
Scalable Elastic System
Architecture (SESA)

Dan Schatzberg, Boston University
Jonathan Appavoo, Boston University

Orran Krieger, VMware
Eric Van Hensbergen, IBM Research Austin

Thursday, March 3, 2011

The goal

Perform more computation with fewer
resources

Thursday, March 3, 2011

Fixed Resources

• Hardware as a fixed resource

• Focus on reducing computation’s need for
hardware resources

• Multiplex hardware resources for different
computations

Thursday, March 3, 2011

Elastic Resources

• Cloud Computing

• Pay as you go hardware

• Focus on providing hardware to the
computation that requires it

Thursday, March 3, 2011

Time to scale hardware

Days

Fixed
Hardware

Minutes

Cloud Computing

Thursday, March 3, 2011

Time to scale hardware

Days

Fixed
Hardware

Minutes

Cloud Computing

Elastic Applications

Thursday, March 3, 2011

Time to scale hardware

Days

Fixed
Hardware

Minutes

Cloud Computing

Elastic Applications

Milliseconds

?

Thursday, March 3, 2011

Interactive HPC

• Medical imaging application

• interactive

• 1 megapixel image

• quadratic memory consumption - ~14TB

Thursday, March 3, 2011

Interactive HPC

• Fixed Hardware

• Purchase a cluster

Thursday, March 3, 2011

Interactive HPC

• Cloud Computing

• Allocate a cluster

• Maintain interactivity

• 650+ EC2 instances - $8000 dollars / 8
hour day

Thursday, March 3, 2011

Can we do better?

Thursday, March 3, 2011

Where we’re starting

Treat elasticity as a first-class system
characteristic

Thursday, March 3, 2011

OUTLINE
1. THE PROBLEM

2. OBSERVATIONS

1. Top-Down Demand

2. Bottom-Up Support

3. Modularity

3. OUR TAKE ON A SOLUTION

4. PROTOTYPE & CHALLENGES

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Software

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Thursday, March 3, 2011

Top-Down Demand
System Interface

Hardware

Thursday, March 3, 2011

Events as Load

• Treat a service request as an event that is
dispatched to resources

• As events occur, load increases

• As events are handled, load decreases

• Each layer being event-driven forces
demand to flow top-down

Thursday, March 3, 2011

Bottom-Up Support
System Interface

Hardware

Thursday, March 3, 2011

Bottom-Up Support
System Interface

Hardware
Allocate/Deallocate

Resources
Thursday, March 3, 2011

Bottom-Up Support
System Interface

Hardware

Thursday, March 3, 2011

Elastic Interface

• Support elasticity by interfacing via
allocation and deallocation of physical or
logical resources

• Each layer is constructed by being explicit
with respect to resource consumption

• Be explicit with respect to time to meet a
request

Thursday, March 3, 2011

Modularity
System Interface

Hardware

Thursday, March 3, 2011

Modularity
System Interface

Hardware

Thursday, March 3, 2011

Modularity
System Interface

Hardware

Thursday, March 3, 2011

Modularity
System Interface

Hardware

Thursday, March 3, 2011

Object model

• Objects can take advantage

• the semantics of their request patterns

• the lifetime of an instance

• the occupancy w.r.t memory, processing
and communication

• We can optimize for elasticity by taking
advantage of modularity in a system

Thursday, March 3, 2011

OUTLINE

1. THE PROBLEM

2. OBSERVATIONS

3. OUR TAKE ON A SOLUTION : SESA

1. EBB’s : Elastic Building Blocks

2. SEE: Scalable Elastic Executive - A LibOS

3. EPIC: Events as Interrupts

4. PROTOTYPE & CHALLENGES

Thursday, March 3, 2011

Architecture Overview

Hardware

Thursday, March 3, 2011

Architecture Overview

SSD

FAWN

Thursday, March 3, 2011

Architecture Overview

Partitioning

SSD

FAWN

Thursday, March 3, 2011

Architecture Overview

SSD

FAWN

Kittyhawk

Thursday, March 3, 2011

Architecture Overview

System Software

SSD

FAWN

Kittyhawk

Thursday, March 3, 2011

Architecture Overview

SSD

FAWN

Kittyhawk

HAL

Thursday, March 3, 2011

Architecture Overview
Applications

SSD

FAWN

Kittyhawk

HAL

Thursday, March 3, 2011

Architecture Overview

SSD

FAWN

Kittyhawk

?
HAL

Thursday, March 3, 2011

Architecture Overview

SSD

FAWN

Kittyhawk

?
HAL

Thursday, March 3, 2011

SESA

SEHAL SEHAL SEHAL

VM/
Node

Elastic Partition of Nodes

VM/
Node

VM/
Node

SEMachine

SEExecutive
SEE SEE SEE

EBB Namespace

SE APP/SERVICE

Partitioning Layer

System Software Layers

Hardware Abstraction Layer

LibOS Layer

Component Layer

Thursday, March 3, 2011

EBB’s

EBB NameSpace

A new Component Model
for expressing and

encapsulating fine grain
elasticity.

The Next Generation of
Clustered Objects.

Thursday, March 3, 2011

inc()

val() dec()

Memory

Processors

Memory

Processors

c c c c c c c c

inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C
inc

va
l dec

C

dref(ctr)->inc();

val Clustered Objects (CO)

Thursday, March 3, 2011

What did we learn?

• Event-driven architecture for lazy and
dynamic instantiation of resources

• Mechanism to create scalable software

Thursday, March 3, 2011

Elastic Building Blocks

• Programming Model for
Elastic and Scalable
Components

• Span multiple nodes

• Built in On Demand nature
-- encapsulation of policies
for both allocation and
deallocation of resources

Thursday, March 3, 2011

SEE

SEExecutive

SEE SEE SEE

A Distributed Library OS
Model designed to enable
Elastic Software within the

context of legacy
environments.

Next Generation of Libra

Thursday, March 3, 2011

Libra

Partition
Controller

Partition Partition Partition
Application Application Application

JVM
Ap
p

Ap
p

Ap
pAp
p

Ap
p

Ap
p

Ap
pDB

LibraLibra LibraOS
Purpose
General

Hypervisor

Gateway

Figure 1. Proposed system architecture.

nels, hypervisors run other operating systems with few or no mod-
ifications [27, 5, 42]. By running an operating system (the con-
troller) in a hypervisor partition, applications can be migrated in-
crementally to an exokernel system. In the first step of the migra-
tion, the application runs in its own partition instead of as an oper-
ating system process but accesses system services on the controller
remotely through the 9P distributed filesystem protocol [32]. Later,
as needed, these relatively expensive remote calls are replaced by
efficient library implementations of the same abstractions.
Proponents of exokernels object to hypervisors because “[hy-

pervisors] confine specialized operating systems and associated
processes to isolated virtual machines...sacrificing a single view of
the machine” [25]. However, in our approach, a controller parti-
tion provides a single view of the machine: applications running
in other partitions correspond to processes at the controller. This is
true even for applications that run on other machines in a cluster.
Section 2 explains how Libra achieves this unified machine view.
This paper makes three main contributions:

• The hypervisor approach for transforming existing systems into
high-performance, specialized systems.

• A case study in which Nutch, a large distributed application that
includes a commercial JVM (IBM’s J9 [4]), is transformed into
such a system.

• Examples of Nutch-specific optimizations that result in good
performance.
The rest of the paper is organized as follows. Section 2 explains

the overall architecture we are proposing. Section 3 describes the
implementation of Libra and our port of J9 to Libra. Details of
our port of Nutch to J9/Libra, including specializations that im-
prove its throughput, are described in Section 4. Section 5 evaluates
J9/Libra’s performance on various benchmarks, including Nutch,
the standard SPECjvm98 [39] and SPECjbb2000 [38] benchmarks,
and two microbenchmarks. Section 6 discusses related work. Fi-
nally, Section 7 outlines future work and Section 8 concludes the
paper.

2. Design
This section explains our proposed architecture, which is depicted
in Figure 1. At the bottom of the software stack, a hypervisor
hosts a controller partition and one or more application partitions.
The hypervisor interacts directly with the hardware to provision
hardware resources among partitions, providing high-level mem-
ory, processor, and device management.
Above the hypervisor, a general-purpose operating system such

as Linux runs as a “controller” partition. The controller is the point
of administrative control for the system and provides a familiar en-

vironment for both users and applications. Each application par-
tition is launched from the controller by a script that invokes the
hypervisor to create a new partition and load the application into it.
This script also launches a gateway server that permits the applica-
tion to access the controller’s resources, services, and environment.
The gateway server is an extended version of Inferno [31],

which is a compact operating system that can run on other operating
systems. Inferno creates a private, file-like namespace that contains
services such as the user’s console, the controller’s filesystem, and
the network (see Figure 2). The application accesses this names-
pace remotely via the 9P resource sharing protocol [30], which runs
over a shared-memory transport established between the controller
and application partitions. A more detailed description of our ex-
tensions to Inferno and a preliminary performance analysis of the
transport is available in another paper [20].
Note that nothing in the architecture requires applications to

access all resources through the gateway, because the hypervisor
allows resources and peripherals to be dedicated to an application
partition and accessed directly. Alternatively, applications can use
9P to access resources across the network, either directly or through
the gateway. Facilities for redundant resource servers, fail over, and
automated recovery have also been explored [16].
As in an exokernel system, each application is linked with a

library operating system (libOS). However, unlike in exokernel
systems, the libOS focuses only on performance-critical services;
other services are obtained from the controller through the gateway.
For example, Libra, the libOS described in this paper, contains a
thread library implementation but accesses files remotely.
This approach not only reduces the cost of developing a libOS

but also reduces the cost of administering new partitions. Because
applications share filesystems, network configuration, and system
configuration with the controller, administering an additional ap-
plication partition is cheaper than administering an additional op-
erating system partition. Also, because 9P gateways run as the user
who launched the application, they inherit the same permissions
and limitations, taking advantage of existing security mechanisms
and resource policies.
Finally, because we use a hypervisor instead of an exokernel to

multiplex system resources, applications can use privileged execu-
tion modes and instructions. This enables optimizations and eases
migration, because a libOS can be simply a pared-down, general-
purpose operating system. The combination of supervisor-mode ca-
pability and 9P for access to remote services is flexible: application
partitions can be like traditional operating systems, self-contained
with statically-allocated hardware resources; like microkernel ap-
plications, with system services spread across various protection
domains; or like a hybrid of the two architectures that makes sense
for the particular workload being executed.

3. J9/Libra Implementation
This section describes the implementation of Libra and the port of
the J9 [4] virtual machine to this new platform. It was a somewhat
atypical porting process, since we were simultaneously porting
J9 to the Libra abstractions while designing and implementing
new Libra abstractions to support J9’s execution. We begin by
introducing the relevant aspects of J9 and briefly describing our
porting and debugging methodology. Next, we discuss the major
Libra subsystems needed by J9. Finally we highlight the major
limitations of our current implementation.

3.1 J9 Overview
J9 is one of IBM’s production JVMs and is deployed on more
than a dozen major platforms ranging from cell phones to zSeries
mainframes. Because it runs on such a diverse set of platforms, a
great deal of effort has been invested by the J9 team in defining

Architecture

Thursday, March 3, 2011

Libra

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

9p

$

$

Thursday, March 3, 2011

Libra

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

$ java -cp my.jar

9p

$

Thursday, March 3, 2011

Libra

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

9p

$

$ java -cp my.jar

Thursday, March 3, 2011

Libra

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

$ java -cp my.jar

9p

$ for ((i=0;i<44;i++))
do
 java -cp my.jar &
done

Thursday, March 3, 2011

Libra

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

$ java -cp my.jar

9p

$ for ((i=0;i<44;i++))
do
 java -cp my.jar &
done

Thursday, March 3, 2011

PowerPC Blades: Libra Workers

Pool of Libra Partitions
X86 Linux Front Ends

$ java -cp my.jar

9p

$ for ((i=0;i<44;i++))
do
 java -cp my.jar &
done

Libra

Thursday, March 3, 2011

What did we learn?

• Specialized environment for each
application

• Lightweight system layer implementing
services for performance

• General purpose OS for non-performance
critical services

Thursday, March 3, 2011

SEE : A LibOS for SESA
• Distributed LibOS that

can elastically span
nodes

• Instances cooperate to
support the allocation
and deallocation of
EBB’s

• Enables compatibility
with Front End nodes
running via unified 9p
namespace

locality aware
memory
allocator

event
dispatcher

inter-node
communication
protocols and

primitives

EBB Infrastructure
FS Name Space
Protocol (9p)

Scalable Elastic Executive (SEE)

Per-node EBB manifestations

SEHAL

Thursday, March 3, 2011

SEMachines and EPICs

SEHAL SEHAL SEHAL

SEMachine Hardware Abstraction Layer :
EPIC

Thursday, March 3, 2011

Programmable
Interrupt Controller

1 10 0

Interrupt

Execution

Source

Thursday, March 3, 2011

1 11 0

Interrupt

Execution

Source

Programmable
Interrupt Controller

Thursday, March 3, 2011

1 11 0

Event

Action

Source

Programmable
Interrupt Controller

Thursday, March 3, 2011

Elastic Programmable
Interrupt Controller

Event

Action

Source

1 11 0 0 001

Thursday, March 3, 2011

1101

Event

Action

...

...

110 1

...

Elastic Programmable
Interrupt Controller

Source

Thursday, March 3, 2011

Elastic Programmable
Interrupt Controller
• Programmed by the SEE

• Provides the minimum requirement of
elastic applications - mapping load to
resources

• Portable layer

• Take advantage of network features such as
broadcast and multicast

Thursday, March 3, 2011

OUTLINE

1. THE PROBLEM

2. OBSERVATIONS

3. OUR TAKE ON A SOLUTION

4. PROTOTYPE & CHALLENGES

Thursday, March 3, 2011

PROTOTYPE APP

K
ittyhaw

k

Elastic
Matrix
Cache

Elastic
Matrix
Ops

Sage*

OL

SESA SAGE
SERVICES

SEE: EBB’s +
 EH

A
L

Traditional HW

Advanced HW

Thursday, March 3, 2011

Challenges and
Discussion

Thursday, March 3, 2011

OUTLINE

1. THE PROBLEM

1. Pay as you go computing

2. Insufficient systems support for elasticity

2. OBSERVATIONS

3. OUR TAKE ON A SOLUTION

4. PROTOTYPE & CHALLENGES

Thursday, March 3, 2011

Provider

Consumer
Software

Pay as you go hardware

Thursday, March 3, 2011

Provider

Consumer
Request

Software

Pay as you go hardware

Thursday, March 3, 2011

Provider

Consumer
Software

Pay as you go hardware

Thursday, March 3, 2011

Elastic Website

Provider

Consumer

Load Balancer

Thursday, March 3, 2011

Elastic Website

Provider

Consumer

Load Balancer

Thursday, March 3, 2011

Elastic Website

Provider

Consumer

Load Balancer

Thursday, March 3, 2011

Other Elastic
Applications

• Analytics

• Batch computation

• Stream processing

Thursday, March 3, 2011

What’s the problem?

• Allocation/Boot-time

• Programmability

Thursday, March 3, 2011

Medical Imaging
Application

• Megapixel image

• Quadratic algorithm

• (1 mil pixels * 4 bytes/pixel)^2 ~ 14 TB

• On Amazon EC2 ~ $8000 per day

Thursday, March 3, 2011

Snowflock

Provider

Consumer

Thursday, March 3, 2011

Snowflock

Provider

Consumer

Thursday, March 3, 2011

Snowflock

Provider

Consumer

Thursday, March 3, 2011

Distributing an Object
Non-Distributed Object Instance

L
R0

R1

R2

Region List Lock
Region List

Other
Data

Structures

Thursday, March 3, 2011

L
R0

R1

R2

Root

L
R0

Rep0

L
R0

Rep2R2

L
R1

Rep1

Thursday, March 3, 2011

Elastic Programmable
Interrupt Controller

1 11 0

Event

Action

Source

Thursday, March 3, 2011

