the modified version of memclone (Figure 4.18) with

the distributed FCM (line labeled Distributed Dhash FCM), we observe poor scalability. The

distributed FCM was designed to optimize the resident page fault path, in which the majority of

faults would be to pages which already exist in the FCM and have been previously accessed on

the processor. The memclone benchmark does not have this behaviour. Most of its page faults

are to pages which do not exist in the FCM, but do not require IO since they are initial touches

4.1 Chapter 4: Examples of Clustered Object Implementations 86

5 10 15 20
Processors

0

100000

200000

300000

400000
A

ve
ra

ge
 T

hr
ea

d
E

xe
cu

ti
on

 T
im

e
(u

se
cs

)

Non-distributed FCM
Distributed DHash FCM
Partitioned FCM

Figure 4.18: Graph of average thread execution time for a modified memclone running on K42. One thread
is executed per-processor. Each thread touches 2500 independent pages of a single large common memory
allocation. Each page touch results in a zero-fill page fault in the OS. The graph plots the performance of
using a non-distributed FCM versus a distributed FCM using Dhash versus a partitioned FCM, to back the
single common memory allocation. Ideal scalability would be represented by a horizontal line.

of anonymous (zero filled) memory. This results in the page faults of memclone missing in the

local tables of Dhash and accessing the Dhash master table. The distribution of Dhash has no real

benefit, therefore, since all initial faults will go through the central master table, and we expect

no additional faults to an individual page. The distributed version acts like a central fine grain

locked hash table with the additional overhead of creating replicas whose cost of creation is never

amortized over multiple accesses. These costs are only justified if there are additional faults to the

pages which are satisfied from the replica created in the local hash tables. As noted above, this can

occur when a file is remapped on a processor, as in the case of an executable. It could also occur

because the Representatives of the FCM are assigned to more than one processor and thus the local

hash tables service a set of processors. In this case, access by one processor will enable cheaper

4.1 Chapter 4: Examples of Clustered Object Implementations 87

access for the other processors sharing the Representative. It is left as future work to explore this

scenario for randomly accessed heaps of a long-lived system server (or server application such as a

database).

We can see from these examples that an individual distributed implementation optimized for a

given scenario may not be ideal for all usage scenarios. This is perhaps intuitive, as a distributed

implementation typically identifies a single path for optimization in order to permit more aggressive

techniques. Instances of a core system component, such as the FCM, can be used in multiple

scenarios in which the path for which it was optimized is not the hot path; however, it has been our

experience so far that a single instance is not typically used in multiple scenarios simultaneously. For

a specialized application like that modeled by the modified memclone benchmark, which has unique

parallel requirements for a single region of its address space, a separate distributed implementation

can be used. It is not clear, however, if there is a general solution for automatically identifying

when to use one implementation over another.

In the case of parallel scientific applications, such as those modeled by memclone, it is not

unreasonable to provide an interface which permits the application to specify that a given memory

allocation should be optimized for parallel access and thus yield better performance. The general

issues of how to identify when one implementation should be used rather than another is beyond

the scope of this thesis – rather our main concern is to illustrate that distributed implementations

are feasible. In Chapter 6 we present a facility for the dynamic switching of a Clustered Object

implementation which could be used to permit the selection of one implementation over another at

arbitrary points in the execution of a workload rather than just at instantiation time.

In the modified version of the memclone micro-benchmark, the data array is backed by a single

computational region whose individual pages are accessed predominately on a single processor and

only suffers an initial fault. A distributed FCM which utilizes a partitioned hash table would

be sufficient to improve the performance. A partitioned FCM could utilize parts of the Dhash

constituent, but in a different fashion. This version would essentially partition the set of pages

across a set of Representatives, but not distribute the page descriptors. To do this, a fixed number

of m master Dhash tables are used to manage the page descriptors for a fixed disjoint set of pages.

A new local Dhash table class would be constructed which simply redirects invocations to one of

the m master hash tables. All Representatives would have an instance of the local Dhash table but

only the first m Representatives have a master hash table. The policy for page assignment can be

determined by a specified shift value which is applied to the page offset. The result is then mapped

4.2 Chapter 4: Examples of Clustered Object Implementations 88

to one of the m master tables via modulo calculation. Such an implementation would require the

degree of parallelism and, optionally the size of the region, to be known when it is constructed. A

prototype of the partitioned FCM was constructed and its performance is also shown in Figure 4.18.

Other uses of Dhash

We have identified two other system services that are candidates for re-implementation using the

Dhash constituent. A full description, evaluation, and re-implementation of these objects is beyond

the scope of this thesis. A brief description of the objects is provided below.

User Level PThread Support Each address space in K42 implements its own K42 thread

level scheduler on top of which a standard Posix thread service is implemented. As part of this

implementation, a service to map a Posix thread identifier to an underlying K42 thread descriptor

is required. Currently a simple centralized locked global array is used to achieve this mapping.

We believe that this service can be reimplemented with the Dhash constituent in order to alleviate

lock contention and promote locality on Posix thread services such as creation and destruction

paths which require manipulation of the array. Furthermore, Posix thread delivery services require

lookup into the array although this does not require manipulation of the array. Currently the

global lock is used to synchronize these operations as well, which would also benefit from a Dhash

based implementation. Although other solutions could be used, given the encapsulated nature of

the Dhash constituent, we believe that its aggressive fine grain locking nature can be utilized with

less effort.

File System Pathname Translation To alleviate the burden of filesystem development in

K42, a set of common file system services, implementing path to file object translation and locking

semantics, is provided. Currently these services are implemented as a tree of directory based hash

tables which are protected by locks associated with each hash table. We believe that a new single

level direct mapping service can be implemented based on the Dhash constituent. Dhash’s flexible

locking semantics and highly concurrent nature would permit us to use a single hash table which

translates a complete path string to a file system object handle.

4.2 Chapter 4: Examples of Clustered Object Implementations 89

Root

token
reclaim local
list

TransferArray

reclaimRefList

waitingfor
token

list
reclaim remote

local
translation
management
structures waitingfor

token
reclaim local
list

TransferArray

reclaimRefList

waitingfor
token

list
reclaim remote

local
translation
management
structureswaitingfor

token
reclaim local
list

TransferArray

reclaimRefList

waitingfor
token

list
reclaim remote

local
translation
management
structures

local generation
count

count
translation
management
structures

global
global generation

destroyCO() destroyCO()destroyCO()

vpCleanupList

stage1LocalList localDeleteSets

Token nextRep

Rep0 Rep1 Rep2

waitingfor

stage1RemoteList remoteDeleteSet

vpCleanupList

stage1LocalList localDeleteSets

Token nextRep

stage1RemoteList remoteDeleteSet

vpCleanupList

stage1LocalList localDeleteSets

Token nextRep

stage1RemoteList remoteDeleteSet

Figure 4.19: Clustered Object Manager

4.2 Clustered Object Manager

In K42, we expect that some services will be developed from their inception with distributed

implementations. An example of this is the Clustered Object infrastructure which was designed to

be scalable using distributed algorithms and an implementation which avoids global intra-processor

communication. One of the key components is a Clustered Object called the Clustered Object

System Manager (COSMgr) which we developed from its inception as a distributed Clustered

Object with multiple Representatives. The COSMgr of each address space provides Clustered

Object allocation and destruction services, and, unlike the objects previously described, was not

incrementally distributed.

Figure 4.19 illustrates the basic structure of the COSMgr. Rather than discussing the details of

the implementation, at this point we simply note the salient features with respect to distribution.

In the next chapter we discuss some of the services it provides and algorithms it employs in more

detail.

Each Representative is designed to serve two roles:

4.2 Chapter 4: Examples of Clustered Object Implementations 90

1. Provide local services of the Clustered Object infrastructure to requests from the processor

with which it is associated. Such requests are satisfied in a fashion that requires no co-

ordination or communication with other Representatives. Examples of these include the

allocation of a Clustered Object identifier and the reclamation of memory associated with a

Clustered Object which has been allocated and only accessed on the local processor.

2. Participate in the distributed services of the COSMgr by communicating and synchronizing

between Representatives in a pair-wise manner. Features of these distributed operations

include:

• No operations require global iteration over the Representatives, rather the Representa-

tives are linked together in a circular structure (dark arrows in figure).

• Data flows (represented by thin arrows in Figure 4.19) are predominately internal to a

Representative, and those that are not internal are only between neighboring Represen-

tatives.

• Token passing is used as the primary mechanism for distributed synchronization, and is

implemented using cache lines which are at most shared between two processors.7

• Along with the token, per-Representative transfer arrays are used to pass distributed

work among the Representatives. Work which requires distributed computation is placed

onto a Representative’s transfer array. A Representative’s transfer array is read by the

next Representative in the circular structure when the token is passed to it. The Rep-

resentative that receives the token reads the work request from the transfer array of the

previous Representative which had the token and processes the requests. Requests which

still require further distributed processing are similarly placed on its transfer array to be

passed to the next Representative when the token is passed. In this manner, distributed

computations are accomplished by passing work requests between Representatives in a

pair-wise fashion.

Another Clustered Object that has been developed from, scratch with multiple Representatives,

(by a member of the IBM K42 team) is a Resource Manager which tracks local resource usage in

order to implement distributed algorithms for management, including load balancing and admission

control.

7The token passing mechanism is invoked periodically at a low frequency. Alternate feedback driven designs which
invoke token circulation only when necessary and on processor subsets have been considered but not explored.

4.3 Chapter 4: Examples of Clustered Object Implementations 91

In 2004 two new distributed Clustered Objects which factor out key aspects of the current COS-

Mgr, an Event Manager and a Read-Copy-Update (RCU) Manager were being developed. These

Clustered Objects optimize and generalize aspects of the current garbage collection mechanisms

in order to permit more general use. The Event Manager is intended to implement a distributed

communication service, using distributed event queues and local soft timer [6] techniques, in order

to provide a light-weight batching inter-processor communication facility. The RCU manager is

intended to provide the current thread tracking mechanisms of the COSMgr in a more general,

non-polling, fashion in order to facilitate wider use of these mechanisms. The development of and

evaluation of these Clustered Objects is outside of the scope of this thesis. RCU techniques are

briefly discussed in the next chapter.

4.3 Summary

In this chapter we have presented examples of using distribution in a modular fashion in K42. We

have focused on improving locality of objects in the virtual memory management of K42, to yield

scalable resident page fault performance. In the next chapter we will discuss the Clustered Object

model and the infrastructure used to construct these examples. Three key points from this chapter

are:

• The complexity of a distributed implementation can successfully be encapsulated by a Clus-

tered Object.

• Multiple objects may require distributed re-implementations in order to improve the scala-

bility of a given service. The Clustered Object approach successfully supports incremental

evaluation and development.

• Simple caching strategies can be used to ease the burden of developing distributed implemen-

tations of system objects, however, a given distributed implementation can be considerably

more complex than non-distributed versions.

4.3 Chapter 4: Examples of Clustered Object Implementations 92

Chapter 5

Clustered Objects

In this chapter we describe the details of the Clustered Object protocols and infrastructure we have

developed. We begin with a overview of how Clustered Objects are implemented.

5.1 Overview

Each Clustered Object is identified by a unique interface to which every implementation conforms.

We use a C++ pure virtual base class to express a Clustered Object interface (Clustered Object

interface class). An implementation of a Clustered Object consists of two portions: a Representative

definition and a Root definition, expressed as separate C++ classes. The Representative definition

of a Clustered Object defines the per-processor portion of the Clustered Object. In the case of the

performance counter, it would be the definition of the sub-counters. An instance of a Clustered

Object Representative class is called a Rep of the Clustered Object instance. The Representative

class implements the interface of the Clustered Object, inheriting from the Clustered Object’s

interface class. The Root class defines the global portions of an instance of the Clustered Object.

Every instance of a Clustered Object has exactly one instance of its Root class that serves as

the internal central anchor or “root” of the instance. Each Rep has a pointer to the Root of the

Clustered Object instance. The methods of a Rep can access the shared data and methods of the

Clustered Object via its root pointer.

At run-time, an instance of a given Clustered Object is created by instantiating an instance

of the desired Root class.1 Instantiating the Root establishes a unique Clustered Object Identifier

1The client code is not actually aware of this fact. Rather, a static Create method of the Rep class is used to
allocate the root. Because we do not have direct language support, this is a programmer enforced protocol.

93

5.1 Chapter 5: Clustered Objects 94

(COID also referred to as a Clustered Object ref) that is used by clients to access the newly created

instance. To the client code, a COID appears to be a pointer to an instance of the Rep Class. To

provide better code isolation, this fact is hidden from the client code with the macro: #define

DREF(coid) (*(coid)). For example, if c is a variable holding the COID of an instance of a

clustered performance counter that has a method inc, a call would look like: DREF(c)->inc().

A set of tables and protocols are used to translate calls on a COID in order to achieve the unique

run-time features of Clustered Objects. There is a single shared table of Root pointers called the

Global Translation Table and a set of Rep pointer tables called Local Translation Tables, one per

processor. The virtual memory map for each processor is set up so that a Local Translation Table

appears at address vbase on each processor but is backed by different physical pages2. This allows

the entries of the Local Translation Tables, which are at the same virtual address on each processor,

to have different values on each processor. Hence, the entries of the Local Translation Tables are

per-processor despite only occupying a single range of fixed addresses. When a Clustered Object

is allocated, its root is instantiated and installed into a free entry in the Global Translation Table.

The Global Translation Table entries are managed on a per-processor basis by splitting the global

table into per-processor regions of which each processor maintains a free list and only allocates

from its range, avoiding synchronization or sharing. The address of the corresponding location in

the Local Translation Tables address range is the COID for the new Clustered Object. The sizes of

the global and local tables are kept the same, allowing simple pointer arithmetic to convert either

a local to a global or a global to a local table pointer. Figure 5.1 illustrates a Clustered Object

instance and the translation tables.

In order to achieve the lazy creation of the Reps of a Clustered Object, Reps are not created

or installed into the Local Translation Tables when the Clustered Object is instantiated. Instead,

empty entries of the Local Translation Table are initialized to refer to a special hand-crafted object

called the Default Object. Hence, the first time a Clustered Object is accessed on a processor (or

an attempt is make to access a non-existent Clustered Object), the same global Default Object is

invoked. The Default Object leverages the fact that every call to a Clustered Object goes through

a virtual function table. (Remember that a virtual base class is used to define the interface for a

Clustered Object.) The Default Object overloads the method pointers in its virtual function table

to point at a single trampoline3 method. The trampoline code saves the current register state

2In K42, a page table is maintained on a per-processor and per-address space basis, and thus each processor can
have its own view of the address space.

3Trampoline, refers to the redirection of a call from the intended target to an alternate target.

5.2 Chapter 5: Clustered Objects 95

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �

21

� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �

Clustered Object Instance

0

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
Reps

Global Translation Table

vbase COID=vbase+(i * sizeof(table entry))

i

(tables of Rep pointers)

Root

i

(table of Root pointers)

Local Translation Tables

Figure 5.1: A Clustered Object Instance and Translation Tables.

on the stack, looks up the Root installed in the Global Translation Table entry corresponding to

the COID that was accessed, and invokes a well-known method that all Roots must implement

called handleMiss. This method is responsible for installing a Rep on the processor into the Local

Translation Table entry corresponding to the COID that was accessed. This is done either by

instantiating a new Rep or by identifying a preexisting Rep and storing its address into the address

pointed to by the COID in the Local Translation Table. On return from the handleMiss method,

the trampoline code restarts the call on the correct method of the newly installed Rep. The above

process is called a Miss and its resolution Miss-Handling. Note that after the first Miss on a

Clustered Object instance, on a given processor, all subsequent calls on that processor will proceed

as standard C++ method invocations via two pointer dereferences. Thus, in the common case,

methods of the installed Rep will be called directly with no involvement of the Default Object.

The map of processors to Reps is controlled by the Root Object. A shared implementation can

be achieved with a Root that maintains one Rep and uses it for every processor that accesses the

Clustered Object instance. Distributed implementations can be realized with a Root that allocates

a new Rep for some number (or cluster) of processors, and complete distribution is achieved by a

Root that allocates a new Rep for every accessing processor. There are standard K42 Root classes

which handle these scenarios.

5.2 Clustered Object Development Strategies

Rather than having each Clustered Object developed in an ad hoc way, we expect that a library of

reusable distributed data structures, which provides standard abstractions, will be developed over

5.3 Chapter 5: Clustered Objects 96

time to facilitate the wider development of distributed Clustered Objects. Such data structures

should provide a well defined and flexible set of base components for Clustered Object development.

They should encapsulate the complexity of the distributed protocols associated with the data

structure, governing the interaction between the Representatives, and between a Representative

and the Root. These base Clustered Object constituents should allow the programmer to optimize

the behaviour and usage for the specific Clustered Object being built.

In general we expect there to be two main paths to Clustered Object development:

1. Incremental approach:

(a) Start with a more traditional shared implementation.

(b) Identify hot contended paths and operations (given a set of operating parameters).

(c) While preserving the majority of the shared implementation, introduce distribution to

alleviate sharing on the hot operations. The fundamental algorithms and paths in which

the object participates remain the same.

(d) Run like this until new operating parameters dictate that a “from scratch distributed

design” is necessary.

2. From scratch approach:

(a) Designing the paths and algorithms in a distributed fashion utilizing a distributed im-

plementation.

Along both paths, we expect Clustered Object constituents to alleviate some of the development

burden, particularly on the incremental path. However, it is expected that some objects will require

more extreme performance optimizations requiring completely hand written implementations.

5.3 K42 Clustered Object Facilities

As part of this research effort, we have implemented basic Clustered Object infrastructure within

K42, as motivated by our prior work in Tornado [49], which includes the translation tables and

associated mechanism which enables the miss-handling process as well as the Clustered Object

garbage collection mechanisms (not yet described). Unique to this thesis, we have developed a

model for Clustered Object development and a set of protocols to generalize the use of the basic

5.3 Chapter 5: Clustered Objects 97

Fields and Methods

BaseObj

CObjRep

COSTransObject

Obj

CObjRoot

COSMissHandler

COSMissHandlerBase

CObjRootSingleRep CObjRootMultiRep

Standard Root Classes Standard Representative Classes

K42 Specific

Figure 5.2: Standard Clustered Object Base Classes for Roots and Representatives.

facilities. This includes higher level distributed garbage collection facilities4 as well as a set of

standard base C++ classes for the development of Clustered Objects. Apart from the standard

base classes, we will refer to the Clustered Object infrastructure and services of K42 that have

been developed, as the Clustered Object System (COS). The COS and base classes are designed

to cooperatively define and provide the Clustered Object model and protocols. The majority of

new COS function is implemented by a distributed Clustered Object called the Clustered Object

System Manager (COSMgr), briefly described in Section 4.2.

5.3.1 Clustered Object Root Classes

Figure 5.2 illustrates the class trees that were developed.

On the left side of Figure 5.2 is the class tree that enables the development of Clustered Ob-

ject roots. The top two classes (COSMissHandlerBase and COSMissHandler) define the common

interfaces that all Clustered Object roots require to properly interact with the basic miss-handling

mechanisms and garbage collection protocols of the COS. Specifically, they define the interfaces

that the COS expects to invoke during miss-handling and deallocation (garbage collection):

handleMiss: As described in Section 5.1, the handleMiss method is invoked by the translation

mechanisms, during the miss-handling procedure, on the root of the Clustered Object on

which the miss occurred.

4Gamsa proposed and implemented the basic scheme for shared object destruction in Tornado including a token
based algorithm for the establishment of system wide quiescent states. In this work, I have implemented a redesigned
scheme focusing on the destruction of distributed Clustered Object implementations. The new mechanisms and
protocols are as described in this dissertation.

5.3 Chapter 5: Clustered Objects 98

getRef: Every root must be able to return the Clustered Object identifier associated with the

Clustered Object it is part of. This service is provided by the getRef method.

getTransSet: During deallocation of a Clustered Object, the COS invokes the getTransSet

method to obtain the translation set from the root of the Clustered Object. Every Clus-

tered Object is responsible for tracking the set of processors for which it has established a

translation.

getVPCleanupSet: In order to ease reclamation of the distributed resources of a Clustered Object,

the COS provides a facility, which a developer can use to request asynchronous call-backs of

the Clustered Object’s cleanup method (described next). To specify that call-backs should

occur and the set of processors on which they should occur on, the developer implements the

getVPCleanupSet method. This method is invoked by the COS when the Clustered Object

is submitted for deallocation, which ensures that call-backs will then be invoked on the set of

processors returned. If an empty set is returned then only one invocation of cleanup method

will occur and the Clustered Object must implement its own procedure for distributing the

freeing of its memory.

cleanup: This method is invoked by the COS after it has determined there are no threads which

can access the memory of a Clustered Object after it has been submitted for deallocation.

The object should use this call to free its memory resources. Using the getVPCleanupSet

method described above, a Clustered Object can have the COS invoke the cleanup method

in parallel on a set of processors, in order to implement distributed freeing of its resources.

In addition, the COSMissHandler class defines a field called myRef for a root to store the Clustered

Object identifier for the Clustered Object instance it represents. This is the value that the default

implementation of the getRef method returns.

The CObjRoot class defines common interfaces and default implementations of methods that the

standard root implementations (its subclasses) rely on. Specifically, it defines constructors which

ensure that, when a root is instantiated, the appropriate methods of the COSMgr are invoked to

allocate a new Clustered Object identifier and to have the new root installed as the root for the

identifier. These implementations store the identifier in the myRef member. CObjRoot class also

defines the interfaces and the default implementations to enable a Clustered Object to operate with

the hot-swapping support of K42 (see Chapter 6).

5.3 Chapter 5: Clustered Objects 99

class ProcessDistributedRoot : public CObjRootMultiRep {

PIDType _pid;

public:

PIDType getPid() { return _pid; }

void setPID(PIDType pid) { _pid = pid; }

};

Figure 5.3: Example code for defining shared data of a Process Object

The CObjRootSingleRep and CObjRootMultiRep classes are the default implementations for

roots of non-distributed (single Representative) and distributed (multi-Representative) Clustered

Objects, respectively. One of the key requirements we identified in earlier work was the need for

explicitly supporting both shared and distributed data within a Clustered Object [3]. In K42,

the root for a distributed Clustered Object is used as the location for shared data, methods, and

management of the Clustered Object.

When writing a distributed Clustered Object, the Root for the new Clustered Object is defined

as a descendent of RootMultiRep. The developer defines any shared data of the Clustered Object

as data members of the Root. For example, in the Process Object, it is reasonable to treat the

Process Identifier (PID) to be a shared data member, as it is read only and infrequently accessed,

and hence would be a member of the Root. (Figure 5.3 illustrates how this would be coded.) This

class hierarchy provides a simple development model for defining global data for a Clustered Object

instance and yet still allows for the use of inheritance and encapsulation. In order to access the

global data members or methods of the Clustered Object, the methods of the Representatives use

a predefined macro COGLOBAL as in:

if (requestingPID == COGLOBAL(getPid())) { ...).

It is important to note that the global data members and methods are not externally accessible;

only methods of the Representatives can access the methods and data of the root.5

The CObjRootMultiRep class provides default implementations of all the methods specified by

COSMissHandlerBase and COSMissHandler. It supports the multi-Representative structure as well

as additional internal services to the Clustered Objects. Specifically it:

1. handles all low level interaction with the Clustered Object System, implementing the in-

stance side protocols for distributed, miss-handling (lazy instantiation of reps) and garbage

collection,

5Clients of a Clustered Object only access the object via it’s COID and as such can only invoke the external
Representative interface. The Root is encapsulated and not visible externally.

5.3 Chapter 5: Clustered Objects 100

2. provides the base support for arbitrary cluster sizes, where a single Representative can be

used for a specified number of processors,

3. provides a way for a developer to specify the custom actions that need to be taken to create

the unique Representatives for a given Clustered Object, and

4. tracks and provides services for locating and accessing all of the Representatives of a dis-

tributed Clustered Object.

These behaviours are implemented by CObjRootMultiRep and require no additional programming

when developing a new distributed Clustered Object.

We have special-cased the development of non-distributed Clustered Objects by providing the

CObjRootSingleRep root class. CObjRootSingleRep eliminates some of the overheads associ-

ated with supporting general multi-Representative Clustered Objects. When developing a non-

distributed Clustered Object, the developer does not need to define a new root class but can

simply instantiate an instance of CObjRootSingleRep.

5.3.2 Clustered Object Representative Classes

The Representatives (reps) of a Clustered Object provide the means for defining the distributed

data and methods of the Clustered Objects. Roots, derived from CObjRootMultiRep, ensure that

a Rep is created for each cluster of processors, with the cluster size being a parameter of the object

instance. Thus the data members of the Rep are per-cluster and the public methods service the

request from the processors of the cluster it is associated with. On the right-hand side of Figure 5.2

is the tree of base classes for the development of Clustered Object Representatives.

The COSTransObject class ensures that all Representative classes have as their first member

a C++ virtual function table pointer. This ensures that all Representatives are compatible with

translation tables and low-level miss-handling mechanisms, which rely on the first data word of

every Representative being a pointer to its virtual function table. This enables the construction of

specialized objects, which can serve as a doppelganger for any Clustered Object, intercepting all

invocations to a Clustered Object’s interface, as in the case of the Default Object (see Section 5.1).

The CObjRep is the base class for Clustered Object Representatives which inter-operate with both

CObjRootSingleRep and CObjRootMultiRep root classes. CObjRep ensures that all classes derived

from it contain a pointer to a root which is a sub-type of CObjRoot. It also defines a cleanup

method which the standard roots invoke when they want a Representative to free its resources.

5.3 Chapter 5: Clustered Objects 101

the root object it belongs to

myRef COID

therep

vtable

...

C++ vtable
(table of virtual
function pointers)

transSet VPSet

myRoot

Root: Instance of CObjRootSingleRep

The Single Representative:
Subclass of CObjRep which ensures
that a rep has as its first member a
vtable pointer and then a pointer to

Figure 5.4: A non-distributed Clustered Object instance created from the standard base Clustered Object
Classes. It is composed of a single Representative, which is a subclass of CObjRep, and a single instance of
CObjRootSingleRep as its root.

The default implementation of this method simply destroys the Representative using the C++

delete function, which will trigger the standard C++ destructor for the Representative. We will

discuss the destruction protocol in more detail in Section 5.4. The BaseObj and Obj classes are

K42-specific, defining methods and members that a Clustered Object must have to operate with

other non-Clustered Object related services of K42.

The CObjRootSingleRep, CObjRootMultiRep and CObjRep classes impose an implicit internal

structure for both single-Representative and multi-Representative Clustered Objects. Figure 5.4

depicts a generalized single-Representative Clustered Object, which is composed of a single instance

of CObjRootSingleRep and a single Representative which is a sub-type of CObjRep. In the figure

we see that the Root contains three fields:

myRef: As discussed earlier, the root stores the Clustered Object Identifier in this field.

therep: In the case of CObjRootSingleRep the root contains a pointer to the single shared Rep-

resentative, stored in this field.

transSet: The CObjRootSingleRep records the set of processors for which it has established

translations of the Clustered Object Identifier to the single Representative, stored in this

field.

In the figure two fields of single Representative are made explicit:

5.3 Chapter 5: Clustered Objects 102

vtable All Representatives must contain as the first data member the implicit C++ generated vir-

tual function table pointer. We ensure this by carefully constructing the top class (COSTransObject)

so that all its subclasses will have the vtable pointer as their first member.

myRoot All Representatives contains a pointer to the Root of the Clustered Object instance they

belong to.

Figure 5.5 illustrates an example of the code for a simple performance counter implemented

as a single-Representative Clustered Object. In K42, we utilize a number of standard macros

to control properties of memory used to allocate any C++ object instance. Specifically, for

C++ object instances that we know will be accessed only on one processor we use the macro

DEFINE LOCALSTRICT NEW, and for objects instances that will be accessed on many processors we

use the macro DEFINE GLOBAL NEW as in Figure 5.5. These macros make calls to the appropriate

K42 memory allocator interface, which minimize false sharing.

Similarly, Figure 5.6 illustrates the structure of a generalized distributed Clustered Object

composed of multiple Representatives and a single root, using CObjRootMultiRep and CObjRep

classes. Of particular note is the replist, which is used to record the mapping of Representa-

tives to processors. Each node of the replist associates a processor (Virtual Processor (vp))

number with a specific Representative. In the next section, we will discuss the implementation of

CObjRootMultiRep in more detail. Figure 5.7 illustrates an example of the code for a distributed

version of the performance counter. It assumes the same base PerfCounter class shown at the top

of Figure 5.5.

In the distributed version, a root class PerfCtrDisributedRoot is defined as a sub-class of

CObjRootMultiRep. Only the single createRep method is defined, which specifies the unique be-

haviour for the instantiation of Representatives for the distributed performance counter. With re-

spect to the Representative class, the main difference is that the value method now is written to im-

plement a gather across the current Rep set using standard methods provided by CObjRootMultiRep.

The main feature to note is that utilizing the standard base classes, the new classes of the distributed

performance counter only had to specify the behaviour unique to the distributed counter and did

not have to implement any behaviour specific to the Clustered Object infrastructure.

The key to obtaining good performance is to ensure that the hot or common services of a

Clustered Object are serviced by a single rep instance without the need to co-ordinate with the

root or other reps, thus only accessing data (including locks) of the Rep to which the access was

5.3 Chapter 5: Clustered Objects 103

// Virtual base interface class for Performance Counters

class PerfCounter : public CObjRep {

public:

virtual SysStatus value(sval &count)=0;

virtual SysStatus inc()=0;

};

NEW_COID(PerfCounter);

class SharedPerfCounter : public PerfCounter {

protected:

sval _val;

DEFINE_GLOBAL_NEW(SharedIntegerCounter);

SharedIntegerCounter() : _val(0) {}

public:

static SysStatus Create(PerfCounterCOID &coid) {

coid=(PerfCounterCOID)

(new CObjRootSingleRep(new SharedIntegerCounter()))->getRef();

return 1;

}

virtual SysStatus inc() {

FetchAndAddSignedSynced(&(_value),1);

return 1;

}

virtual SysStatus value(sval &count) {

count=_val;

return 1;

}

};

Figure 5.5: Code for a simple non-distributed performance counter.

5.4 Chapter 5: Clustered Objects 104

Representatives: instances of subclass of CObjRep

vtable

...
myRoot

vtable

...
myRoot

vtable

...

myRef COID

transSet VPSet

VPSetrepSet

...
rep rep rep

C++ vtable C++ vtable

myRoot

clustersize

BLOCK

VPNum

head

tail

repLock

replist next

vp VPNum

next

vp VPNum

next

vp VPNum

Root: instance of subclass of CObjRootMultiRep

List of mappings of vps to representatives

C++ vtable

Figure 5.6: A distributed Clustered Object instance created from the standard base Clustered Object
Classes. It is composed of multiple Representatives, which are instances of a subclass of CObjRep, and a
single instance of root which is derived from CObjRootMultiRep as its root.

made. A critical challenge is developing implementations which are capable of servicing all hot

operations of an object in a localized fashion despite potentially conflicting requirements. For

example, we have seen that the distributed performance counter was capable of achieving scalable

performance for updates. However, if we look at the performance, in cycles, to obtain the counter’s

value, we see that the costs grow proportionally with the number of processors accessing the counter.

In the case of the performance counter, it is clear that the update method is the hot method and

having less than scalable performance for obtaining the counter’s value is likely acceptable for

many applications. However, it is not at all clear that, for more complex objects under varying

and potentially conflicting loads, it will be possible to make such simple tradeoffs and still achieve

global, stable, scalable performance. This is one of the central questions this work explored in the

examples of Chapter 4.

5.4 Clustered Object Protocols

This section discusses the key Clustered Object protocols. We will focus on the support for dis-

tributed Clustered Objects, as non-distributed objects are a special case simplification. The fol-

5.4 Chapter 5: Clustered Objects 105

class PerfCtrDistributed : public PerfCounter {

// Root definition for the distributed performance counter

class PerfCtrDistributedRoot : public CObjRootMultiRep {

public:

// All roots must define what reps should be created when

// the first miss on a processor occurs

virtual CObjRep * createRep(VPNum vp) {

CObjRep *rep=(CObjRep *)new PerfCtrDistributed();

return rep;

}

DEFINE_GLOBAL_NEW(PerfCtrDistributedRoot);

};

// Per Representative Definitions (local data and methods)

sval _val;

PerfCtrDistributed(): _val(0) {}

public:

// Create method used to instantiate new instances

static SysStatus Create(PerfCounterCOID coid) {

coid = (PerfCounterCOID)

(new PerfCtrDistributedRoot)->getRef());

}

// Loop across all the reps and aggregate their individual values

virtual SysStatus value(sval &count) {

PerfCounterDistributed *rep=0;

count=0;

COGLOBAL(lockReps());

for (void *curr=COGLOBAL(nextRep(0,(CObjRep *&)rep));

curr; curr=COGLOBAL(nextRep(curr,(CObjRep *&)rep))) {

count+=rep->_val;

}

COGLOBAL(unlockReps());

return 1;

}

// increment this reps value

virtual SysStatus inc() { FetchAndAddSignedSynced(&(_val),1); }

DEFINE_LOCALSTRICT_NEW(PerfCtrDistributed);

};

Figure 5.7: Code for a simple distributed performance counter.

5.4 Chapter 5: Clustered Objects 106

lowing is an overview of the Clustered Object protocols:

Allocation and Initialization: protocols which enable various allocation and initialization sce-

narios.

Inter-Rep: protocols which enable a Representative to identify and cooperate with the other

Representatives of a Clustered Object.

Destruction and RCU: protocols for leveraging semi-automatic garbage collection for the in-

ternal management of destruction of a Clustered Object and support for Read Copy Update

primitives.

Hot-swapping: protocols which enable an instance of a Clustered Object to be replaced dynam-

ically with another type-compatible instance.

We discuss each of these in turn. Hot-swapping is discussed separately in Chapter 6.

5.4.1 Allocation and Initialization

There are two categories of Clustered Object instances accessible in an address space; well-known

objects and dynamically allocated objects. The COSMgr provides mechanisms for the address space

initialization code to instantiate the well known objects, including the COSMgr itself. The default

Clustered Object classes cooperate with the COS via the COSMgr to implement allocation and

initialization of the dynamic objects. In this subsection, we will focus on dynamic object allocation

and initialization.

In order to ease the programmer’s burden, support for lazy Representative mapping and manage-

ment has been factored out from Representative instantiation and incorporated into the CObjRootMultiRep

root class. When a root is allocated, the default constructors invoke the alloc method of the well-

known COSMgr Clustered Object. As discussed earlier, the COSMgr is the primary object which

manages the Clustered Object System. The alloc method reserves a free entry in the global trans-

lation table for a new Clustered Object and stores a pointer to the root of the new Clustered Object

in the entry. This implicitly allocates a new Clustered Object identifier (as a reminder, a Clustered

Object identifier, or ref, is the address of an entry in the local translation table which corresponds

to an entry in the global translation table). The COSMgr manages Clustered Object identifiers

by maintaining simple free lists of global table entries. To ensure scalability and facilitate the

identification of the processor on which a Clustered Object was allocated (the home processor for

5.4 Chapter 5: Clustered Objects 107

the Clustered Object), the COSMgr manages the global translation table on a per-processor basis.

There is one COSMgr Representative for each processor and each manages a distinct range of the

global translation table. Given this partitioning, the alloc method of a COSMgr Representative

need not synchronize or co-ordinate with other Representatives, as each manages a unique range

of the global translation tables using independent data structures.6

Installing a pointer to the root in the global translation table entry, associated with the newly

allocated Clustered Object identifier, ensures that any access to the external interface of the object

will result in the miss-handling mechanisms invoking the handleMiss method of the installed

root. More specifically, the low-level miss-handling code will invoke the static GenericDefaultFunc

method of the COSMgr. This method translates the identifier of the Clustered Object on which

the miss occurred into a pointer to the associated global translation table entry. Each global

translation table entry contains a request counter which is used to record all in-flight invocations

of the handleMiss method on the root. This counter allows the hot-swapping and destruction

algorithms, which are discussed in more detail later, to turn away new misses on an object and

wait for current in-flight misses to complete. To this end, after translating the Clustered Object

identifier to a pointer to the associated global translation table entry, the GenericDefaultFunc

increments the request counter and then invokes the handleMiss method of the associated root.

GenericDefaultFunc expects the handleMiss method of the root to return back a pointer to a

Representative of the Clustered Object. GenericDefaultFunc then continues execution by direct-

ing the low-level miss-handling code to re-invoke the original method which caused the miss on the

Representative returned. Note that the GenericDefaultFunc does not install the Representative

into the local translation table, rather this is left to the Clustered Object itself. Doing so allows

for specialized Clustered Object roots to be developed which do not cache Representatives in the

local translation tables but rather simply redirect calls to specified Representatives.

The CObjRootMultiRep supports a basic notion of processor clusters, in which a cluster size is

specified as an instantiation parameter. Processors are grouped into clusters based on the spec-

ified size and their processor number. For example, if a cluster size of four is specified then

CObjRootMultiRep will treat processors 0-3 as one cluster, 4-7 as another and so on. On NUMA

architectures it would be natural to match the cluster size for some objects to the machine’s node

size.

6The use of partitioning is viable as the translation tables are backed by pagable memory and a given processor’s
range is densely managed.

5.4 Chapter 5: Clustered Objects 108

The handleMiss method of the CObjRootMultiRep class implements the following cluster-

based behaviour for misses. For each cluster of processors, it instantiates a new Representative

only on the first miss which occurs on any processor of the cluster. For every miss on a processor

the CObjRootMultiRep caches a pointer to the Representative for the associated cluster in the

processor’s local translation table. Additional accesses to the Clustered Object on the processor

will be directly serviced by the Representative without a miss. It is important to note, however, that

the local translation table is treated only as performance optimization with respect to functionality.

The COS semantics dictate that local translation table entries can be flushed at any time. Therefore,

the root must serve as the ultimate authority for maintaining the mappings of the Representatives

to processors and no code including that of the root should rely on the local translation tables

for anything beyond a cache. As such, the CObjRootMultiRep has been implemented to maintain

these mappings and is able to re-establish the correct translation for any processor independent of

whether a miss has or has not previously occurred on the processor.

Roots for distributed Clustered Objects automatically inherit the above behaviour for miss-

handling from the CObjRootMultiRep root class. A developer need only specify the actions that are

required to actually instantiate a new Representative and initialize it, by implementing a createRep

method which the default methods of CObjRootMultiRep invoke as needed.

In order to provide this miss-handling behaviour, the handleMissmethod of the CObjRootMultiRep

class maintains a number of logical facts:

• The set of processors on which a translation, in the form of a cached pointer to a Representa-

tive, has been established. In the current implementation this is maintained in the transSet

member (see Figure 5.6).

• The set of processors on which a Representative has been instantiated. In the implementation

this is maintained in the repSet (see Figure 5.6).

• The mappings of processors to Representatives is maintained by the replist member (see

Figure 5.6).

These facts are also used to provide the services that allow a developer of a Clustered Object to

locate and iterate over the Representatives, as described in the next subsection, and also allow the

object to provide the COS with the necessary information to correctly interact with the destruction

and hot-swapping protocols. To simplify implementation, each instance of CObjRootMultiRep

uses a single lock (repLoc) to protect the data structures it uses to maintain these facts. The

5.4 Chapter 5: Clustered Objects 109

actual data structures and synchronization methodology are not as important as the facts that the

CObjRootMultiRepmaintains. In the long run we expect the implementation of CObjRootMultiRep

to be optimized as necessary.

5.4.2 Inter-Rep Protocols

As discussed earlier, using the standard base classes for Clustered Object development ensures that

the root of the Clustered Object is accessible from the Representatives via a standard root pointer

in the Representative instances (as illustrated in Figure 5.6). The CObjRootMultiRep provides the

following methods to access the Representatives:

lockReps: This method acquires the repLock, stops any misses from occurring and hence ensures

that the set of Representatives does not change.

unlockReps: This method releases the repLock, re-enabling misses.

nextRep: This method provides a means for iterating over the list of Representatives. If bracketed

by calls to lockReps and unlockReps, then iterations are ensured of covering the exact set

of Representatives. If nextRep is used without first calling lockReps, then it is still safe, but

the iteration is not guaranteed to visit Representatives added during the iteration.

findRepOn: Given a processor number, this method returns the rep associated with the cluster

that the VP is a part of. If no Rep exists, this method returns NULL.

getRepOnThisVP: This method returns a Rep associated with this vp. If one does not already

exist, one is created, added to the Rep list and returned.7

These methods are utility methods provided for the developer of a distributed Clustered Object to

access the state maintained by default. It is expected that if a developer has special requirements

for traversing the Representatives of a Clustered Object, she will explicitly construct the necessary

support. For example as in the case of the COSMgr object, the Representatives are explicitly

linked together in a ring to support the neighbour structure required. If however, a simple gather

is being implemented, as in the case of the value method of the perfCounter example presented

in Figure 5.7, the standard lockReps, unlockReps and nextRep suffice.

7This method is named in order to be explicit that it will only return a Rep for the current virtual processor on
which the method is invoked.

5.4 Chapter 5: Clustered Objects 110

These methods have been sufficient for simple use and validation of the Clustered Object model

for this dissertation. Future work may explore optimizations and support for O(1) translation of

processor number to Representative in a standard way. Future work may also explore explicit

support for lock free traversal of the Representatives. This would help alleviate the potential

for programmers accidentally introducing subtle deadlocks. The methods as implemented in this

work must be used with care, since the lockReps and unlockReps manipulate the lock used to

serialize execution of the missHandling routine and hence actions bracketed between them cannot

be arbitrary. Actions which induce a miss on the object either directly or indirectly can cause a

deadlock. In the case of simple gathers of data values, using direct Representative pointers is not

a problem.

5.4.3 Destruction and RCU

As many have noted, the construction of dynamic parallel systems software has a number of chal-

lenges, one of which is the problem of existence locking [65,107]. Given the dynamic allocation of

data structures which are accessed by concurrent threads, there are subtle race conditions which

must be dealt with to ensure that threads do not access stale or dangling references. For example,

let us assume that a thread A allocates a data item D to which it receives a pointer from the

allocation. Thread A then spawns a new thread B, to which it passes the pointer to D. Thread A

then attempts to access D; however if no additional steps are taken, thread B may already have

deallocated D and thus rendered A’s pointer stale or dangling. The standard techniques employed

to deal with such situations are existence locks and reference counters.

Gamsa proposed the use of a semi-automatic garbage collection system that exploits the nature

of systems software in order to alleviate some of the burden associated with such race conditions

between allocation, access and deallocation of dynamic objects [48, 49]. The approach partitions

the references to a data item into two categories: permanent and temporary. Permanent references

are those which are stored in memory structures such as tables or objects, whereas temporary ref-

erences are those which are in registers or on the thread stacks. Gamsa’s scheme advocates that all

permanent references be explicitly invalidated prior to submitting the object to the garbage collec-

tion service. The garbage collection service then ensures that the object is only deallocated when

no temporary references exist. At first glance this may not seem significant, as the programmer

must still manually deal with the permanent references; however, such a scheme has a number of

advantages. Since temporary references are automatically dealt with, all that needs to be done is

5.4 Chapter 5: Clustered Objects 111

to invalidate all references, without regard for order or atomicity. For example, one can simply set

all permanent references to a value which will cause future accesses to be denied; e.g., to destroy an

object O to which there is a permanent reference in a table, one simply updates the table entry with

a reference to a well-known static object which returns an error on all accesses and then submits O

to the garbage collector. There is no need to synchronize around the table entry; all future readers

of the entry will fail to gain access to the object. Any threads that currently exist, and may have

a temporary reference, will be accounted for by the garbage collector.

McKenney et al. coined the term Read-Copy-Update (RCU) synchronization to describe a gen-

eralization of the above methodology and utilized it in PTX [97] and in Linux to implement a

number of optimizations such as lock-free module loading and unloading [93,95,133]. K42’s Clus-

tered Object system utilizes RCU mechanisms to provide Clustered Object garbage collection as

proposed by Gamsa and dynamic replacement or hot-swapping of Clustered Objects [5]. In ad-

dition to implementing the K42 garbage collection infrastructure, we have developed a standard

set of protocols to facilitate the destruction for Clustered Objects which are composed of multiple

Representatives. We proceed by first discussing the garbage collector and RCU in general terms

and then describe the supporting K42 mechanisms and Clustered Object protocols.

The garbage collector is responsible for delaying deallocation of an object until all the threads

which have a (temporary) reference to the object terminate. In order to make the implementation

of such a collector tractable, rather than identifying explicitly which threads have a reference to

the object, the collector defers deallocation until all threads that existed at the time the object was

submitted have terminated. This is in general insufficient as there is no guarantee that all threads

will terminate in a timely fashion, or at all. However, operating systems are event-driven in nature

where the events are serviced by short-lived threads. The majority of activity in the OS can be

represented and serviced as individual requests with any given request having an identifiable start

and end. This nature can be leveraged to enable the garbage collector and RCU synchronization

algorithms in general.

By associating changes of system data structures with an epoch of requests, one can identify

states in which a data structure is no longer being referenced. For example, to swing the head

pointer of a linked list from one chain of nodes to another, one can divide the accesses to the list

into two epochs. The first epoch includes all threads in the system that were active before the

swing, and the second epoch includes any new threads begun after the swing. Because new threads

will only be able to access the new chain of nodes, nodes of the old chain are guaranteed to no

5.4 Chapter 5: Clustered Objects 112

longer be in use once the threads in the first epoch have ended. At this point, the old chain is

quiescent and can be modified at will (including being deleted).

The key to leveraging RCU techniques is being able to divide the work of the system into short-

lived “requests” that have a cheaply identifiable start and end. In non-preemptive systems such as

PTX and Linux8, a number of key points (e.g., system calls and context switches) can be used to

identify the start and end of requests. K42 is preemptable and has been designed for the general

use of RCU techniques via the Clustered Object garbage collection services. K42’s design does not

use long-lived system threads nor does it rely on blocking system-level threads. All blocking occurs

outside of the system context and data structures by blocking user-level threads and the use of

continuation structures. By ensuring that all system requests are handled on short-lived system

threads, creation and termination occurs in a timely fashion and can be used to identify the start

and end of requests.

Specifically, it is possible to determine when all threads in existence on a processor at a specific

instance in time have terminated. This can be achieved by using a generation based thread tracking

algorithm, where a generation is identified by a generation number g and associated with a thread

counter. For each thread assigned to a generation, the generation’s thread counter is incremented

and when a thread terminates the thread counter of the generation to which the thread is assigned

is decremented. All new threads are assigned to the current generation (gcurrent) and at a specified

threshold a new generation (gcurrent+1) is created and made current (with initially gcurrent = g0).

Doing so bounds the number of threads assigned to any generation. To determine when all threads

in existence prior to time t have terminated, one records the generation number of the current

generation at t (gt = gcurrent) and then forces a new generation to be created and made current.

When the sum,
∑0

i=t
gi, is zero we can assert that all threads in existence prior to t have terminated.

An approximation of this algorithm can be efficiently implemented with a fixed number of generation

counters. The implementation in K42 use two generation counters.

K42’s threads are assigned to one of two generation counters.9 Each generation counter records

the number of threads that are active and assigned to it. At any given time, one of the generation

counters is identified as the current generation counter and all new threads are assigned to it. To

determine when all the current threads have terminated, the pseudo code presented in Figure 5.8 is

used. In K42, the process of switching the current generation counter is called a generation swap.

8Schemes for extending the current RCU support in Linux to preemptive versions have been proposed [95].
9The design supports an arbitrary fixed number of generation counters but only two are used currently.

5.4 Chapter 5: Clustered Objects 113

i=0

while (i<2)

wait until non-current generation is zero and make it the current generation

i=i+1

Figure 5.8: Pseudo code to determine when current threads have terminated.

Two generation swaps are required to establish that the current set of threads have terminated.

It should be noted that the use of a fixed number of generations is an approximation to the

generalized algorithm, as there is the potential for new threads to delay the declaration that all

prior threads have terminated. We have, however, in practice found this implementation to be

timely and accurate even in the face of preemption.

On top of the generation swapping mechanism, we have implemented the notion of a thread

marker. Thread markers abstract the generation swapping mechanisms, isolating the client code

from the details. Two operations are provided on thread markers: Set and updateAndCheck.

A client creates a thread marker and then invokes Set when they want to “mark” a point in

time relative to which they would like to determine a quiescent state. When a client wants to

know if a quiescent state has been reached they invoke updateAndCheck on the marker. This

method returns either ACTIVE, indicating that active threads exist, or ELAPSED, indicating that

a quiescent state has been achieved and all threads have terminated. We have found the thread

marker abstraction general enough to implement the Clustered Object garbage collector and the

hot-swapping algorithm. It has also enabled others to implement RCU based facilities such as a

non-blocking hash table and a specialized resource reclamation facility outside of the Clustered

Object system.

In order to determine when all the threads across all processors of an address space have

terminated, the Clustered Object System implements a global thread marker facility. A single

token is passed from processor to processor. The processors are organized in a ring, and when a

processor receives ownership of the token it sets a local thread marker; when the marker has elapsed

it passes the token to the next processor in the ring. Thus, when the token has made a complete

circuit, all processors of the address space have established a quiescent state, and hence a global

quiescent state is achieved. Various optimizations to this algorithm have been designed but are not

within the scope of this thesis.

In the remainder of this subsection, we discuss the Clustered Object protocols implemented

5.4 Chapter 5: Clustered Objects 114

by the CObjRootMultiRep, CObjRep and the COSMgr that implement distributed reclamation of

a multi-Representative Clustered Object. The default implementation of the destruction protocol

ensures that the Representatives will be deallocated from the processor on which each was allocated.

If the developer wishes to deallocate additional resources in a distributed fashion, she simply needs

to add the extra deallocations to the standard C++ destructor of the Representative. Additionally,

the default implementation ensures that the root of a Clustered Object is only destroyed after

destruction of the Representatives has been initiated and, again, the programmer can extend the

actions taken by defining a standard C++ destructor for the root.

There are two types of resources associated with a Clustered Object:

1. Memory of the root and Representatives and any associated memory dynamically allocated.

2. Translation table entries: the set of local translation table entries that have been used to

cache pointers to the Clustered Object’s Representatives and the global translation table

entry associated with the Clustered Object.

In order to reclaim these resources, the COSMgr implements a distributed reclamation algorithm

in co-operation with the roots of Clustered Objects. Ultimately, the COSMgr relies on the root of

a Clustered Object to correctly reclaim its memory, but actively reclaims the translation resources.

To implement this distributed reclamation, the COSMgr utilizes the distributed structure illus-

trated in Figure 4.19 of Chapter 4. A Clustered Object is submitted to the COSMgr for destruction

via the destroyCO method, which operates solely on the processor on which it was invoked, only ac-

cessing data structures of the associated COSMgr Representative. This method takes the following

actions:

1. Marks the global translation entry for the Clustered Object as being destroyed. This ensures

that new misses on the Clustered Object will be turned away with an error.

2. Using the request count of in-flight misses, maintained in the global translation entry, destroyCO

waits for any current misses to complete.

3. The object is then categorized as either only requiring local reclamation with respect to

memory and local translation entries or as requiring remote processing. To do this it queries

the root of the object for the set of processors on which it has established translations,

via the root’s getTransSet method. Based on this set, the object is placed on either the

stage1LocalList or the stage1RemoteList. In our discussion we will only focus on the

5.4 Chapter 5: Clustered Objects 115

processing of objects which have been accessed on multiple processors and are hence put on

the stage1RemoteList.

At this point the destroyCO method returns to the caller, and with respect to the caller, the object

will be destroyed asynchronously at some future point when the COS has determined that it is no

longer possible to access the object.

Associated with each Representative of the COSMgr is a worker event which periodically pro-

cesses the destruction work on each processor. As indicated above, Clustered Objects submitted for

destruction are placed on a stage1 list for later processing. Each entry on a stage1 list represents

the entry of new work into the distributed reclamation system of the COSMgr and will be processed

by the worker event. The worker events establish two states associated with each object submitted

for destruction:

Memory Quiet: No new accesses to the memory of the object can occur and a quiescent state has

been reached on all of the processors which accessed the object and thus memory reclamation

can commence.

Id Quiet: When a quiescent state has been reached on all processors of the system, the global

translation resources can be reclaimed.

The main goal of the COSMgr is to establish these states and initiate the actions to reclaim

the resources. The CObjRootMultiRep class provides a default implementation of a root which

both provides necessary information to the COSMgr as well as utilizing the COSMgr services to

implement the memory reclamation.

Prior to submitting the object for destruction, it is the programmer’s responsibility to ensure

that no new accesses to the object can occur via permanent references (see Section 5.1). Therefore,

the Memory Quiet state can be established by waiting for all threads on each of the processors

which have accessed the object to terminate. The COSMgr has been implemented to determine the

Memory Quiet state in a distributed fashion using a token-based scheme which avoids broadcast-

ing interprocessor interrupts for every object destroyed and amortizing the costs of communication

through batching.

At any given time, only one COSMgr Representative is identified as owning the token. When

the worker event associated with the Representative which owns the token executes, it waits for all

the current threads on the local processor to terminate via the RCU mechanisms and then processes

the objects on its stage1 list. The following steps are taken for each object:

5.4 Chapter 5: Clustered Objects 116

1. Make a copy of the set of processors on which the object has been accessed by querying the

root of the object via its getTransSet method. The CObjRootMultiRep implementation of

the root ensures that the set returned is accurate.

2. If the object has been accessed on the processor of the COSMgr Representative associated

with the worker event then:

(a) Reclaims the local translation table entry associated with the object on this processor.

(b) Takes this processor out of the set of accessing processors.

3. The pointer to the root of the object, along with the potentially modified set of processors

which have accessed the object, are copied onto the transferArray associated with this

COSMgr Representative for further processing.

Similarly, the worker event processes the objects that are on the transferArray of the Represen-

tative which had the token before. For each object:

1. If the object has been accessed on the processor of the COSMgr Representative associated

with the worker event then:

(a) the local translation table entry associated with the object is reclaimed,

(b) the processor is taken out of the set of accessing processors, and

(c) if the set of accessing processors is empty then the object has been processed by all

processors which accessed the object. In this case the cleanup method of the root is

invoked in order to begin memory reclamation.

2. If the set of accessing processors is not empty, then the object is placed on the transferArray

of this COSMgr Representative for further processing.

After all the objects have been processed, the worker event passes the token to the next COSMgr

Representative in the ring. An object submitted for destruction will be progressively processed by

each processor that has accessed it, as the token circulates around the ring of COSMgr Represen-

tatives. To review: as each COSMgr Representative processes an object, it checks to see if it is the

last processor in the set of accessing processors, and if so, it initiates the memory reclamation of

the object by invoking the cleanup method of the root of the object.

Before looking at how the memory is actually reclaimed, let us examine how the Id Quiet state

is established. As an object is circulating along with the token, between the Representatives of

5.4 Chapter 5: Clustered Objects 117

the COSMgr, it will eventually be processed by the processor on which the object was allocated10.

When this processor processes the object, it records the Clustered Object identifier associated with

the object on a list of identifiers to be reclaimed the next time it receives the token. Each time

a COSMgr Representative receives the token, it reclaims any Clustered Object identifiers on its

reclaim list. As discussed earlier, the token’s arrival is indicative of a quiescent state having occurred

on all processors, and therefore, for any Clustered Object identifier on a COSMgr Representative’s

reclaim list, the token arrival represents the Id Quiet state. Since the local translation entries

are reclaimed as the token visits each of the processors on which the object has been accessed, the

COSMgr Representative only reclaims the global translation entry as it processes the entries of its

Clustered Object identifier reclaim list.

In order to facilitate distributed reclamation of the memory associated with a Clustered Object,

the COSMgr maintains an additional per-Representative list of objects, called the vpCleanupList.

call-backs to the cleanupmethod are periodically made to the roots of the objects on the vpCleanupList.

When an object is being initially queried for its translation set it is also queried for the set of pro-

cessors on which it would like to have cleanup call-backs invoked (the vpCleanupSet). This set

is circulated along with the object as the token is passed. Each processor specified in the vp-

CleanupSet adds the object to its vpCleanupList when it processes the object. Each time the

worker event associated with a COSMgr Representative executes, it invokes the cleanup method

on the roots of the objects specified on the vpCleanupList.

The CObjRootMultiRep uses this feature to implement distributed reclamation of its Repre-

sentatives. Its getVPCleanupSet specifies that it would like to have cleanup call-backs invoked

on the set of processors on which its Representatives were instantiated. This establishes periodic

invocations of the cleanup method of the root for all processors for which a Representative was

instantiated. By default, these invocations do not take any action but simply return a value that

indicates that invocations should continue to occur and are kept on the vpCleanupList of the as-

sociated COSMgr Representative. However, once the Memory Quiet state has been established

for the object, the COSMgr executes a single invocation of the cleanup method of the object,

passing it a unique parameter indicating that the object should now begin memory reclamation.

On this invocation the CObjRootMultiRep changes the behaviour of the call-backs to indicate that

they should now reclaim the resources. Future call-backs now destroy the Representatives associ-

10The token passing memory reclamation described in the previous paragraph is implemented to continue to pass
the object around if it has not visited the allocating processor.

5.5 Chapter 5: Clustered Objects 118

ated with the processors. Additionally, they atomically check to see if they are destroying the last

Representative and if so the root object is also destroyed.

Although the above may seem complex, the default semantic that the COSMgr and CObjRootMultiRep

provide is straightforward and simple to use:

• The standard C++ destructor for the Representative instances will automatically be invoked

when it is safe to do so, on the processor on which the Representative was allocated, in a

parallel fashion. Thus the programmer can simply place any per-processor destruction logic

in the standard C++ destructor of the Representative. If none is specified, the default action

will be to deallocate the memory of the Representative.

• The standard C++ destructor for the root will be invoked as the final action of the object,

only after the cleanup method has been invoked on all of the Representatives. Thus all global

resources can be destroyed in the standard C++ destructor for the root.

Additionally, an advanced programmer can over-ride the default behavior and implement a com-

pletely custom reclamation behavior, without modification to the Clustered Object system itself

by over-riding the methods of the CObjRootMultiRep class.

5.5 Summary

In this chapter we have described the Clustered Object infrastructure, which provides a simple

but flexible model for Clustered Object development. The infrastructure provides the developer

with a structure in which every Clustered Object is composed of two types of components; a single

Root and one or more Representatives. Standard protocols for the construction, management and

destruction of a Clustered Object are implemented by reusable components of the infrastructure,

easing the programmers’ burden. A runtime Clustered Object System provides basic allocation

and garbage collection facilities. These services are implemented via a distributed Clustered Object

Manager.

The support for Clustered Objects described here has enabled the examples presented in Chap-

ter 4 and provides the basic object model for K42. All objects in K42 are Clustered Objects and

over the span of the development of K42, many developers have created new Clustered Objects,

even if they were not aware of it. Portions of my Clustered Object infrastructure has been in use

since 1998.

Chapter 6

Hot-swapping

Distributed implementations can offer better scalability, but they also typically suffer greater over-

heads when scalability is not required. Distributed implementations also tend to optimize certain

operations, improving their scalability, while increasing costs of other operations. In order to

provide a means for coping with the tradeoffs of using distributed implementations, we have de-

veloped a technique for dynamically replacing a live Clustered Object instance with a different,

but compatible, instance. This mechanism can be used to switch between shared and distributed

implementations and additionally enable other forms of dynamic adaptation. Our contribution has

been in the development of the mechanisms and the algorithm for the dynamic replacement of a

Clustered Object instance.

There are a number of challenges in the design of a hot-swapping infrastructure capable of

dynamically switching a “live” software component: 1) avoid adding overhead to normal method

invocations, 2) avoid complicating the design of those objects that can be switched, 3) ensure

the switching code is scalable, 4) correctly handle in-flight requests to the object being switched,

5) avoid deadlock during the switch, and 6) guarantee integrity when transferring state from the

old to the new object instance. The distributed nature of Clustered Objects further exacerbates

these challenges as it can mean having to swap the multiple constituents of a component across

multiple processors in a coordinated way.

In this chapter, we describe the basic hot-swapping mechanism and algorithm as constructed

on top of the Clustered Object infrastructure. We begin with an overview and then present the

details.

119

6.1 Chapter 6: Hot-swapping 120

6.1 Overview

Our swapping mechanism allows any Clustered Object instance to be hot-swapped with any other

Clustered Object instance that implements the same interface. Moreover, swapping is transparent

to the clients of the component and thus no support or code changes are needed in the clients.

6.1.1 Algorithm Overview

The outline for our hot-swapping algorithm is as follows (and is described in more detail further

below):

(i) instantiate the replacement Clustered Object instance;

(ii) establish a quiescent state for the instance to be replaced (potentially blocking calls as nec-

essary) so that we know it is no longer being used;

(iii) transfer state from the old instance to the new instance;

(iv) swap the new instance for the old, adjusting all references to the instance;

(v) unblock calls that were blocked (which now will be serviced by the new instance); and

(vi) deallocate the old instance.

There are three key issues that need to be addressed in this design. The first and most challeng-

ing issue is how to establish a quiescent state so that it is safe to transfer state and swap references.

The swap can only be done when the instance state is not currently being accessed by any thread

in the system. Perhaps the most straightforward way to achieve a quiescent state would be to

require all clients of the Clustered Object instance to acquire a reader-writer lock in read mode

before any call to the object (as is done in the re-plugging mechanism described by McNamee et

al. [98]). Acquiring this external lock in write mode would then establish that the object is safe

for swapping. However, this approach adds overhead for the common case and can cause locality

problems, defeating the scalability advantages of Clustered Objects. Further, the lock could not be

part of the component itself and the calling code would require changes. Our solution avoids these

problems by leveraging the same basic RCU mechanisms provided by the Clustered Object System

as discussed in Section 5.4.3.

The second issue is deciding what state needs to be transferred and how to transfer the state

from the old component to the new one, both safely and efficiently. We provide a protocol that

6.2 Chapter 6: Hot-swapping 121

Clustered Objects developers can use to negotiate and carry out the state transfer. Although the

state could be converted to some canonical, serialized form, one would like to preserve as much

context as possible during the switch, and handle the transfer efficiently.

The final issue is how to swap all of the references held by the clients of the component so

that the references point to the new instance. In a system built using a fully-typed language

such as Java, this could be done using the same infrastructure as is used by garbage collection

systems. However, this would be prohibitively expensive for a single component switch and would

be overly restrictive in terms of systems language choice. An alternative would be to partition a

hot-swappable component into a front-end component and a back-end component, where the front-

end component is referenced (and invoked) by the component clients and is used only to forward

requests to the back-end component. Then there would be only a single reference (in the front-

end component) to the back-end component that would need to be changed when a component

is swapped, but this adds extra overhead to the common call path. Given that all accesses to a

Clustered Object in K42 already go through a level of indirection, namely the Local Translation

Table, the more natural way to swap references in our system is to overwrite the entry pointers in

a coordinated fashion.

6.2 Details

To implement the swapping algorithm outlined above, a specialized Clustered Object called the

Mediator Object is used during the swap. It coordinates the switch between the old and new

objects, leveraging the Clustered Object infrastructure to implement the swapping algorithm. To

handle the swapping of distributed Clustered Object instances with many parallel threads accessing

it, the Mediator is itself a distributed Clustered Object that implements the swapping algorithm

in a distributed manner by utilizing a set of worker threads.

The Mediator establishes a worker thread and Rep on each processor for which the original

Clustered Object instance has been accessed. The Mediator instance is interposed in front of the

target Clustered Object instance and intercepts all calls to the original object for the duration

of the swapping operation. The details of how the interposition is achieved will be described

later. The worker threads and Mediator Reps transit through a sequence of phases in order to

coordinate the swap between the old Clustered Object instance and the new one replacing it. The

Mediator Reps function independently, only synchronizing when necessary in order to accomplish

6.2 Chapter 6: Hot-swapping 122

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

?

Old
Threads

?

(a) Prior.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

New

Mediator

Old

a
b
c

?

Threads

(b) Forward.

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

b

e
d

New

Old

Mediator
Threads

(c) Block.

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

d

Old

New

Threads

f
e

Mediator

(d) Transfer.

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

Threads

f
e
d

g
Mediator

Old

New

(e) Complete.

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

?

Threads
New

?

(f) Post.

Figure 6.1: Component hot-swapping. This figure shows the phases of hot-swapping with respect to a single processor

and the Reps: prior, forward, block, transfer, complete, and post. In the forward phase, new calls are tracked and forwarded

while the system waits for untracked calls to complete. Although this phase must wait for all old threads in the system to

complete, all threads are allowed to make forward progress. In the block phase, new calls are blocked while the system waits

for the tracked calls to complete. By blocking only tracked calls into the component, this phase minimizes the blocking time.

In the transfer phase, all calls to the component have been blocked, and state transfer can take place. Once the transfer is

complete, the blocked threads can proceed to the new component and the old component can be garbage collected.

the swap. Figure 6.1 illustrates the phases that a Mediator Rep goes through while swapping a

Clustered Object. The remainder of this section describes how the Mediator Reps and worker

threads accomplish the swap. We present the actions that occur on a single processor but in the

general case these actions proceed in parallel on multiple processors.

Prior to initiating the swap (Figure 6.1a), the old object’s Reps are invoked as normal. The

first step of hot-swapping is to instantiate the new Clustered Object instance, specifying that it

not be assigned a COID, and that the installation of its root into the Global Translation Table be

skipped. Second, a new Mediator instance is created and passed both the COID of the old instance

and a pointer to the Root of the new instance. The Mediator then proceeds to interpose itself in

front of the old instance.

Interposing a Mediator instance in front of the old Clustered Object instance ensures that

future calls temporarily go through the Mediator. To accomplish this, the Mediator instance must

override both the Global Translation Table entry root pointer and all the active Local Translation

Table entries’ Rep pointers. To change the Global Translation Table entry Root pointer, it must

6.2 Chapter 6: Hot-swapping 123

.

.

.

.

.

.

Trampoline

Trampoline

Trampoline

Trampoline

Common

mediation

routine

vtable ptr
vtable code jump

Mediator

In−flight call counter

Switch phase variable

Hash Table

Figure 6.2: Mediator Rep implementation

ensure that no misses to the old object are in progress. As part of the standard Miss-Handling

infrastructure, there is a reader-writer lock associated with each Global Translation Table entry

and all misses to the entry acquire this lock in read mode. In order to atomically change the Global

Translation pointer, the associated reader-writer lock is acquired for write access, ensuring that no

misses are in progress. When the lock has been successfully acquired, the Root pointer of the entry

is changed to point to the Root of the Mediator and all future misses will be directed to it. The

Mediator remembers the old object’s Root in order to communicate with it. During this process

there may be calls that are in flight to the old Clustered Object, and they proceed normally.

Swinging the Root is not sufficient to direct all calls to the Mediator instance. This is because

some Rep pointers may already be established in the Local Translation Table entry associated

with the old instance, causing some calls to proceed directly to the Reps of the old instance. To

handle this, the Mediator spawns a worker thread on all the processors that have accessed the old

object. These threads have a number of responsibilities, but their first action is to reset the Local

Translation entry on each processor back to the Default Object. This ensures that future accesses

will be directed to the Mediator Object via the standard Miss-Handling process. Because the Root

maintains the set of processors for which it has suffered a miss, the Mediator can query the old

object’s Root to determine for which processors to spawn threads.

On each Mediator miss, the Mediator Root installs a new Mediator Rep into the Local Transla-

tion Table for the processor on which the miss occurred. The Mediator Reps are specialized C++

objects similar to the Default Object. They are designed to handle hot-swapping of any Clustered

Object transparently. To do so, the Mediator Rep intercepts all calls and takes action based on the

current phase of the Rep (Figure 6.1).

Figure 6.1, parts b, c, d and e, illustrate a single Mediator Rep in the different phases of a

6.2 Chapter 6: Hot-swapping 124

swap (described in more detail below). Once the Mediator Rep has been installed into the Local

Translation Table entry, virtual method calls that would normally call one of the functions in

the original object end up calling the corresponding method in the mediator. A small amount of

assembly glue captures the low-level state of the call, including the parameter passing registers and

return address. The actions that the Mediator Rep has to take on calls during the various phases

of swapping include: forwarding the call to the old or new instance depending on the phase and

keeping a count of active calls (increment the counter prior to forwarding the call and decrement it

after the forwarded call returns), selectively blocking calls, and releasing previously blocked calls.

To be transparent to the clients and the target Rep when the call is being forwarded, the Mediator

Rep may not alter the stack layout and hence it must only use Rep-local storage to achieve the

appropriate actions. As can be seen in Figure 6.2, the Mediator Rep utilizes three other data

members other than its vtable pointer.

The vtable of the Mediator Rep, like that of the Default Object, is constructed to direct every

call regardless of its signature to a single common mediation routine. When a phase requires that

new calls be tracked and forwarded, the Mediator Rep uses an in-flight call counter to track the

number of live calls. Because the counter needs to be decremented when the call completes, the

Mediator must ensure that the forwarded call returns to the mediation routine prior to returning

to the original caller. This means that the Mediator Rep must keep track of the point to which to

return after decrementing its in-flight call counter on a per-thread basis. To maintain transparency

it avoids using the stack, in the current, version by maintaining a hash table indexed by thread id

to record the return address for a given thread. The Mediator Rep also uses a data member to

track its current phase. The phases are detailed in the following paragraphs.

6.2.1 Forward

This initial phase is illustrated in Figure 6.1b. The Mediator stays in this phase until it determines

that a quiescent state has been reached, with respect to the threads started prior to the swap

being initiated. Specifically the Mediator determines that there are no longer any threads that

were started prior to the swap initiation still accessing the object. To detect this, the worker

thread utilizes thread marker services of K42’s Read-Copy-Update mechanism.(See Section 5.4.3

for details.)

By waiting for all threads that were in existence when the swap was initiated to terminate,

we are sure that all threads accessing the old object have terminated. However, to ensure system

6.2 Chapter 6: Hot-swapping 125

responsiveness while waiting for these threads to terminate, new calls to the object are tracked and

forwarded to the old instance by the Mediator Rep using its in-flight call counter and hash table.

The thread descriptors are also marked as being in a forwarded call in order to simplify deadlock

avoidance as described in the next paragraph. Such calls are referred to as tracked calls. Once the

worker thread, using the generation mechanism, determines that all the untracked threads have

terminated, the Mediator Rep switches to the Block phase. Note that the Forward phase, and

transition to the Block phase, happen independently and in parallel on each processor, and no

synchronization across processors is required.

6.2.2 Block

In this phase, the Mediator establishes a quiescent state, guaranteeing no threads are accessing the

old Clustered Object on any processor. To do this, each Mediator Rep establishes a quiescent state

on its processor by blocking all new calls while waiting for any remaining tracked calls to complete.

However, because a tracked call currently accessing the object might itself call a method of the

object again, care must be taken not to cause a deadlock by blocking any tracked calls. This is

achieved by checking the thread descriptor to determine if the thread is in a tracked call. This

also ensures that concurrent swaps of multiple Clustered Objects do not deadlock. If a thread in

a tracked call, in one object, calls another object that is in the blocked phase it will be forwarded

rather than blocked, thus avoiding the potential for inter-object deadlocks. To ensure a quiescent

state across all processors, the worker threads must synchronize at this point prior to proceeding.

A shared data member in the Mediator root is used for this purpose.

6.2.3 Transfer

Once the Blocked phase has completed, the Transfer phase begins. In this phase the worker

threads are used to export the state of the old object and import it into the new object. To assist

state transfer, a transfer negotiation protocol is provided. For each set of functionally compatible

components, there must be a set of state transfer protocols that form the union of all possible

state transfers between these components. For each component, the developers create a prioritized

list of the state transfer protocols that the component supports. For example, it may be best to

pass internal structures by memory reference, rather than marshaling the entire structure; however,

both components must understand the same structure for this to be possible. Before initiating a

transfer, a list is obtained from both the old and new component instances. The most desirable

6.3 Chapter 6: Hot-swapping 126

format, based on the two lists, is recorded by the Mediator instance. The actual data transfer is

carried out in parallel by the worker threads. The worker threads request the state from the old

object in the format that was recorded in the Mediator instance and pass it to the new object.

6.2.4 Complete

After the state transfer, the worker threads again synchronize so that one may safely swing the

Global Translation Table entry to the Root of the new Clustered Object. All the worker threads

then cease call interception by storing a pointer to the new Clustered Object’s Reps into the Local

Translation Table entries so that future calls go directly to the new Clustered Object. The worker

threads then resume all threads that were suspended during the Block phase and forward them to

the new Object (Figure 6.1e). The worker threads deallocate the original object and the mediator

and then terminate.

6.3 Summary

In this chapter we have presented a methodology that we have implemented which permits a Clus-

tered Object implementation, with potentially distributed state, to be dynamically switched with

another implementation. Given the level of indirection that our Clustered Object infrastructure

introduces, one may assume that hot-swapping is straight forward. There are however, subtle is-

sues that must be resolved to enable hot-swapping, including, the detection and establishment of

a quiescent state, and how to coordinate the swap of the distributed representatives of a Clustered

Object. By leveraging the flexibility of the Clustered Object infrastructure, we were able to con-

struct a specialized Mediator Clustered Object, which can be interposed in front of other Clustered

Objects and carry out the hot-swap algorithm.

Chapter 7

Performance

In this chapter we present results of experiments running standard workload benchmarks on K42.

The purpose of these experiments is to validate and gain insight into the effectiveness of K42’s

fundamental architecture in general and the effectiveness of the distributed implementations of key

memory management objects in particular. The benchmarks considered were:

SDET: SPEC Development Environment Test, a multiuser workload in which concurrent users

issuing standard commands is simulated [125].

Parallel Postmark: Multiple concurrent instances of the Postmark benchmark in which each in-

stance simulates the file accesses of a transactional server such as an email, netnews or a web

transaction server [68].

Parallel Make: Multiple concurrent multi-file compilations of an application source tree.

For comparison purposes, and as a reference point, we present results of the same experiments

executed on Linux running on the same hardware. This was done primarily to show that the

uniprocessor K42 performance is comparable to Linux performance (in part to demonstrate that

the scalability results were not achieved by artificially slowing down uniprocessor performance).

The experiments were conducted at a specific point in K42 development1 prior to the completion

of K42’s Linux compatibility support. Given the constraints of the time we had to make minor

modifications to the benchmarks to accommodate K42’s functional limitations. The same modified

versions of the benchmarks were run on both Linux and K42.

1The results were gathered in March of 2003.

127

7.1 Chapter 7: Performance 128

While the results presented in this chapter are limited in comparison to what might be possible

in the future, we believe the scalability of the fundamental architecture is well represented. All

the results presented in this chapter were obtained by running K42 or Linux 2.4.19 as distributed

by SuSE (with the O(1) scheduler patch) on PowerPC hardware. We used an S85 Enterprise

Server IBM RS/6000 PowerPC bus-based cache-coherent multi-processor with 24 600MHZ RS64-

IV processors and 16GB of main memory. For some experiments, we also used a 270 Workstation

with four 375MHZ Power3 processors and 512MB of main memory. Unless otherwise specified, all

results are from the S85 Enterprise Server. At the time of experimentation, disk IO was limited,

so each of the experiments was run using RamFS. Although we have eliminated physical IO we

continue to exercise all OS paths. For each main workload experiment, we ran the same script on

both K42 and Linux version 2.4.19

Figures 7.1 to 7.3 depict the scalability of K42 with three different benchmarks running on

a 24-way shared memory multi-processor. For both the SDET and Parallel Make benchmarks,

K42 scales well up to 24 processors. For the PostMark benchmark, as presented, the speedup on

K42 is good, and better than on Linux, but does begin to flatten and have variability past 10

processors. Further investigation revealed limitations in our physical memory allocation, which has

since been addressed. However, it was not possible to reproduce the PostMark results to validate

the improvement. The following sections describe the benchmarks in more detail.

7.1 SDET

The SPEC Software Development Environment Throughput (SDET) benchmark [125] consists of

a script that executes a series common Unix commands and programs including ls, nroff, gcc, grep,

etc. Each of these are run in sequence. For our experiments, the SDET benchmark was modified

by removing some system utilities such as “ps” and “df” which at the time of the experimentation

were not supported on K42. To examine scalability, we ran one script per processor. Each script

is independent, there is no application-level sharing between scripts, and all data files operated on

are unique to a single script. All the user programs (bash, gcc, ls, etc.) are the exact same binary,

whether run on K42 or Linux. The same version of glibc 2.2.5 was used, but modified on K42 to

intercept and direct the system calls to the K42 implementations.

Figure 7.1 illustrates the speedup obtained when running SDET on Linux and K42, using the

original non-distributed VMM Objects and the distributed VMM Objects that were presented in

7.2 Chapter 7: Performance 129

Chapter 4. We calculate speedup as the improvement in throughput relative to the K42 uniprocessor

throughput result, where the throughput numbers are those reported by the SDET benchmark and

represent the number of scripts per hour that are executed. For each configuration of processors,

we ran the benchmark several times and plot the average as well as the minimum and maximum

speedup observed, as indicated by the range bars.

5 10 15 20
Processors

0

5

10

15

20

Sp
ee

du
p

K42 Non-Distributed VM Objects
K42 Distributed VM Objects
Linux

Figure 7.1: Speedup as defined as the increase in throughput of SDET benchmark run on K42 using both
the non-distributed and distributed VMM objects and on Linux. Results are relative to the uniprocessor
K42 non-distributed VMM result.

7.2 Postmark

Postmark was designed to model the filesystem activity of a combination of electronic mail, netnews,

and web-based commerce transactions [68]. It creates a large number of small, randomly-sized files

and performs a specified number of transactions on them. Each transaction consists of a randomly

7.4 Chapter 7: Performance 130

chosen pairing of file creation or deletion with file read or append. A separate instance of Post-

mark was launched for each processor with corresponding separate directories. Each instance runs

independently, and there is no application-level sharing between instances. We ran each instance

of the benchmark with 20,000 files, 100,000 transactions, and default options, but disabled Unix

buffered files due to K42 limitations at the time of experimentation. The completion time for each

instance was recorded. The experiment was repeated several times for each processor configuration

and the average time to complete an instance for a processor configuration was calculated, the min-

imum and maximum completion time was also recorded. The results, calculated as speedup and

normalized to the K42 uniprocessor result, are plotted in Figure 7.2. The minimum and maximum

speedup for each processor configuration are shown as range bars. The K42 results were obtained

with the distributed virtual memory objects. K42’s uniprocessor result is approximately two times

slower than the Linux uniprocessor result. Postmark is predominately a filesystem benchmark and

K42’s filesystem support has received little attention with respect to performance tuning, and as

such its base costs have not been optimized.

7.3 Parallel Make

Our parallel make experiment is designed to model the common task of several developers building

an application in parallel. (In this case the arbitrarily chosen application is GNU Flex). We created

one build directory per processor and invoked one sequential make in each of these directories in

parallel (all make’s built from a common source tree, to unique build directories). Each make

instance runs independently with respect to the output files generated, they do however, share

common input files. A driver application synchronized the invocations of each make process to

ensure simultaneous start times, tracked the run-time of each make and reported the final result

as an average of all make run-times. GNU Make 3.79 and GCC 3.2.2 were used. The results,

calculated as speedup and normalized to the K42 uniprocessor result, are illustrated in Figure 7.3

with minimum and maximum speedup for each processor configuration shown as range bars.

7.4 Discussion of Workload Experiments

The distributed implementations discussed in this thesis, although limited to the case study objects

of the virtual memory system, are shown to improve the scalability of K42 on the SDET workload

and reasonable performance is obtained for the two other workloads. The use of an object oriented

7.4 Chapter 7: Performance 131

5 10 15 20
Processors

0

5

10

15

Sp
ee

du
p

Linux
K42

Figure 7.2: Speedup of p independent instances of Postmark normalized to K42 uniprocessor result.

decomposition was not enough to obtain good scalability for the general purpose multi-user work-

load, in which intuitively good scalability is expected. Shared system object instances can lead to

bottlenecks which limit the scalability of the workload.

In our development process, we have used lock contention as our primary guide to identify

sharing within the resident page fault path. Having started with non-distributed implementations,

with a single lock per-object, the use of standard lock contention analysis identified which object

instances on the page fault path were suffering contention. Each contended object implied shared

access and hence became a candidate for an implementation optimized to improve locality. As

can be observed, the distributed Clustered Object implementations, designed to improve locality

on a per-object basis, have helped improve scalability for the system-wide workloads. Taking

this approach has allowed us to identify opportunities for locality optimizations without the need

7.4 Chapter 7: Performance 132

5 10 15 20
Processors

0

5

10

15

20
Sp

ee
du

p
Linux
K42

Figure 7.3: Speedup of p independent instances of Parallel Make normalized to K42 uniprocessor result.

for specialized tools to measure hardware contention. Unfortunately, not having such tools also

means that we must rely on code path analysis and indirect measurements to validate that the new

distributed implementations do not rely on shared memory access.

Like others we have observed that system developers cope with inherent complexity of critical

system paths, such as the page fault path, by first exploring the design and implementation using

simple large grain synchronization. Improved parallelism is left for a later optimization effort.

The Clustered Object approach successfully enabled this natural iteration within the context of

an object oriented decomposed path. Scalability optimization of individual objects in isolation did

permit improved workload scalability, while preserving the object boundaries, configuration and

protocols.

We claim, based on the performance measurements and our analysis, that the distributed im-

7.5 Chapter 7: Performance 133

plementation have resulted in page fault paths which have good locality and thus have the potential

for good scalability for a large range of system configurations. The distributed implementations

address not only the lock contention associated with the centralized implementations, but also the

shared memory accesses along the paths. The complete validation of this claim is beyond the scope

of this work as it requires larger-scale hardware than we have access to and more advanced tools

for gathering and analyzing SMP hardware performance.

In general, when we consider the results with respect to Linux, we observe that Linux scales

reasonably well up to a certain number of processors, but its performance then begins to degrade

for all but the Parallel Make benchmark. Linux scalability will likely continue to improve given the

large number of contributions made each year. We believe that new structures and techniques, such

as those of K42, will become increasingly important as the number of processors increases further

and as newer hardware with increasing processor-memory speed disparity become more common.

This trend is evident in the work of Bryant et al. who attempt to apply some similar optimizations

to the Linux VMM in an ad hoc manner [19].

7.5 Hot-swapping

In this section we present some initial results evaluating the hot-swapping mechanisms and illustrate

some of the performance scenarios that are being explored.

7.5.1 Basic Overheads

In K42, the basic overhead of a Clustered Object invocation consist of the costs associated with the

object translation table and C++ virtual function table. The overhead of the object translation

table is a single memory load. The overhead of dispatching a virtual function call is approximately

10 cycles. The remainder of the basic overheads for hot-swapping are associated with the Mediator

and come into play only when an object is being swapped. There are three performance costs for

the Mediator: attaching the Mediator, calling through the Mediator (as opposed to instrumenting

the component directly), and detaching the Mediator. Table 7.1 lists these costs as measured on

a 270 Workstation. Attaching the Mediator is the most expensive operation, involving memory

allocation and object initialization; however, at no point during the attach are incoming calls

blocked. Although during detaching the Mediator only requires updating the object translation

table, the tear down of the Mediator is listed as an overhead for the process performing the detach.

7.5 Chapter 7: Performance 134

Operation µseconds

Attach 17.84 (0.16)

Calling Through 1.40 (0.02)

Detach 4.23 (0.49)

Table 7.1: Basic Mediator overheads. The average cost of attachment, calling through, and detachment of a
mediator is listed in microseconds along with its standard deviation.

7.5.2 Hot-swapping Overhead

To determine the expected overhead of hot-swapping, we perform a “null” hot-swap of a contended

FCM (swapping the FCM with itself) while running a 4-way SDET on a 270 workstation. Con-

tention on an FCM is detected by many threads accessing an FCM concurrently, such that the

lock associated with the non-distributed implementation cannot be acquired due to another thread

holding the lock. Although contention is the worst time to swap (because threads are likely to

block, increasing the duration of the mediation phases), it is important to understand this sort of

“worst-case” swapping scenario. The results are shown in Figure 7.4.

During a single run of 4-way SDET, the system detected 424 points of contention. The average

time to perform a hot-swap at these points was 27.6 µs with a 19.8 µs standard deviation, a 1.06 µs

minimum and a 132.6 µs maximum. Hot-swapping while the FCM is not under contention is more

efficient, because the forward and block phases are shorter. Performing random null hot-swaps

throughout a 4-way SDET run gave an average hot-swap time of 10.8 µs. Because most of the time

spent doing a hot-swap is spent waiting for the generation to advance (during which no threads are

blocked) the effect of these hot-swaps on the throughput of SDET is within normal performance

perturbation2.

7.5.3 Application of Hot-swapping

In this subsection, we present an example use of the hot-swapping mechanism to implement per-

file adaptation based on file access. The purpose is to illustrate how the mechanisms we have

implemented can be used to select between multiple implementations of an object at run-time.

As an example, the hot-swapping mechanism has been used by a K42 developer to select between

three implementations of a file: 1) shared, 2) exclusive and 3) small exclusive, as described below.

Shared (Shrd): For a file accessed by multiple processes, the file’s meta data and cache is most

2Running with and without the NULL hot-swaps is undetectable with respect to SDET throughput.

7.5 Chapter 7: Performance 135

 <20 <40 <60 <80 <100 <120 <140 <160
0

50

100

150

200

250

300

N
um

be
r

of
 h

ot
−

sw
ap

s

Time (µs)

Figure 7.4: Null swap. This figure presents a histogram showing the cost of performing a null-swap of the
FCM module at contended points of system execution. For each bin, there is a count of the number of swaps with
completion times that fell within that bin. On average, a swap took 27.6 µs to complete, and no swap took longer
than 132.6 µs.

conveniently stored in the file system server. The shared file implements this model, requiring

communication with the OS on each file access.

Exclusive (Excl): When a file is accessed exclusively by one process, its file meta information can

reside entirely within the application, which requires less communication with the OS.

Small Exclusive (Sm Excl): In general, file data is cached by the OS; however, access for small,

exclusive files (< 3 KB) can be improved by also caching the file’s data within the application’s

address space. While this incurs a memory overhead for double caching the file (once in the

application, once in the OS), this is acceptable for small files, and it leads to improved

performance.

In order to take advantage of these optimizations, the developer chose to have all files, when

first opened, use the most aggressive implementation and, if access dictated that this was no longer

suitable, to then swap to a more appropriate implementation. Specifically, all files when opened

7.5 Chapter 7: Performance 136

Shrd Excl & Shrd Excl, Sm Excl & Shrd
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Figure 7.5: File implementation hot-swapping This figure compares the performance of Postmark under three
configurations: 1) Leftmost bar (Shrd), all files use Shared Implementation, 2) Middle bar (Excl & Shrd), system
uses Exclusive Implementation and utilizes hot-swapping to select the Shared Implementation when necessary, 3)
Rightmost bar (Sm Excl, Excl, & Shrd), system uses Small Exclusive Implementation and uses hot-swapping to
select, the Exclusive Implementation (Excl) and Shared Implementation (Shrd) as needed.

use the small exclusive implementation. If, however, the file is accessed in a manner that changes

the requirements then the implementation is hot-swapped with either an instance of the exclusive

implementation or the shared implementation. If the file grows beyond the small file threshold

but is still accessed exclusively by one process then a hot-swap to the exclusive implementation is

initiated. If concurrent access (multiple processes opening the file) to an exclusively accessed file

occurs then the file’s implementation is swapped to the shared implementation. Figure 7.5 shows

the uniprocessor Postmark performance of three schemes: 1) shared only, 2) exclusive and shared

and 3) small exclusive, exclusive and shared. In the first case the system does not utilize hot-

swapping and all files utilize the shared implementation only. In the second case the system uses

the exclusive implementation by default and hot-swaps to the shared implementation as necessary,

resulting in a 34% performance improvement in throughput over using the shared implementation

solely. In the third case, the system uses the small exclusive implementation and swaps as necessary

to the exclusive and shared implementations, resulting in a 40% improvement in throughput over

just using the shared implementation.

Originally, K42 implemented the above optimizations using a more traditional adaptive ap-

proach, hard-coding the decision process and both implementations into a single component. Anec-

7.6 Chapter 7: Performance 137

dotally, we found that reimplementing these using hot-swapping to switch between separate im-

plementations simplified and clarified the code, and it was less time-consuming to implement and

debug.

7.6 Summary

In this chapter we have presented results which establish the effectiveness of the distributed VMM

object implementations at improving the scalability of a standard system workload benchmark

(SDET). We also presented the results from running the same benchmark on the Linux operating

system on the same hardware platform to validate that the scalability we have achieved has not

come at the expense of artificially poor uniprocessor performance. Additionally, we have shown

that K42’s general performance, when using the distributed implementations, is comparable to

Linux on two other benchmarks, PostMark and Parallel Make.

We argue that these results show that Clustered Objects provide a means for improving the

scalability of critical operating system services so as to yield measurable user-level performance

improvements. The specific distributed implementations of the VMM objects presented in this

dissertation are not the central result. Clustered Objects provide a framework to address measurable

scalability problems through the introduction of distribution in a modular fashion to internals of a

complex system.

7.6 Chapter 7: Performance 138

Chapter 8

Concluding Remarks

This dissertation describes our experience and what we have learnt developing distributed imple-

mentations of services in the K42 operating system. We reviewed a series of examples of distributed

implementations of objects and examined their impact using micro-benchmark experiments. We

then described the basic clustered object infrastructure we developed to support distributed imple-

mentations, and discussed how the infrastructure also provides the basis to allow individual objects

to be hot-swapped to new implementations. In the performance section, we established that, for

general purpose benchmarks, like SDET, parallel make, and postmark, the structuring techniques

used improve locality and at the same time do not prohibit competitive uni-processor performance.

8.1 Summary of Contributions

The key contributions of this work are as follows:

• We explored the application of distributed data structures in an object-oriented operating

system and found a set of principles to help developers exploit distribution and locality to

improve scalability. Most previous work on multi-processor performance has focused primarily

on addressing concurrency with little attention to locality.

• We developed an infrastructure to simplify design and implementation of distributed objects.

Such an infrastructure has proven to be helpful in coping with the associated complexity of

distribution at the object level.

• We have conducted a case study, which demonstrates that a fully partitioned and localized

implementation of a core OS service, virtual memory management, is possible. The existence

139

8.2 Chapter 8: Concluding Remarks 140

proof of a distributed high-performance OS service implementation is a critical result. Ad-

ditionally, our work illuminates the main issues in applying distribution and provides design

and code patterns to deal with them, demonstrating the synergy of an object-oriented design

to the problem.

In the remainder of this chapter, we discuss each of these contributions and conclude with future

work.

8.2 Principles for Developing Distributed Objects

Prior to this work, no previous object-oriented operating system project has addressed locality

and distribution for SMP performance. We had gone down a number of false starts in developing

distributed objects, throwing away many person-months of work. This is an anecdotal indication

that such designs are non-trivial. We have found the following principles key to effective design of

distributed objects:

Think Locally: Utilize a distributed component model – in our case Clustered Objects – to seek

localized solutions rather than purely concurrent ones.

Be Incremental: Utilize simple techniques for developing distributed implementations from non-

distributed ones, focusing on measurable performance issues, to limit scope and complexity.

Be Conservative – Encapsulate and Reuse: Be very careful in adopting complex protocols

which utilize shared memory to access remote data, as innocuous code can have very subtle

implications and associated errors. Where possible, encapsulate such protocols and facilitate

reuse.

Inherit with Care: When using OO language support – C++ in our case – inheritance can

entangle concurrency protocols across many implementations, making optimization difficult.

We discuss each of these principles in turn.

8.2.1 Think Locally

As discussed in the Chapter 2, over the last several years, the University of Toronto group has

observed that a key performance characteristic of shared memory multi-processors is overheads

8.2 Chapter 8: Concluding Remarks 141

associated with shared data access and induced remote communications. Motivated by these ob-

servations, in this work we have chosen to pursue locality optimizations as a primary focus rather

than first focusing on improving concurrency as is done traditionally. Without special support,

it is easier to measure performance bottlenecks due to poor concurrency of software rather than

measuring locality characteristics. However, one has a choice of how to address a given concurrency

problem. The traditional approach is to improve concurrency by introducing finer grain synchro-

nization, thus leading to reduced lock hold times. This approach, however, may not lead to better

locality as it does not address the source of the problem, the underlying sharing. Another option

is to treat the concurrency problem as an indicator of sharing, and seek solutions which improve

locality and thus address both the lack of concurrency and, indirectly, overheads associated with

sharing. Reducing sharing is a requirement for SMP software if it is to scale well independent of

system size.

Key to addressing performance problems by improving locality was first developing a mental

model for distributed implementations by the way of Clustered Objects. This naturally then gave

us the basis on which to approach each new implementation. It gave us a concrete set abstractions

with which to reason and design solutions around. For example:

• What state should be placed in the Clustered Object Representatives and hence be local?

• What state should be shared and placed in the Clustered Object Root?

• How should the Representatives be created and initialized? At what point should new Rep-

resentatives participate in the global operations of the object?

• How should local operations and global operations synchronize?

• How should the CO Representatives be organized and accessed?

Based on our experiences, we have found it useful to have a model and nomenclature for dis-

tributed implementations in the developer’s mind. Solutions for each performance problem could

be approached within the context of the model, with the goal of providing localized hot path pro-

cessing. A key utility of the model is its ability to motivate and guide the developer in achieving

good locality. Our current Clustered Object model has been developed from experience and has

specifically been designed to be simple. It encourages the developer to address questions like those

listed above.

8.2 Chapter 8: Concluding Remarks 142

8.2.2 Be Incremental

It is important to acknowledge the complexity and burden in developing distributed implemen-

tations. We have found it useful to develop localized implementations as iterations on a simple

non-distributed implementation through the introduction of straightforward extensions, where pos-

sible.

A typical requirement for many systems objects is to maintain some form of a mapping, where

an input identifier is mapped to an output value, typically a data structure handle. Such mapping

services often limit the scalability of such objects. In these cases, scalability can often be improved

by introducing a local cache for the mappings while preserving the semantics and protocols of

a non-distributed implementation. We have found the following to be a good first approach in

improving the scalability of such objects:

1. Create a new distributed implementation by:

(a) moving the majority of the data fields of the non-distributed version into the Root of

the new implementation;

(b) placing a cache of the critical mapping into the Representatives of the new implementa-

tion;

(c) modifying the operations of the Representatives to access all non-mapping related data

members from the Root;

(d) modifying all operations that utilize the mapping service to first consult the local cache;

and

(e) adding appropriate code to manage and maintain the caches.

2. Measure performance using the new implementation. If the performance is not adequate,

more aggressive techniques need to be considered, possibly moving additional data elements

from the Root to the Representatives.

8.2.3 Be Conservative – Encapsulate and Reuse

Even when using straightforward locking strategies, asynchronous parallel software can be difficult

to reason about and validate with respect to correctness. When implementing a Clustered Object for

the sake of improving scalability, it can be natural to explore aggressive and subtle synchronization

strategies in order to maximize performance on the critical paths. This, however, can lead to

8.2 Chapter 8: Concluding Remarks 143

implementations which can be very subtle and complex to reason about. Furthermore, it can

also lead to implementations which are non-portable as they may rely on the memory consistency

model of the architecture on which they have been developed. To this end, we found that it is

best to be conservative with respect to how shared state and function are implemented across the

Representatives of a Clustered Object. If possible, it is best to adopt a simple locking strategy in

which a lock is placed in each Representative as well as the root and to adopt simple to use rules for

acquisition. For example, all purely local operations acquire only the lock of the Representative.

Manipulating global data members requires that only the root lock be acquired. For operations

that must access both global and local state, the locks are accessed in a strict order (eġ,̇ root first

and then local). However, if more complex fine grain synchronization is required, then it is best to

try and encapsulate these semantics in a separate component such as Dhash (see Section 4.1.4). By

doing so, one restricts the pervasive fine grain synchronization from impacting the comprehension

of the system object being implemented. Encapsulation allows the protocols of the encapsulated

data structure to be tested, ported and verified independently. Finally, there is greater chance of

amortizing the cost of development by facilitating reuse through encapsulation.

8.2.4 Inherit with Care

The final point we would like to make is based on our experience constructing distributed im-

plementations in the context of an object-oriented language. Some object oriented features such

as decomposition, encapsulation, polymorphism and specialization have proven to be very useful

both in the general construction of K42 and particularly in the construction of distributed im-

plementations. Inheritance, specifically implementation inheritance, has not proven as effective.

Originally, in the Tornado project, when C++ was adopted, a decision was made to avoid using

implementation inheritance. Given that there were at most three core developers and the main

code base was small, this did not prove problematic. However, K42 is now a large code base

developed over the years by several core programmers and many associated programmers. This

has led to implementation inheritance being widely used to enable code reuse. Although this has

eased the development burden and encouraged specialization, it has made it very difficult to in-

troduce a distributed implementation for an arbitrary object. When parallel software is developed

using implementation inheritance, unless foresight is given to later optimizations, synchronization

semantics permeate class trees. In general, re-implementing a class which belongs to a deep class

tree with a new synchronization strategy, is not possible without re-implementing all the classes

8.3 Chapter 8: Concluding Remarks 144

from which it inherits. This is tedious and also leads to a proliferation of classes which becomes a

maintenance burden. To this end, we recommend that if implementation inheritance is going to be

used, it should be done with an aim to factor out the synchronization protocols up front so that

later distributed implementations can be introduced more readily.

8.3 Infrastructure for Distributed Implementations

In K42, we have made a large investment in infrastructure to support distributed and localized im-

plementation of objects, and I was responsible for this infrastructure, which includes the Clustered

Object translation mechanisms, Clustered Object base classes (which provide the default structure

of a Clustered Object in terms of a Root and Representatives and the default Clustered Object Root

implementations), and the garbage collection facilities. We incrementally added this infrastructure

over time to move code and protocol complexity out of the implementation of individual objects

and into a common infrastructure which could be re-used. As other systems start focusing on

distribution and localization, the lessons learned from this infrastructure will, we believe, become

increasingly relevant.

The investment made into the Clustered Object model and infrastructure has proven to be

qualitatively useful and beneficial in the development and optimization of K42. At the onset of the

Clustered Object work in K42, based on our initial study [3] of the object translation mechanisms of

Tornado [49], we proposed an explicit model for the structure of a Clustered Object. This model,

described in Chapter 5, was encoded into the basic Clustered Object infrastructure of K42 and

utilized for the construction of all Clustered Objects. Below, we highlight some of the features

that were found to be important and that we recommend be incorporated in any infrastructure

for supporting distributed implementations. We only focus on aspects beyond those of the basic

translation mechanisms which provide for the efficient and transparent mapping of a single object

identifier to a local Representative.

We have found it important to establish and encode the internal structure of a Clustered Object

used for general distributed implementations. We found that the notion of a “root” in a clustered

object is critical for a number of reasons. First, it gives us a natural strategy to incrementally

distribute an implementation, where the root is the original non-distributed implementation and

we distribute just the functions that are performance critical. Second, it enables a natural imple-

mentation for what we have found to be a common case, i.e., the reps just implement a cache of

8.3 Chapter 8: Concluding Remarks 145

state, while there is a centralized implementation to handle all the modifications. Finally, making

the root a standard part of our infrastructure has allowed us to provide standard mechanisms for

maintaining information, like the list of all Representatives and a place for synchronization when

destroying objects. Our experience is that it is critical to put all this complexity in the infras-

tructure, such as the reusable default Root implementations, rather than burden programmers of

individual objects with it.

Secondly, we have found it important to design the infrastructure so that the standard model

can be utilized with ease but at the same time permit knowledgeable developers to override and

explore unique usages. When developing support for the Clustered Object model on top of the

translation mechanisms, a layered approach was taken in which successive thin C++ classes were

used to define the roles of the Root and Representatives. Each class enforced a more restricted model

by providing default implementations for each role. This approach permitted the development of

specialized objects, while not complicating the average developer’s burden. The degrees of flexibility

that has been utilized includes:

• Simple overriding of construction policies to allow the construction of “well known” static

objects as well as objects which override the default lazy Representative creation in order

to explicitly create one Representative per-processor at allocation time. Such objects are

particularly useful when constructing base OS services created during OS initialization.

• A specialized Mediator object, described in Chapter 6, was implemented with a highly cus-

tomized miss-handling behaviour in order to facilitate the hot swapping algorithm.

• A family of objects, called Arbiters, has been created which utilize a number of degrees of

freedom to explore runtime call arbitration on a per-object basis.

A critical subtlety to parallel systems programming is the issue of existence locking, as dis-

cussed in Section 5.4.3. In this work we have generalized Gamsa’s [48,49] use of a semi-automatic

garbage collector in order to relieved some of the burden associated with existence locking and

facilitate the wider use of RCU1 techniques. Standardizing and encapsulating the destruction pro-

tocols within the Clustered Object infrastructure alleviated the majority of developers from having

to be concerned with existence locking issues. No special actions or code needs to be written

when implementing new standard centralized or distributed Clustered Objects. We believe that

1RCU is a synchronization discipline which utilizes the event driven nature of systems software to avoid locking
in the common case, see Section 5.4.3 for more details.

8.4 Chapter 8: Concluding Remarks 146

any multi-processor object infrastructure, especially a distributed one, can benefit greatly from a

codified destruction protocol which simplify locking issues.

We have provided a facility to export the basic RCU mechanisms, implemented in the Clustered

Object system and scheduling system as a general service. This has enabled the development of the

hot-swapping infrastructure, a resource reclamation subsystem and a non-blocking (RCU) based

hash table. We have found that by providing a simple, flexible RCU interface, thread markers

(Section 5.4.3), we enable developers to utilize RCU based algorithms outside of the Clustered

Object system. We believe that RCU mechanisms are essential in a modern system to fully exploit

the event driven nature of systems software and utilize it for performance gains. Our experience

of successfully constructing and using RCU mechanisms in the context of a preemptive, general

purpose parallel system has served as a motivating existence proof for the Linux community which

is adopting RCU support [94].

Having adopted a decomposition supporting specialization, we have extended the infrastructure

to permit the development of a hot-swapping facility for replacing one implementation for another

at runtime (see Chapter 6). Although our experience using this facility is limited, our infrastructure

demonstrates that dynamic adaptation within the context of a high performance multi-processor

operating system kernel on a per-object basis is feasible. Moreover, distributed data structures

do not preclude the use of adaptation. We have shown that, with appropriate infrastructure,

distributed Clustered Objects can be hot-swapped.

8.4 The Feasibility of Multi-Processor Performance

It has been widely believed that operating systems are fundamentally unable to scale to large

SMP except for specialized scientific applications with restricted uses of OS functions. It has also

been widely believed that any operating system that has reasonable scalability will demonstrate

poor base performance and extreme complexity, making it inappropriate for generic systems and

loads. These beliefs, based on current OS structures and performance, have had a large impact

on how existing commercial hardware systems developed by IBM and others are constructed. In

this work, we have demonstrated that a fully partitioned and localized implementation of a core

OS service, virtual memory management, is possible. The existence proof of such a distributed

high-performance implementation is, we believe, a major research result.

From the study of the page fault path we observe:

8.4 Chapter 8: Concluding Remarks 147

1. Scalability is improved through the application of techniques designed to improve locality.

2. Distributed data structures used to improve locality, by reducing the number of shared mem-

ory accesses on the critical paths, are more complex and subtle than the original centralized

data structures.

Given this tension between scalability and complexity, it is important to consider how and when

to make tradeoffs. Two approaches proved to be important in this regard. One key aspect was

to leverage the decomposed nature of our software, specifically the object-oriented decomposition.

The second was to be measurement driven.

At first one might assume that having a system path implemented over multiple objects may

pose a barrier to designing and constructing an end-to-end distributed implementation. Multiple

objects introduce boundaries when considering the processing of a system path, and hence lead

to reasoning and implementing the path in small portions rather than in its entirety. This may

seem contradictory to the motivating SMPs performance results, which illustrated that a single

shared data access on a systems path can limit performance, thus implying the need to carefully

construct a path in its entirety. But our experience has been to the contrary. We have found there

to be a valuable synergy between object-oriented decomposition and distribution. Object-oriented

decomposition helps bound the complexity of both analysis and implementation, permitting a

feasible distributed implementation of a complex system service. The two main advantages have

been (i) the opportunities afforded by the decomposition to permit an incremental approach, and

(ii) the support for fine grain specialization.

Despite having redesigned and reimplemented multiple VMM objects to achieve good page

fault scalability, the object by object approach proved to be a tractable and successful. Practically,

it meant that we were able to seed the development of a completely distributed page fault path

with a well-tested central implementation which established the core asynchronous protocols and

requirements. This let us focus on the implications of improving performance through improved

locality, as a separate concern from the fundamental design of page fault processing. Furthermore,

the initial OO decomposition constrained the analysis and the way in which distribution could be

introduced into the page fault path. We assert that it would have been impractical – or at the least,

extremely difficult – to have initially designed and implemented the page fault paths in a distributed

fashion in their entirety from the beginning. The OO decomposition leads to an iterative approach

– measuring the performance for a given workload, and optimizing the first object observed to limit

8.5 Chapter 8: Concluding Remarks 148

performance. Optimizing one object alone was not, in general, sufficient to improve the bottom

line performance, so the procedure had to be re-applied until all relevant objects were identified.

Specialization lets us isolate each unique page fault scenario, allowing us to focus only on the

ones relevant to the scalability of the workloads being studied. For example, when studying SDET,

the limiting page fault path was user-level page faults to long lived files such as executables and

data files. As such we only needed to focus on optimizing the FCM implementation for such files.

Specialization allows a developer the advantage of focusing on an optimized implementation for a

constrained scenario without having to add complexity to handle the general case. This is partic-

ularly useful when applying distribution, as in general one must trade off improved performance

on some operations over degraded performance on others. Thus we can leverage fine grain spe-

cialization in order to cope with conflicting demands on a shared resource to make a distributed

implementation tractable.

Given the effort and complexity introduced by distributed implementations, we found it im-

portant to optimize only as performance measurements exposed a need. This ensured that we had

a guiding focus for each distributed implementation, namely to improve the current performance

problem. Doing so led us to adopt simple approaches that optimized the currently relevant subset

of operations on the object in question. This again leads to incremental development in which

complexity is bounded. The object-oriented decomposition also gave us a natural way to catego-

rize and analyze the performance measurements gathered. Others developing performance-oriented

software outside the MP domain, most notably Kernighan et al. [70] and Bentley [14], have noted

the importance of an incremental measurement driven approach.

8.5 Future Work

We have identified or are currently pursuing extensions to the work of this thesis.

Locality Profiling using Hardware Support: In order to validate and ensure that the locality

optimizations introduced are having the desired effect, better feedback on how the hardware

is performing is required. We have started to explore how one might be able to obtain

a locality profile for a performance test using hardware performance monitors available on

modern processors.

Distributed Constituent Development: DHash has proven to be useful and we are pursuing its

use in other Clustered Objects. We believe that the development of more constituents in

8.5 Chapter 8: Concluding Remarks 149

order to create a library for Clustered Object development could substantially reduce the

burden of distributed object development. Part of this would include a generalized model

and framework for embedding constituents.

Clustered Object Language Support: Another avenue to explore is explicit language support for

the Clustered Object model. For example, the ability to use language features to explicitly

define and isolate the interface between a Root and its Representative classes.

Dynamic Adaptation: In this work, we have provided a set of mechanisms for hot-swapping one

object implementation with another dynamically at runtime. We have begun to explore this

facility as a means for supporting general dynamic adaptation. There are many avenues and

open questions to explore in this area. For example: Are there general methods for determin-

ing when a swap should occur? How can the characteristics of implementations be expressed

such that a runtime system can decide when one implementation is more appropriate than

another? What is necessary to use hot-swapping to apply an upgrade for a class (for exam-

ple swapping all instances of a class and ensuring that new instances are created from the

new definition, while preserving system integrity). One avenue to explore, with regards to

evaluating when a hot-swap should be initiated, is the use of per-object runtime evaluation

of performance, using hardware-supported profiling.

SMT Support: As chip-level multi-processors become more prevalent, exploring their impact on

Clustered Objects, both from a basic infrastructure perspective as well as on a per-object

basis will become necessary. It may prove to be beneficial to consider the reconfiguration of

distributed implementations to match the performance characteristics of such machines.

Comprehensive RCU Interface: Our experience generalizing the RCU support has been very

promising and has led us to pursue a new more generalized interface for exploiting quiescent

states. We are pursuing a service called Quiescent Do (QDO) in which an arbitrary operation

and set of processors is specified. When a subsequent quiescent state is detected on the

processors, the operation is efficiently executed, on one or more of the processors depending

on an invocation parameter.

Advanced RCU Support: Our current approach for detecting quiescent states across multiple

processors utilizes the token passing algorithm described in this work (Section 5.4.3). We

are currently exploring a new mechanism with lower latencies, which is demand-driven rather

than periodic in nature. The approach being explored is to use system constructed poll points,

hardware supported synchronized clocks and timer events to ensure that quiescent states can

be coordinated by time stamps across multiple processors. Such a facility would predicate a

reimplementation of the garbage collection services described in this work.

OO Runtime Structure: Having observed and guided a number of new developers to K42, a

general observation regarding the use of an object-oriented decomposition and infrastructure

can be made: Although any given object may be tractable with respect to complexity and

comprehension, we are in need of tools and support to help global comprehension, and provide

the necessary context for any given object. New developers are lost in a sea of classes and

inter-object protocols. Despite trying to use standard idioms, it never seems to fail that the

given example that a new developer is trying to understand is a “special” case. Tools are

required to help a new developer explore the runtime structure and the roles and relationships

of the objects. We are currently pursuing the development of a runtime Clustered Object

browser. The browser would allow a user to graphically explore the objects in existence at

runtime, their relationships, performance and possible manipulate them using hot-swapping.

The browser will utilize many aspects of the current Clustered Object infrastructure.

150

Bibliography

[1] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,

33(9):125–141, 1990.

[2] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R. Henzinger,

Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandervoorde, Carl A. Waldspurger, and

William E. Weihl. Continuous profiling: Where have all the cycles gone? In Proceedings of

the 16th Symposium on Operating Systems Principles (SOSP-16), pages 1–14. ACM Press,

October 1997.

[3] Jonathan Appavoo. Clustered Objects: Initial design, implementation and evaluation. Mas-

ter’s thesis, Department of Computing Science, University of Toronto, Toronto, 1998.

[4] Jonathan Appavoo, Kevin Hui, Craig A. N. Soules, Robert W. Wisniewski, Dilma da Silva,

Orran Krieger, Marc Auslander, David Edelsohn, Benjamin Gamsa, Greg R. Ganger, Paul

McKenney, Michal Ostrowski, Bryan Rosenburg, Michael Stumm, and James Xenidis. En-

abling autonomic system software with hot-swapping. IBM Systems Journal, 42(1):60–76,

2003.

[5] Jonathan Appavoo, Kevin Hui, Michael Stumm, Robert W. Wisniewski, Dilma da Silva,

Orran Krieger, and Craig A. N. Soules. An infrastructure for multiprocessor run-time

adaptation. In Proceedings of the first ACM SIGSOFT workshop on Self-Healing Systems

(WOSS’02), pages 3–8. ACM Press, 2002.

[6] Mohit Aron and Peter Druschel. Soft timers: efficient microsecond software timer support

for network processing. ACM Transactions on Computer Systems, 18(3):197–228, 2000.

[7] Maurice J. Bach and Steven J. Buroff. Multiprocessor UNIX operating systems. AT&T Bell

Laboratories Technical Journal, 63(8):1733–1749, October 1984.

151

[8] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. A distributed implementation

of the shared data-object model. In Eugene Spafford, editor, Proc. First USENIX/SERC

Workshop on Experiences with Building Distributed and Multiprocessor Systems, pages 1–19,

Ft. Lauderdale FL (USA), 1989.

[9] Amnom Barak and Yoram Kornatzky. Design principles of operating systems for large scale

multicomputers. Technical report, IBM Research Division, T.J. Watson Research Center,

Yorktown Heights, NY, 1987.

[10] Amnon Barak and Oren La’adan. The MOSIX multicomputer operating system for high per-

formance cluster computing. Future Generation Computer Systems, 13(4–5):361–372, 1998.

[11] Amnon Barak and Richard Wheeler. MOSIX: An integrated multiprocessor UNIX. In Pro-

ceedings of the Winter 1989 USENIX Conference: January 30–February 3, 1989, San Diego,

California, USA, pages 101–112, Berkeley, CA, USA, Winter 1989. USENIX.

[12] BBN Advanced Computers, Inc. Overview of the Butterfly GP1000, 1988.

[13] Bob Beck and Bob Kasten. VLSI assist in building a multiprocessor UNIX system. In Summer

conference USENIX proceedings, Portland 1985: June 11–14, 1985, Portland, Oregon USA,

pages 255–275, P.O. Box 7, El Cerrito 94530, CA, USA, Summer 1985. USENIX.

[14] Jon Bentley. Programming pearls. ACM Press, 1986.

[15] Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An open en-

vironment for building parallel programming systems. In Proceedings of the ACM/SIGPLAN

Conference on Parallel Programming: Experience with Applications, Languages and Systems,

pages 1–9. ACM Press, 1988.

[16] David L. Black, Avadis Tevanian, Jr., David B. Golub, and Michael W. Young. Locking and

reference counting in the Mach kernel. In Proceedings of the 1991 International Conference

on Parallel Processing, volume II, Software, pages II–167–II–173, Boca Raton, FL, August

1991. CRC Press.

[17] Georges Brun-Cottan and Mesaac Makpangou. Adaptable replicated objects in distributed

environments. Technical Report BROADCAST TR No.100, ESPRIT Basic Research Project

BROADCAST, June 1995.

152

[18] Ray Bryant, Hung-Yang Chang, and Bryan Rosenburg. Operating system support for par-

allel programming on RP3. IBM Journal of Research and Development, 35(5/6):617–634,

September 1991.

[19] Ray Bryant, John Hawkes, and Jack Steiner. Scaling linux to the extreme: from 64 to 512

processors. In Ottawa Linux Symposium. Linux Symposium, 2004.

[20] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running commodity operat-

ing systems on scalable multiprocessors. In Proceedings of the 16th Symposium on Operating

Systems Principles (SOSP-16), pages 143–156. ACM Press, October 1997.

[21] Mark Campbell, Richard Barton, Jim Browning, Dennis Cervenka, Ben Curry, Tod Davis,

Tracy Edmonds, Russ Holt, John Slice, Tucker Smith, and Rich Wescott. The parallelization

of UNIX system V release 4.0. In USENIX Conference Proceedings, pages 307–324, Dallas,

TX, January 1991. USENIX.

[22] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and implement-

ing Choices: An object-oriented system in C++. Communications of the ACM, 36(9):117–126,

September 1993.

[23] Roy H. Campbell, Gary M. Johnston, Peter W. Madany, and Vincent F. Russo. Principles of

object-oriented operating system design. Technical Report UIUCDCS-R-89-1510,TTR89-14,

Department of Computer Science, University of Illinois, Urbana, IL 61801, April 1989.

[24] Josh Cates. Robust and efficient data management for a distributed hash table. Master’s

thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, 2003.

[25] Hung-Yang Chang and Bryan Rosenburg. Experience porting mach to the RP3 large-scale

shared-memory multiprocessor. Future Generation Computer Systems, 7(2–3):259–267, April

1992.

[26] John Chapin, Stephen A. Herrod, Mendel Rosenblum, and Anoop Gupta. Memory sys-

tem performance of UNIX on CC-NUMA multiprocessors. In Proc. of the 1995 ACM SIG-

METRICS Joint Int’l Conf. on Measurement and Modeling of Computer Systems (SIGMET-

RICS’95/PERFORMANCE’95), pages 1–13, May 1995.

153

[27] John Chapin, Mendel Rosenblum, Scott Devine, Tirthankar Lahiri, Dan Teodosiu, and Anoop

Gupta. Hive: Fault containment for shared-memory multiprocessors. In Proceedings of the

15th ACM Symposium on Operating Systems Principles (SOSP-15), pages 12–25. ACM Press,

December 1995.

[28] Eliseu M. Chaves, Jr., Prakash CH. Das, Thomas J. Leblanc, Brian D. Marsh, and Michael L.

Scott. Kernel-kernel communication in a shared-memory multiprocessor. Concurrency: Prac-

tice and Experience, 5(3):171–191, May 1993.

[29] J. Bradley Chen and Brian N. Bershad. The impact of operating system structure on memory

system performance. In Proceedings of the 14th ACM Symposium on Operating Systems

Principles (SOSP-14), pages 120–133. ACM Press, December 1993.

[30] David R. Cheriton and Kenneth J. Duda. A Caching model of operating system kernel

functionality. In Operating Systems Design and Implementation, pages 179–193, 1994.

[31] David R. Cheriton, Hendrik A. Goosen, and Patrick D. Boyle. Paradigm: A highly scalable

shared-memory multicomputer architecture. IEEE Computer, 24(2):33–46, February 1991.

[32] David R. Cheriton and Willy Zwaenepoel. The distributed V kernel and its performance

for diskless workstations. In Proceedings of the 9th ACM Symposium on Operating Systems

Principles (SOSP-9), pages 129–140. ACM Press, December 1983.

[33] Andrew A. Chien and William J. Dally. Concurrent Aggregates (CA). In Proc. Second ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (2nd PPOPP’90),

ACM SIGPLAN Notices, pages 187–196, March 1990. Published as Proc. Second ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming (2nd PPOPP’90),

ACM SIGPLAN Notices, volume 25, number 3.

[34] Christian Clémençon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed shared

abstractions (DSA) on large-scale multiprocessors. In Proceedings of the Symposium on Ex-

perience with Distributed and Multiprocessor Systems, pages 227–246, San Diego, CA, USA,

September 1993. USENIX.

[35] Christian Clémençon, Bodhisattwa Mukherjee, and Karsten Schwan. Distributed shared ab-

stractions (DSA) on multiprocessors. IEEE Transactions on Software Engineering, 22(2):132–

152, February 1996.

154

[36] Ellis Cohen and David Jefferson. Protection in the Hydra operating system. In Proceedings of

the 5th ACM Symposium on Operating Systems Principles (SOSP-5), pages 141–160. ACM

Press, November 1975.

[37] David E. Culler and Jaswinder P. Singh. Parallel Computer Architecture. Pitman/MIT Press,

1989.

[38] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica,

and Hari Balakrishnan. Building peer-to-peer systems with Chord, a distributed lookup

service. In Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-

VIII), Schloss Elmau, Germany, May 2001. IEEE Computer Society.

[39] Partha Dasgupta, Richard J. LeBlanc, and William F. Appelbe. The Clouds distributed

operating system: Functional description, implementation details and related work. In Proc.

8th Int’l. Conf. on Distr. Computing Sys., page 2, 1988.

[40] Partha Dasgupta, Richard J. LeBlanc, Jr., Mustaque Ahamad, and Umakishore Ramachan-

dran. The Clouds Distributed Operating System. IEEE Computer, 24(11):34–44, November

1991.

[41] Jeffrey M. Denham, Paula Long, and James A. Woodward. DEC OSF/1 version 3.0 symmetric

multiprocessing implementation. Digital Technical Journal of Digital Equipment Corporation,

6(3):29–43, Summer 1994.

[42] Murthy Devarakonda and Arup Mukherjee. Issues in implementation of cache-affinity schedul-

ing. In Proceedings of the Usenix Winter 1992 Technical Conference, pages 345–358, Berkeley,

CA, USA, January 1991. USENIX.

[43] Jan Edler, Jim Lipkis, and Edith Schonberg. Memory management in Symunix II: A de-

sign for large-scale shared memory multiprocessors. In UNIX and Supercomputers Workshop

Proceedings, pages 151–168, Pittsburgh, PA, September 1988. USENIX.

[44] Carla Schlatter Ellis. Extensible hashing for concurrent operations and distributed data.

In Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems, pages 106–116. ACM Press, 1983.

[45] Peter Ewens, David R. Blythe, Mark Funkenhauser, and Richard C. Holt. Tunis: A dis-

tributed multiprocessor operating system. In Summer conference proceedings, Portland 1985:

155

June 11–14, 1985, Portland, Oregon USA, pages 247–254, P.O. Box 7, El Cerrito 94530, CA,

USA, Summer 1985. USENIX.

[46] Steven Frank, James Rothnie, and Henry Burkhardt. The KSR1: Bridging the gap between

shared memory and MPPs. In IEEE Compcon 1993 Digest of Papers, pages 285–294, 1993.

[47] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley,

1995.

[48] Benjamin Gamsa. Tornado: Maximizing Locality and Concurrency in a Shared-Memory

Multiprocessor Operating System. PhD thesis, University of Toronto, 1999.

[49] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado: max-

imizing locality and concurrency in a shared memory multiprocessor operating system. In

Symposium on Operating Systems Design and Implementation, pages 87–100, 1999.

[50] Benjamin Gamsa, Orran Krieger, Eric Parsons, and Michael Stumm. Performance issues for

multiprocessor operating systems. Unpublished, University of Toronto, 1996.

[51] Benjamin Gamsa, Orran Krieger, and Michael Stumm. Optimizing IPC performance for

shared-memory multiprocessors. In Proc. 1994 ICPP, pages 208–211, Boca Raton, FL, August

1994. CRC Press.

[52] Arun Garg. Parallel STREAMS: a multi-processor implementation. In Proceedings of the

Winter 1990 USENIX Conference, January 22–26, 1990, Washington, DC, USA, pages 163–

176, Berkeley, CA, USA, 1990. USENIX.

[53] Ahmed Gheith, Bodhisattwa Mukherjee, Dilma Silva, and Karsten Schwan. KTK: Kernel

support for configurable objects and invocations. Technical Report GIT-CC-94-11, Georgia

Institute of Technology. College of Computing, 1994.

[54] Ahmed Gheith and Karsten Schwan. Chaosarc: kernel support for multiweight objects,

invocations, and atomicity in real-time multiprocessor applications. ACM Transactions on

Computer Systems (TOCS), 11(1):33–72, 1993.

156

[55] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM Transactions

on Programming Languages and Systems (TOPLAS), 5(2):164–189, 1983.

[56] Kingshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular Disco:

resource management using virtual clusters on shared-memory multiprocessors. In Proceedings

of the 17th Symposium on Operating Systems Principles (SOSP-17), pages 154–169. ACM

Press, December 1999.

[57] Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable, dis-

tributed data structures for internet service construction. In Proceedings of the 4th Symposium

on Operating Systems Design and Implementation (OSDI-00), pages 319–332, Berkeley, CA,

October 2000. USENIX.

[58] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating system

scheduling policies and synchronization methods on the performance of parallel applications.

In Proc. 1991 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Sys-

tems, page 120, San Diego, California, USA, May 1991. Stanford Univ.

[59] John H. Hartman and John K. Ousterhout. Performance measurements of a multiprocessor

Sprite kernel. In Proc. Summer 1990 USENIX Conf., pages 279–287, Anaheim, CA (USA),

June 1990. USENIX.

[60] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages

and Systems, 13(1):124–149, January 1991.

[61] Maurice Herlihy. A methodology for implementing highly concurrent objects. ACM Trans-

actions on Programming Languages and Systems, 15(5):745–770, November 1993.

[62] Philip Homburg, Leendert van Doorn, Maarten van Steen, Andrew S. Tanen-

baum, and Wiebren de Jonge. An object model for flexible distributed systems.

In First Annual ASCI Conference, pages 69–78, Heijen, Netherlands, May 1995.

http://www.cs.vu.nl/˜steen/globe/publications.html.

[63] Kevin Hui. Design and implementation of K42’s dynamic Clustered Object switching mech-

anism. Master’s thesis, Department of Computer Science, University of Toronto, 2001.

157

[64] Kevin Hui, Jonathan Appavoo, Robert W. Wisniewski, Marc Auslander, David Edelsohn,

Benjamin Gamsa, Orran Krieger, Bryan Rosenburg, and Michael Stumm. Position summary:

Supporting hot-swappable components for system software. In HotOS. IEEE Computer So-

ciety, 2001.

[65] Jack Inman. Implementing loosely coupled functions on tightly coupled engines. In Summer

conference proceedings, Portland 1985: June 11–14, 1985, Portland, Oregon USA, pages

277–298, P.O. Box 7, El Cerrito 94530, CA, USA, Summer 1985. USENIX.

[66] Michael B. Jones and Richard F. Rashid. Mach and Matchmaker: Kernel and language sup-

port for object-oriented distributed systems. In N. Meyrowitz, editor, Proceedings of the Con-

ference on Object-Oriented Programming Systems, Languages and Applications, volume 21,

pages 67–77, Portland, OR, November 1986. ACM, IEEE.

[67] David R. Kaeli, Liana L. Fong, Richard C. Booth, Kerry C. Imming, and Joseph P. Weigel.

Performance analysis on a CC-NUMA prototype. IBM Journal of Research and Development,

41(3):205, 1997.

[68] Jeffrey Katcher. Postmark: A new file system benchmark. Technical Report TR3022, Network

Appliance, 1997.

[69] Michael H. Kelley. Multiprocessor aspects of the DG/UX kernel. In Proceedings of the Winter

1989 USENIX Conference: January 30–February 3, 1989, San Diego, California, USA, pages

85–99, Berkeley, CA, USA, Winter 1989. USENIX.

[70] Brian W. Kernighan and Rob Pike. The practice of programming. Addison-Wesley Longman

Publishing Co., Inc., 1999.

[71] Steven Kleiman, Jim Voll, Joe Eykholt, Anil Shivalingah, Dock Williams, Mark Smith, Steve

Barton, and Glenn Skinner. Symmetric multprocessing in Solaris, Spring 1992. COMPCON,

San Francisco.

[72] David R. Kohr, Jr., Xingbin Zhang, Daniel A. Reed, and Mustafizur Rahman. A performance

study of an object-oriented, parallel operating system. In Hesham El-Rewini and Bruce D.

Shriver, editors, Proceedings of the 27th Annual Hawaii International Conference on System

Sciences. Volume 2 : Software Technology, pages 76–85, Los Alamitos, CA, USA, January

1994. IEEE Computer Society Press.

158

[73] Orran Krieger, Michael Stumm, Ronald C. Unrau, and Jonathan Hanna. A fair fast scalable

reader-writer lock. In Proceedings of the 1993 International Conference on Parallel Processing,

volume II - Software, pages II–201–II–204, Boca Raton, FL, August 1993. CRC Press.

[74] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni, Kourosh Ghara-

chorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz, Anoop Gupta, Mendel

Rosenblum, and John Hennessy. The Stanford FLASH multiprocessor. In Proceedings of the

21st International Symposium on Computer Architecture, pages 302–313, Chicago, IL, April

1994.

[75] Richard P. LaRowe, Jr. and Carla Schlatter Ellis. Page placement policies for NUMA multi-

processors. Journal of Parallel and Distributed Computing, 11(2):112–129, February 1991.

[76] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA highly scalable server. In

Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-

97), volume 25,2 of Computer Architecture News, pages 241–251, New York, June 1997. ACM

Press.

[77] Thomas J. Leblanc, John M. Mellor-Crummey, Neal M. Gafter, Lawrence A. Crowl, and

Peter C. Dibble. The Elmwood multiprocessor operating system. Software, Practice and

Experience, 19(11):1029–1056, [11] 1989.

[78] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta,

John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash multiprocessor.

IEEE Computer, 25(3):63–80, March 1992.

[79] Roy Levin, Ellis Cohen, William Corwin, Frederick Pollack, and William Wulf. Pol-

icy/mechanism separation in Hydra. In Proceedings of the 5th ACM Symposium on Operating

Systems Principles (SOSP-5), pages 132–140. ACM Press, November 1975.

[80] Chu-Cheow Lim. A Parallel Object-Oriented System for Realizing Reusable and Efficient

Data Abstractions. Technical Report TR-93-063, Berkeley University of California, October

93.

[81] Susan LoVerso, Noemi Paciorek, Alan Langerman, and George Feinberg. The OSF/1 UNIX

filesystem (UFS). In USENIX Conference Proceedings, pages 207–218, Dallas, TX, January

1991. USENIX.

159

[82] Heinz Lycklama. UNIX on a microprocessor — 10 years later. In Summer conference pro-

ceedings, Portland 1985: June 11–14, 1985, Portland, Oregon USA, pages 5–16, P.O. Box 7,

El Cerrito 94530, CA, USA, Summer 1985. USENIX.

[83] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro. Fragmented

objects for distributed abstractions. In Thoman L. Casavant and Mukesh Singhal, editors,

Readings in Distributed Computing Systems, pages 170–186. IEEE Computer Society Press,

Los Alamitos, California, 1994.

[84] Michael Marchetti, Leonidas Kontothanassis, Ricardo Bianchini, and Michael Scott. Using

simple page placement policies to reduce the cost of cache fills in coherent shared-memory

systems. In Proceedings of the 9th International Symposium on Parallel Processing (IPPS’95,

pages 480–485, Los Alamitos, CA, USA, April 1995. IEEE Computer Society Press.

[85] Evangelos P. Markatos and Thomas J. LeBlanc. Using processor affinity in loop scheduling

on shared-memory multiprocessors. IEEE Transactions on Parallel and Distributed Systems,

5(4):379–400, April 1994.

[86] Henry Massalin. Synthesis: An Efficient Implementation of Fundamental Operating System

Services. PhD thesis, Columbia University, 1992.

[87] Henry Massalin and Calton Pu. Threads and input/output in the Synthesis kernel. In

Proceedings of the 12th ACM Symposium on Operating Systems Principles (SOSP-12), pages

191–201. ACM Press, December 1989.

[88] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel. Technical Report

CUCS-005-91, Dept. of Comp. Sc., Columbia U., New York, NY USA, April 1991.

[89] Ann Marie Grizzaffi Maynard, Colette M. Donnelly, and Bret R. Olszewski. Contrasting

characteristics and cache performance of technical and multi-user commercial workloads.

ACM SIGPLAN Notices, 29(11):145–156, November 1994.

[90] Drew McCrocklin. Scaling Solaris for enterprise computing. In CUG 1995 Spring Proceedings,

pages 172–181, Denver, CO, March 1995. Cray User Group, Inc.

[91] P. McJones and A. Hisgen. The Topaz system: Distributed multiprocessor personal comput-

ing. In Proceedings / Workshop on Workstation Operating Systems, November 5–6, 1987,

160

Cambridge, Massachusetts, pages ??–??, 1109 Spring Street, Suite 300, Silver Spring, MD

20910, USA, 1987. IEEE Computer Society Press.

[92] Paul R. McJones and Garret F. Swart. Evolving the UNIX system interface to support multi-

threaded programs. Technical Report SRC-RR-21, Hewlett Packard Laboratories, September

1987.

[93] Paul E. McKenney. Read-Copy Update mutual exclusion for linux,

http://lse.sourceforge.net/locking/rupdate.html.

[94] Paul E. McKenney. Kernel korner: Using rcu in the linux 2.5 kernel. Linux Journal, October

2003.

[95] Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger, and

Rusty Russell. Read Copy Update. In Ottawa Linux Symposium. Linux Symposium, 2001.

[96] Paul E. McKenney and Jack Slingwine. Efficient kernel memory allocation on shared-memory

multiprocessor. In USENIX Technical Conference Proceedings, pages 295–305, San Diego, CA,

Winter 1993. USENIX.

[97] Paul E. McKenney and Jack Slingwine. Read-Copy Update: Using exeuction history to solve

concurrency problems. In Y. Pan, S. G. Akl, and K. Li, editors, Proceedings of International

Conference on Parallel and Distributed Computing and Systems (PDCS), Las Vegas, USA,

1998. IASTED/ACTA Press.

[98] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan, Charles Krasic, Ashvin Goel,

Perry Wagle, Charles Consel, Gilles Muller, and Renauld Marlet. Specialization tools and

techniques for systematic optimization of system software. ACM Transactions on Computer

Systems (TOCS), 19(2):217–251, 2001.

[99] Bodhisattwa C. Mukherjee and Karsten Schwan. Improving performance by use of adaptive

objects: experimentation with a configurable multiprocessor thread package. In Proceedings

the 2nd International Symposium on High Performance Distributed Computing, pages 59–66,

Spokane, WA, USA, 1993. IEEE.

[100] John K. Ousterhout, Donald A. Scelza, and Pradeep S. Sindhu. Medusa: An Experiment

in Distributed Operating System Structure. Communications of the ACM, 23(2):92–104,

February 1980.

161

[101] Eric Parsons, Benjamin Gamsa, Orran Krieger, and Michael Stumm. (De)Clustering Objects

for multiprocessor system software. In Fourth International Workshop on Object Orientation

in Operating Systems 95, pages 72–81, 1995.

[102] J. Kent Peacock. File system multithreading in System V Release 4 MP. In USENIX Con-

ference Proceedings, pages 19–30, San Antonio, TX, Summer 1992. USENIX.

[103] J. Kent Peacock, Sunil Saxena, Dean Thomas, Fred Yang, and Wilfred Yu. Experiences

from multithreading System V Release 4. In Symposium on Experiences with Distributed and

Multiprocessor Systems (SEDMS), pages 77–92. USENIX, Newport Beach, CA, March 1992.

[104] Gregory F. Pfister, William C. Brantley, David A. George, Steve L. Harvey, Wally J. Kle-

infelder, Kevin P. McAuliffe, Evelin A. Melton, V. Alan Norton, and Jodi Weise. The IBM

research parallel processor prototype (RP3): Introduction. In Proc. Int. Conf. on Parallel

Processing, August 1985.

[105] Robert Pike. Personal communication, 1998.

[106] David Leo Presotto. Multiprocessor streams for Plan 9. In Proc. Summer UKUUG Conf.,

pages 11–19, London, July 1990.

[107] Richard Rashid. From RIG to accent to mach: The evolution of a network operating system.

In Proceedings of the ACM/IEEE Computer Society Fall Joint Computer Conference, pages

1128–1137, November 1986. Department of Computer Science, Carnegie Mellon University,

Pittsburgh, PA.

[108] Richard Rashid, Avadis Tevanian, Jr., Michael Young, David Golub, Robert Baron, David

Black, William J. Bolosky, and Jonathan Chew. Machine-independent virtual memory man-

agement for paged uniprocessor and multiprocessor architectures. IEEE Trans. on Computers,

37 8:896–908, August 1988.

[109] Steven K. Reinhardt, Babak Falsafi, and David A. Wood. Kernel support for the Wisconsin

Wind Tunnel. In Proceedings of the Symposium on Microkernels and Other Kernel Architec-

tures, pages 73–90, San Diego, CA, USA, September 1993. USENIX.

[110] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett Witchel, and Anoop

Gupta. The impact of architectural trends on operating system performance. In Proceedings

162

of the 15th ACM Symposium on Operating Systems Principles (SOSP-15), pages 285–298.

ACM Press, December 1995.

[111] Paul Rovner, Roy Levin, and John Wick. On Extending Modula-2 for Building Large, In-

tegrated Systems. Technical Report 3, Digital Systems Research Center, Palo Alto, CA,

January 1985.

[112] Channing H. Russell and Pamela J. Waterman. Variations on UNIX for parallel-programming

computers. Communications of the ACM, 30(12):1048–1055, December 1987.

[113] Curt Schimmel. Unix Systems for Modern Achitectures: Symmetric Multiprocessing and

Caching for Kernel Programmers. Addison-Wesley Publishing Company, 1994.

[114] Karsten Schwan and Win Bo. Topologies: distributed objects on multicomputers. ACM

Transactions on Computer Systems (TOCS), 8(2):111–157, 1990.

[115] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Design rationale for Psyche, a

general-purpose multiprocessor operating system. In Proc. Intern. Conf. on Parallel Process-

ing, page 255, St. Charles, IL, August 1988. Penn. State Univ. Press. Also published in the

Univ. of Rochester 1988-89 CS and Computer Engineering Research Review.

[116] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Evolution of an operating system

for large-scale shared-memory multiprocessors. Technical Report TR 309, URCSD, March

1989.

[117] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Implementation issues for the

Psyche multiprocessor operating system. USENIX Workshop on Distributed and Multipro-

cessor Systems, pages 227–236, October 1989.

[118] Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh. Multi-model parallel program-

ming in Psyche. In Proc. ACM/SIGPLAN Symp. on Principles and Practice of Parallel

Programming, page 70, Seattle, WA, March 1990. In ACM SIGPLAN Notices 25:3.

[119] Sequent Computer Systems. White Paper: Sequent’s NUMA-Q SMP Architecture.

http://parallel.ru/ftp/computers/sequent/NUMA SMP REV.pdf.

163

[120] Marc Shapiro, Yvon Gourbant, Sabine Habert, Laurence Mosseri, Michel Ruffin, and Celine

Valot. SOS: An object-oriented operating system - assessment and perspectives. Computing

Systems, 2(4):287–337, 1989.

[121] Abraham Silberschatz, James L. Peterson, and Peter B. Galvin. Operating Systems Concepts.

Addison-Wesley, Reading, MA, 1991.

[122] Dilma Silva, Karsten Schwan, and Greg Eisenhauer. CTK: Configurable object abstractions

for multiprocessors. Software Engineering, 27(6):531–549, 2001.

[123] Burton Smith. The Quest for General-Purpose Parallel Computing, 1994.

www.cray.com/products/systems/mta/psdocs/nsf-agenda.pdf.

[124] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui, Robert W. Wisniewski, Dilma da Silva,

Greg R. Ganger, Orran Krieger, Michael Stumm, Marc Auslander, Michal Ostrowski,

B. Rosenburg, and James Xenidis. System support for online reconfiguration. In USENIX

Conference Proceedings, pages 141–154, San Antonio, TX, June 2003.

[125] spec.org. SPEC SDM suite. http://www.spec.org/osg/sdm91/, 1996.

[126] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity information in

shared-memory multiprocessor scheduling. IEEE Transactions on Parallel and Distributed

Systems, 4(2):131–143, February 1993.

[127] William Stallings. Operating Systems Internals and Design Principles Third Edition. Prentice

Hall, 1997.

[128] Robert Stets, Sandhya Dwarkadas, Nikolaos Hardavellas, Galen Hunt, Leonidas Kontothanas-

sis, Srinivasan Parthasarathy, and Michael Scott. Cashmere-2L: Software coherent shared

memory on a clustered remote-write network. In Proc. of the 16th ACM Symp. on Operating

Systems Principles (SOSP-16), October 1997.

[129] Jacques Talbot. Turning the AIX operating system into an MP-capable OS. In Proc. USENIX

Technical Conference, 1995.

[130] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.

[131] Charles P. Thacker and Lawrence C. Stewart. Firefly: A multiprocessor workstation. Comput.

Architecture News, 15(5):164–172, October 1987.

164

[132] Josep Torrellas, Anoop Gupta, and John L. Hennessy. Characterizing the caching and syn-

chronization performance of a multiprocessor operating system. In Proceedings of the Fifth

International Conference on Architectural Support for Programming Languages and Operating

Systems, pages 162–174. Boston, Massachusetts, 1992.

[133] Linus Tovald. Posting to linux-kernel mailing list: Summary of changes form v2.5.42 to

v2.5.43, http://marc.theaimsgroup.com/?l=linux-kernel&m=103474006226829&w=2.

[134] Ronald C. Unrau, Orran Krieger, Benjamin Gamsa, and Michael Stumm. Hierarchical clus-

tering: A structure for scalable multiprocessor operating system design. The Journal of

Supercomputing, 9(1–2):105–134, 1995.

[135] Uresh Vahalia. UNIX internals: the new frontiers. Prentice Hall Press, 1996.

[136] Maarten van Steen, Philip Homburg, and Andrew S. Tanenbaum. The architectural design

of Globe: A wide-area distributed sytem. Technical Report IR-442, Vrige Universiteit, De

Boelelann 1105, 1081 HV Amsterdam, The Netherlands, March 1997.

[137] Raj Vaswani and John Zahorjan. The implications of cache affinity on processor scheduling for

multiprogrammed, shared memory multiprocessors. In Proceedings of 13th ACM Symposium

on Operating Systems Principles (SOSP-13), pages 26–40. ACM Press, October 1991.

[138] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosemblum. Operating system

support for improving data locality on CC-NUMA compute servers. In Seventh International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 279–289, Cambridge, Massachusetts, October 1996. ACM Press.

[139] Zvonko Vranesic, Stephen Brown, Michael Stumm, Steve Caranci, Alex Grbic, Robin Grind-

ley, Mitch Gusat, Orran Krieger, Guy Lemieux, Kevin Loveless, Naraig Manjikian, Zeljko

Zilic, T. Abdelrahman, Benjamin Gamsa, Peter Pereira, Ken Sevcik, A. Elkateeb, and Sinisa

Srbljic. The NUMAchine multiprocessor. Technical Report 324, University of Toronto, April

1995.

[140] Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White. Hector: A hierar-

chically structured shared-memory multiprocessor. IEEE Computer, 24(1):72–80, January

1991.

165

[141] William Wulf, Ellis Cohen, William Corwin, Anita Jones, Roy Levin, Charles Pierson, and

Frederick Pollack. HYDRA: The kernel of a multiprocessor operating system. CACM,

17(6):337–345, June 1974.

[142] William Wulf, Roy Levin, and Charles Pierson. Overview of the Hydra operating system

development. In Proceedings of the 5th ACM Symposium on Operating Systems Principles

(SOSP-5), pages 122–131. ACM Press, November 1975.

[143] Chun Xia and Josep Torrellas. Improving the performance of the data memory hierarchy

for multiprocessor operating systems. In Proc. of the 2nd IEEE Symp. on High-Performance

Computer Architecture (HPCA-2), February 1996.

[144] Guray Yilmaz and Nadia Erdogan. Partitioned Object Models for Distributed Abstractions.

In Proc. of 14th International Symp. on Computer and Information Sciences (ISCIS XIV),

pages 1072–1074, Kusadasi, Turkey, 1999. IOS Press.

[145] Michael Young, Avadis Tevanian, Jr., Richard Rashid, David Golub, Jeffery L. Eppinger,

Jonathan Chew, William J. Bolosky, David Black, and Robert Baron. The duality of mem-

ory and communication in the implementation of a multiprocessor operating system. In

Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP-11), pages

63–76. ACM Press, November 1987.

166

