/*****************************************************************************/ /* */ /* codeent.c */ /* */ /* Code segment entry */ /* */ /* */ /* */ /* (C) 2001-2009, Ullrich von Bassewitz */ /* Roemerstrasse 52 */ /* D-70794 Filderstadt */ /* EMail: uz@cc65.org */ /* */ /* */ /* This software is provided 'as-is', without any expressed or implied */ /* warranty. In no event will the authors be held liable for any damages */ /* arising from the use of this software. */ /* */ /* Permission is granted to anyone to use this software for any purpose, */ /* including commercial applications, and to alter it and redistribute it */ /* freely, subject to the following restrictions: */ /* */ /* 1. The origin of this software must not be misrepresented; you must not */ /* claim that you wrote the original software. If you use this software */ /* in a product, an acknowledgment in the product documentation would be */ /* appreciated but is not required. */ /* 2. Altered source versions must be plainly marked as such, and must not */ /* be misrepresented as being the original software. */ /* 3. This notice may not be removed or altered from any source */ /* distribution. */ /* */ /*****************************************************************************/ #include /* common */ #include "chartype.h" #include "check.h" #include "debugflag.h" #include "xmalloc.h" #include "xsprintf.h" /* cc65 */ #include "codeent.h" #include "codeinfo.h" #include "error.h" #include "global.h" #include "codelab.h" #include "opcodes.h" #include "output.h" /*****************************************************************************/ /* Data */ /*****************************************************************************/ /* Empty argument */ static char EmptyArg[] = ""; /*****************************************************************************/ /* Helper functions */ /*****************************************************************************/ static void FreeArg (char* Arg) /* Free a code entry argument */ { if (Arg != EmptyArg) { xfree (Arg); } } static char* GetArgCopy (const char* Arg) /* Create an argument copy for assignment */ { if (Arg && Arg[0] != '\0') { /* Create a copy */ return xstrdup (Arg); } else { /* Use the empty argument string */ return EmptyArg; } } static int NumArg (const char* Arg, unsigned long* Num) /* If the given argument is numerical, convert it and return true. Otherwise * set Num to zero and return false. */ { char* End; unsigned long Val; /* Determine the base */ int Base = 10; if (*Arg == '$') { ++Arg; Base = 16; } else if (*Arg == '%') { ++Arg; Base = 2; } /* Convert the value. strtol is not exactly what we want here, but it's * cheap and may be replaced by something fancier later. */ Val = strtoul (Arg, &End, Base); /* Check if the conversion was successful */ if (*End != '\0') { /* Could not convert */ *Num = 0; return 0; } else { /* Conversion ok */ *Num = Val; return 1; } } static void SetUseChgInfo (CodeEntry* E, const OPCDesc* D) /* Set the Use and Chg in E */ { const ZPInfo* Info; /* If this is a subroutine call, or a jump to an external function, * lookup the information about this function and use it. The jump itself * does not change any registers, so we don't need to use the data from D. */ if ((E->Info & (OF_UBRA | OF_CALL)) != 0 && E->JumpTo == 0) { /* A subroutine call or jump to external symbol (function exit) */ GetFuncInfo (E->Arg, &E->Use, &E->Chg); } else { /* Some other instruction. Use the values from the opcode description * plus addressing mode info. */ E->Use = D->Use | GetAMUseInfo (E->AM); E->Chg = D->Chg; /* Check for special zero page registers used */ switch (E->AM) { case AM65_ACC: if (E->OPC == OP65_ASL || E->OPC == OP65_DEC || E->OPC == OP65_INC || E->OPC == OP65_LSR || E->OPC == OP65_ROL || E->OPC == OP65_ROR) { /* A is changed by these insns */ E->Chg |= REG_A; } break; case AM65_ZP: case AM65_ABS: /* Be conservative: */ case AM65_ZPX: case AM65_ABSX: case AM65_ABSY: Info = GetZPInfo (E->Arg); if (Info && Info->ByteUse != REG_NONE) { if (E->OPC == OP65_ASL || E->OPC == OP65_DEC || E->OPC == OP65_INC || E->OPC == OP65_LSR || E->OPC == OP65_ROL || E->OPC == OP65_ROR || E->OPC == OP65_TRB || E->OPC == OP65_TSB) { /* The zp loc is both, input and output */ E->Chg |= Info->ByteUse; E->Use |= Info->ByteUse; } else if ((E->Info & OF_STORE) != 0) { /* Just output */ E->Chg |= Info->ByteUse; } else { /* Input only */ E->Use |= Info->ByteUse; } } break; case AM65_ZPX_IND: case AM65_ZP_INDY: case AM65_ZP_IND: Info = GetZPInfo (E->Arg); if (Info && Info->ByteUse != REG_NONE) { /* These addressing modes will never change the zp loc */ E->Use |= Info->WordUse; } break; default: /* Keep gcc silent */ break; } } } /*****************************************************************************/ /* Code */ /*****************************************************************************/ const char* MakeHexArg (unsigned Num) /* Convert Num into a string in the form $XY, suitable for passing it as an * argument to NewCodeEntry, and return a pointer to the string. * BEWARE: The function returns a pointer to a static buffer, so the value is * gone if you call it twice (and apart from that it's not thread and signal * safe). */ { static char Buf[16]; xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned char) Num); return Buf; } CodeEntry* NewCodeEntry (opc_t OPC, am_t AM, const char* Arg, CodeLabel* JumpTo, LineInfo* LI) /* Create a new code entry, initialize and return it */ { /* Get the opcode description */ const OPCDesc* D = GetOPCDesc (OPC); /* Allocate memory */ CodeEntry* E = xmalloc (sizeof (CodeEntry)); /* Initialize the fields */ E->OPC = D->OPC; E->AM = AM; E->Size = GetInsnSize (E->OPC, E->AM); E->Arg = GetArgCopy (Arg); E->Flags = NumArg (E->Arg, &E->Num)? CEF_NUMARG : 0; /* Needs E->Arg */ E->Info = D->Info; E->JumpTo = JumpTo; E->LI = UseLineInfo (LI); E->RI = 0; SetUseChgInfo (E, D); InitCollection (&E->Labels); /* If we have a label given, add this entry to the label */ if (JumpTo) { CollAppend (&JumpTo->JumpFrom, E); } /* Return the initialized struct */ return E; } void FreeCodeEntry (CodeEntry* E) /* Free the given code entry */ { /* Free the string argument if we have one */ FreeArg (E->Arg); /* Cleanup the collection */ DoneCollection (&E->Labels); /* Release the line info */ ReleaseLineInfo (E->LI); /* Delete the register info */ CE_FreeRegInfo (E); /* Free the entry */ xfree (E); } void CE_ReplaceOPC (CodeEntry* E, opc_t OPC) /* Replace the opcode of the instruction. This will also replace related info, * Size, Use and Chg, but it will NOT update any arguments or labels. */ { /* Get the opcode descriptor */ const OPCDesc* D = GetOPCDesc (OPC); /* Replace the opcode */ E->OPC = OPC; E->Info = D->Info; E->Size = GetInsnSize (E->OPC, E->AM); SetUseChgInfo (E, D); } int CodeEntriesAreEqual (const CodeEntry* E1, const CodeEntry* E2) /* Check if both code entries are equal */ { return (E1->OPC == E2->OPC && E1->AM == E2->AM && strcmp (E1->Arg, E2->Arg) == 0); } void CE_AttachLabel (CodeEntry* E, CodeLabel* L) /* Attach the label to the entry */ { /* Add it to the entries label list */ CollAppend (&E->Labels, L); /* Tell the label about it's owner */ L->Owner = E; } void CE_ClearJumpTo (CodeEntry* E) /* Clear the JumpTo entry and the argument (which contained the name of the * label). Note: The function will not clear the backpointer from the label, * so use it with care. */ { /* Clear the JumpTo entry */ E->JumpTo = 0; /* Clear the argument and assign the empty one */ FreeArg (E->Arg); E->Arg = EmptyArg; } void CE_MoveLabel (CodeLabel* L, CodeEntry* E) /* Move the code label L from it's former owner to the code entry E. */ { /* Delete the label from the owner */ CollDeleteItem (&L->Owner->Labels, L); /* Set the new owner */ CollAppend (&E->Labels, L); L->Owner = E; } void CE_SetArg (CodeEntry* E, const char* Arg) /* Replace the argument by the new one. */ { /* Free the old argument */ FreeArg (E->Arg); /* Assign the new one */ E->Arg = GetArgCopy (Arg); } void CE_SetNumArg (CodeEntry* E, long Num) /* Set a new numeric argument for the given code entry that must already * have a numeric argument. */ { char Buf[16]; /* Check that the entry has a numerical argument */ CHECK (E->Flags & CEF_NUMARG); /* Make the new argument string */ if (E->Size == 2) { Num &= 0xFF; xsprintf (Buf, sizeof (Buf), "$%02X", (unsigned) Num); } else if (E->Size == 3) { Num &= 0xFFFF; xsprintf (Buf, sizeof (Buf), "$%04X", (unsigned) Num); } else { Internal ("Invalid instruction size in CE_SetNumArg"); } /* Replace the argument by the new one */ CE_SetArg (E, Buf); /* Use the new numerical value */ E->Num = Num; } int CE_IsConstImm (const CodeEntry* E) /* Return true if the argument of E is a constant immediate value */ { return (E->AM == AM65_IMM && CE_HasNumArg (E)); } int CE_IsKnownImm (const CodeEntry* E, unsigned long Num) /* Return true if the argument of E is a constant immediate value that is * equal to Num. */ { return (E->AM == AM65_IMM && CE_HasNumArg (E) && E->Num == Num); } int CE_UseLoadFlags (CodeEntry* E) /* Return true if the instruction uses any flags that are set by a load of * a register (N and Z). */ { /* Follow unconditional branches, but beware of endless loops. After this, * E will point to the first entry that is not a branch. */ if (E->Info & OF_UBRA) { Collection C = AUTO_COLLECTION_INITIALIZER; /* Follow the chain */ while (E->Info & OF_UBRA) { /* Remember the entry so we can detect loops */ CollAppend (&C, E); /* Check the target */ if (E->JumpTo == 0 || CollIndex (&C, E->JumpTo->Owner) >= 0) { /* Unconditional jump to external symbol, or endless loop. */ DoneCollection (&C); return 0; /* Flags not used */ } /* Follow the chain */ E = E->JumpTo->Owner; } /* Delete the collection */ DoneCollection (&C); } /* A branch will use the flags */ if (E->Info & OF_FBRA) { return 1; } /* Call of a boolean transformer routine will also use the flags */ if (E->OPC == OP65_JSR) { /* Get the condition that is evaluated and check it */ switch (FindBoolCmpCond (E->Arg)) { case CMP_EQ: case CMP_NE: case CMP_GT: case CMP_GE: case CMP_LT: case CMP_LE: case CMP_UGT: case CMP_ULE: /* Will use the N or Z flags */ return 1; case CMP_UGE: /* Uses only carry */ case CMP_ULT: /* Dito */ default: /* No bool transformer subroutine */ return 0; } } /* Anything else */ return 0; } void CE_FreeRegInfo (CodeEntry* E) /* Free an existing register info struct */ { if (E->RI) { FreeRegInfo (E->RI); E->RI = 0; } } void CE_GenRegInfo (CodeEntry* E, RegContents* InputRegs) /* Generate register info for this instruction. If an old info exists, it is * overwritten. */ { /* Pointers to the register contents */ RegContents* In; RegContents* Out; /* Function register usage */ unsigned short Use, Chg; /* If we don't have a register info struct, allocate one. */ if (E->RI == 0) { E->RI = NewRegInfo (InputRegs); } else { if (InputRegs) { E->RI->In = *InputRegs; } else { RC_Invalidate (&E->RI->In); } E->RI->Out2 = E->RI->Out = E->RI->In; } /* Get pointers to the register contents */ In = &E->RI->In; Out = &E->RI->Out; /* Handle the different instructions */ switch (E->OPC) { case OP65_ADC: /* We don't know the value of the carry, so the result is * always unknown. */ Out->RegA = UNKNOWN_REGVAL; break; case OP65_AND: if (RegValIsKnown (In->RegA)) { if (CE_IsConstImm (E)) { Out->RegA = In->RegA & (short) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegA = In->RegA & In->Tmp1; break; case REG_PTR1_LO: Out->RegA = In->RegA & In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegA = In->RegA & In->Ptr1Hi; break; case REG_SREG_LO: Out->RegA = In->RegA & In->SRegLo; break; case REG_SREG_HI: Out->RegA = In->RegA & In->SRegHi; break; default: Out->RegA = UNKNOWN_REGVAL; break; } } else { Out->RegA = UNKNOWN_REGVAL; } } else if (CE_IsKnownImm (E, 0)) { /* A and $00 does always give zero */ Out->RegA = 0; } break; case OP65_ASL: if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA << 1) & 0xFF; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = (In->Tmp1 << 1) & 0xFF; break; case REG_PTR1_LO: Out->Ptr1Lo = (In->Ptr1Lo << 1) & 0xFF; break; case REG_PTR1_HI: Out->Ptr1Hi = (In->Ptr1Hi << 1) & 0xFF; break; case REG_SREG_LO: Out->SRegLo = (In->SRegLo << 1) & 0xFF; break; case REG_SREG_HI: Out->SRegHi = (In->SRegHi << 1) & 0xFF; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_BCC: break; case OP65_BCS: break; case OP65_BEQ: break; case OP65_BIT: break; case OP65_BMI: break; case OP65_BNE: break; case OP65_BPL: break; case OP65_BRA: break; case OP65_BRK: break; case OP65_BVC: break; case OP65_BVS: break; case OP65_CLC: break; case OP65_CLD: break; case OP65_CLI: break; case OP65_CLV: break; case OP65_CMP: break; case OP65_CPX: break; case OP65_CPY: break; case OP65_DEA: if (RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA - 1) & 0xFF; } break; case OP65_DEC: if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA - 1) & 0xFF; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = (In->Tmp1 - 1) & 0xFF; break; case REG_PTR1_LO: Out->Ptr1Lo = (In->Ptr1Lo - 1) & 0xFF; break; case REG_PTR1_HI: Out->Ptr1Hi = (In->Ptr1Hi - 1) & 0xFF; break; case REG_SREG_LO: Out->SRegLo = (In->SRegLo - 1) & 0xFF; break; case REG_SREG_HI: Out->SRegHi = (In->SRegHi - 1) & 0xFF; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_DEX: if (RegValIsKnown (In->RegX)) { Out->RegX = (In->RegX - 1) & 0xFF; } break; case OP65_DEY: if (RegValIsKnown (In->RegY)) { Out->RegY = (In->RegY - 1) & 0xFF; } break; case OP65_EOR: if (RegValIsKnown (In->RegA)) { if (CE_IsConstImm (E)) { Out->RegA = In->RegA ^ (short) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegA = In->RegA ^ In->Tmp1; break; case REG_PTR1_LO: Out->RegA = In->RegA ^ In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegA = In->RegA ^ In->Ptr1Hi; break; case REG_SREG_LO: Out->RegA = In->RegA ^ In->SRegLo; break; case REG_SREG_HI: Out->RegA = In->RegA ^ In->SRegHi; break; default: Out->RegA = UNKNOWN_REGVAL; break; } } else { Out->RegA = UNKNOWN_REGVAL; } } break; case OP65_INA: if (RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA + 1) & 0xFF; } break; case OP65_INC: if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA + 1) & 0xFF; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = (In->Tmp1 + 1) & 0xFF; break; case REG_PTR1_LO: Out->Ptr1Lo = (In->Ptr1Lo + 1) & 0xFF; break; case REG_PTR1_HI: Out->Ptr1Hi = (In->Ptr1Hi + 1) & 0xFF; break; case REG_SREG_LO: Out->SRegLo = (In->SRegLo + 1) & 0xFF; break; case REG_SREG_HI: Out->SRegHi = (In->SRegHi + 1) & 0xFF; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_INX: if (RegValIsKnown (In->RegX)) { Out->RegX = (In->RegX + 1) & 0xFF; } break; case OP65_INY: if (RegValIsKnown (In->RegY)) { Out->RegY = (In->RegY + 1) & 0xFF; } break; case OP65_JCC: break; case OP65_JCS: break; case OP65_JEQ: break; case OP65_JMI: break; case OP65_JMP: break; case OP65_JNE: break; case OP65_JPL: break; case OP65_JSR: /* Get the code info for the function */ GetFuncInfo (E->Arg, &Use, &Chg); if (Chg & REG_A) { Out->RegA = UNKNOWN_REGVAL; } if (Chg & REG_X) { Out->RegX = UNKNOWN_REGVAL; } if (Chg & REG_Y) { Out->RegY = UNKNOWN_REGVAL; } if (Chg & REG_TMP1) { Out->Tmp1 = UNKNOWN_REGVAL; } if (Chg & REG_PTR1_LO) { Out->Ptr1Lo = UNKNOWN_REGVAL; } if (Chg & REG_PTR1_HI) { Out->Ptr1Hi = UNKNOWN_REGVAL; } if (Chg & REG_SREG_LO) { Out->SRegLo = UNKNOWN_REGVAL; } if (Chg & REG_SREG_HI) { Out->SRegHi = UNKNOWN_REGVAL; } /* ## FIXME: Quick hack for some known functions: */ if (strcmp (E->Arg, "complax") == 0) { if (RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA ^ 0xFF); } if (RegValIsKnown (In->RegX)) { Out->RegX = (In->RegX ^ 0xFF); } } else if (strcmp (E->Arg, "tosandax") == 0) { if (In->RegA == 0) { Out->RegA = 0; } if (In->RegX == 0) { Out->RegX = 0; } } else if (strcmp (E->Arg, "tosaslax") == 0) { if (RegValIsKnown (In->RegA) && (In->RegA & 0x0F) >= 8) { printf ("Hey!\n"); Out->RegA = 0; } } else if (strcmp (E->Arg, "tosorax") == 0) { if (In->RegA == 0xFF) { Out->RegA = 0xFF; } if (In->RegX == 0xFF) { Out->RegX = 0xFF; } } else if (strcmp (E->Arg, "tosshlax") == 0) { if ((In->RegA & 0x0F) >= 8) { Out->RegA = 0; } } else if (FindBoolCmpCond (E->Arg) != CMP_INV || FindTosCmpCond (E->Arg) != CMP_INV) { /* Result is boolean value, so X is zero on output */ Out->RegX = 0; } break; case OP65_JVC: break; case OP65_JVS: break; case OP65_LDA: if (CE_IsConstImm (E)) { Out->RegA = (unsigned char) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegA = In->Tmp1; break; case REG_PTR1_LO: Out->RegA = In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegA = In->Ptr1Hi; break; case REG_SREG_LO: Out->RegA = In->SRegLo; break; case REG_SREG_HI: Out->RegA = In->SRegHi; break; default: Out->RegA = UNKNOWN_REGVAL; break; } } else { /* A is now unknown */ Out->RegA = UNKNOWN_REGVAL; } break; case OP65_LDX: if (CE_IsConstImm (E)) { Out->RegX = (unsigned char) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegX = In->Tmp1; break; case REG_PTR1_LO: Out->RegX = In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegX = In->Ptr1Hi; break; case REG_SREG_LO: Out->RegX = In->SRegLo; break; case REG_SREG_HI: Out->RegX = In->SRegHi; break; default: Out->RegX = UNKNOWN_REGVAL; break; } } else { /* X is now unknown */ Out->RegX = UNKNOWN_REGVAL; } break; case OP65_LDY: if (CE_IsConstImm (E)) { Out->RegY = (unsigned char) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegY = In->Tmp1; break; case REG_PTR1_LO: Out->RegY = In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegY = In->Ptr1Hi; break; case REG_SREG_LO: Out->RegY = In->SRegLo; break; case REG_SREG_HI: Out->RegY = In->SRegHi; break; default: Out->RegY = UNKNOWN_REGVAL; break; } } else { /* Y is now unknown */ Out->RegY = UNKNOWN_REGVAL; } break; case OP65_LSR: if (E->AM == AM65_ACC && RegValIsKnown (In->RegA)) { Out->RegA = (In->RegA >> 1) & 0xFF; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = (In->Tmp1 >> 1) & 0xFF; break; case REG_PTR1_LO: Out->Ptr1Lo = (In->Ptr1Lo >> 1) & 0xFF; break; case REG_PTR1_HI: Out->Ptr1Hi = (In->Ptr1Hi >> 1) & 0xFF; break; case REG_SREG_LO: Out->SRegLo = (In->SRegLo >> 1) & 0xFF; break; case REG_SREG_HI: Out->SRegHi = (In->SRegHi >> 1) & 0xFF; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_NOP: break; case OP65_ORA: if (RegValIsKnown (In->RegA)) { if (CE_IsConstImm (E)) { Out->RegA = In->RegA | (short) E->Num; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Use & REG_ZP, In)) { case REG_TMP1: Out->RegA = In->RegA | In->Tmp1; break; case REG_PTR1_LO: Out->RegA = In->RegA | In->Ptr1Lo; break; case REG_PTR1_HI: Out->RegA = In->RegA | In->Ptr1Hi; break; case REG_SREG_LO: Out->RegA = In->RegA | In->SRegLo; break; case REG_SREG_HI: Out->RegA = In->RegA | In->SRegHi; break; default: Out->RegA = UNKNOWN_REGVAL; break; } } else { /* A is now unknown */ Out->RegA = UNKNOWN_REGVAL; } } else if (CE_IsKnownImm (E, 0xFF)) { /* ORA with 0xFF does always give 0xFF */ Out->RegA = 0xFF; } break; case OP65_PHA: break; case OP65_PHP: break; case OP65_PHX: break; case OP65_PHY: break; case OP65_PLA: Out->RegA = UNKNOWN_REGVAL; break; case OP65_PLP: break; case OP65_PLX: Out->RegX = UNKNOWN_REGVAL; break; case OP65_PLY: Out->RegY = UNKNOWN_REGVAL; break; case OP65_ROL: /* We don't know the value of the carry bit */ if (E->AM == AM65_ACC) { Out->RegA = UNKNOWN_REGVAL; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = UNKNOWN_REGVAL; break; case REG_PTR1_LO: Out->Ptr1Lo = UNKNOWN_REGVAL; break; case REG_PTR1_HI: Out->Ptr1Hi = UNKNOWN_REGVAL; break; case REG_SREG_LO: Out->SRegLo = UNKNOWN_REGVAL; break; case REG_SREG_HI: Out->SRegHi = UNKNOWN_REGVAL; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_ROR: /* We don't know the value of the carry bit */ if (E->AM == AM65_ACC) { Out->RegA = UNKNOWN_REGVAL; } else if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = UNKNOWN_REGVAL; break; case REG_PTR1_LO: Out->Ptr1Lo = UNKNOWN_REGVAL; break; case REG_PTR1_HI: Out->Ptr1Hi = UNKNOWN_REGVAL; break; case REG_SREG_LO: Out->SRegLo = UNKNOWN_REGVAL; break; case REG_SREG_HI: Out->SRegHi = UNKNOWN_REGVAL; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_RTI: break; case OP65_RTS: break; case OP65_SBC: /* We don't know the value of the carry bit */ Out->RegA = UNKNOWN_REGVAL; break; case OP65_SEC: break; case OP65_SED: break; case OP65_SEI: break; case OP65_STA: if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, 0)) { case REG_TMP1: Out->Tmp1 = In->RegA; break; case REG_PTR1_LO: Out->Ptr1Lo = In->RegA; break; case REG_PTR1_HI: Out->Ptr1Hi = In->RegA; break; case REG_SREG_LO: Out->SRegLo = In->RegA; break; case REG_SREG_HI: Out->SRegHi = In->RegA; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_STX: if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, 0)) { case REG_TMP1: Out->Tmp1 = In->RegX; break; case REG_PTR1_LO: Out->Ptr1Lo = In->RegX; break; case REG_PTR1_HI: Out->Ptr1Hi = In->RegX; break; case REG_SREG_LO: Out->SRegLo = In->RegX; break; case REG_SREG_HI: Out->SRegHi = In->RegX; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_STY: if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, 0)) { case REG_TMP1: Out->Tmp1 = In->RegY; break; case REG_PTR1_LO: Out->Ptr1Lo = In->RegY; break; case REG_PTR1_HI: Out->Ptr1Hi = In->RegY; break; case REG_SREG_LO: Out->SRegLo = In->RegY; break; case REG_SREG_HI: Out->SRegHi = In->RegY; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_STZ: if (E->AM == AM65_ZP) { switch (GetKnownReg (E->Chg & REG_ZP, 0)) { case REG_TMP1: Out->Tmp1 = 0; break; case REG_PTR1_LO: Out->Ptr1Lo = 0; break; case REG_PTR1_HI: Out->Ptr1Hi = 0; break; case REG_SREG_LO: Out->SRegLo = 0; break; case REG_SREG_HI: Out->SRegHi = 0; break; } } else if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } break; case OP65_TAX: Out->RegX = In->RegA; break; case OP65_TAY: Out->RegY = In->RegA; break; case OP65_TRB: if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } else if (E->AM == AM65_ZP) { if (RegValIsKnown (In->RegA)) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 &= ~In->RegA; break; case REG_PTR1_LO: Out->Ptr1Lo &= ~In->RegA; break; case REG_PTR1_HI: Out->Ptr1Hi &= ~In->RegA; break; case REG_SREG_LO: Out->SRegLo &= ~In->RegA; break; case REG_SREG_HI: Out->SRegHi &= ~In->RegA; break; } } else { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = UNKNOWN_REGVAL; break; case REG_PTR1_LO: Out->Ptr1Lo = UNKNOWN_REGVAL; break; case REG_PTR1_HI: Out->Ptr1Hi = UNKNOWN_REGVAL; break; case REG_SREG_LO: Out->SRegLo = UNKNOWN_REGVAL; break; case REG_SREG_HI: Out->SRegHi = UNKNOWN_REGVAL; break; } } } break; case OP65_TSB: if (E->AM == AM65_ZPX) { /* Invalidates all ZP registers */ RC_InvalidateZP (Out); } else if (E->AM == AM65_ZP) { if (RegValIsKnown (In->RegA)) { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 |= In->RegA; break; case REG_PTR1_LO: Out->Ptr1Lo |= In->RegA; break; case REG_PTR1_HI: Out->Ptr1Hi |= In->RegA; break; case REG_SREG_LO: Out->SRegLo |= In->RegA; break; case REG_SREG_HI: Out->SRegHi |= In->RegA; break; } } else { switch (GetKnownReg (E->Chg & REG_ZP, In)) { case REG_TMP1: Out->Tmp1 = UNKNOWN_REGVAL; break; case REG_PTR1_LO: Out->Ptr1Lo = UNKNOWN_REGVAL; break; case REG_PTR1_HI: Out->Ptr1Hi = UNKNOWN_REGVAL; break; case REG_SREG_LO: Out->SRegLo = UNKNOWN_REGVAL; break; case REG_SREG_HI: Out->SRegHi = UNKNOWN_REGVAL; break; } } } break; case OP65_TSX: Out->RegX = UNKNOWN_REGVAL; break; case OP65_TXA: Out->RegA = In->RegX; break; case OP65_TXS: break; case OP65_TYA: Out->RegA = In->RegY; break; default: break; } } static char* RegInfoDesc (unsigned U, char* Buf) /* Return a string containing register info */ { Buf[0] = '\0'; strcat (Buf, U & REG_SREG_HI? "H" : "_"); strcat (Buf, U & REG_SREG_LO? "L" : "_"); strcat (Buf, U & REG_A? "A" : "_"); strcat (Buf, U & REG_X? "X" : "_"); strcat (Buf, U & REG_Y? "Y" : "_"); strcat (Buf, U & REG_TMP1? "T1" : "__"); strcat (Buf, U & REG_PTR1? "1" : "_"); strcat (Buf, U & REG_PTR2? "2" : "_"); strcat (Buf, U & REG_SAVE? "V" : "_"); strcat (Buf, U & REG_SP? "S" : "_"); return Buf; } static char* RegContentDesc (const RegContents* RC, char* Buf) /* Return a string containing register contents */ { char* B = Buf; if (RegValIsUnknown (RC->RegA)) { strcpy (B, "A:XX "); } else { sprintf (B, "A:%02X ", RC->RegA); } B += 5; if (RegValIsUnknown (RC->RegX)) { strcpy (B, "X:XX "); } else { sprintf (B, "X:%02X ", RC->RegX); } B += 5; if (RegValIsUnknown (RC->RegY)) { strcpy (B, "Y:XX"); } else { sprintf (B, "Y:%02X", RC->RegY); } B += 4; return Buf; } void CE_Output (const CodeEntry* E) /* Output the code entry to the output file */ { const OPCDesc* D; unsigned Chars; int Space; const char* Target; /* If we have a label, print that */ unsigned LabelCount = CollCount (&E->Labels); unsigned I; for (I = 0; I < LabelCount; ++I) { CL_Output (CollConstAt (&E->Labels, I)); } /* Get the opcode description */ D = GetOPCDesc (E->OPC); /* Print the mnemonic */ Chars = WriteOutput ("\t%s", D->Mnemo); /* Space to leave before the operand */ Space = 9 - Chars; /* Print the operand */ switch (E->AM) { case AM65_IMP: /* implicit */ break; case AM65_ACC: /* accumulator */ Chars += WriteOutput ("%*sa", Space, ""); break; case AM65_IMM: /* immidiate */ Chars += WriteOutput ("%*s#%s", Space, "", E->Arg); break; case AM65_ZP: case AM65_ABS: /* zeropage and absolute */ Chars += WriteOutput ("%*s%s", Space, "", E->Arg); break; case AM65_ZPX: case AM65_ABSX: /* zeropage,X and absolute,X */ Chars += WriteOutput ("%*s%s,x", Space, "", E->Arg); break; case AM65_ABSY: /* absolute,Y */ Chars += WriteOutput ("%*s%s,y", Space, "", E->Arg); break; case AM65_ZPX_IND: /* (zeropage,x) */ Chars += WriteOutput ("%*s(%s,x)", Space, "", E->Arg); break; case AM65_ZP_INDY: /* (zeropage),y */ Chars += WriteOutput ("%*s(%s),y", Space, "", E->Arg); break; case AM65_ZP_IND: /* (zeropage) */ Chars += WriteOutput ("%*s(%s)", Space, "", E->Arg); break; case AM65_BRA: /* branch */ Target = E->JumpTo? E->JumpTo->Name : E->Arg; Chars += WriteOutput ("%*s%s", Space, "", Target); break; default: Internal ("Invalid addressing mode"); } /* Print usage info if requested by the debugging flag */ if (Debug) { char Use [128]; char Chg [128]; WriteOutput ("%*s; USE: %-12s CHG: %-12s SIZE: %u", (int)(30-Chars), "", RegInfoDesc (E->Use, Use), RegInfoDesc (E->Chg, Chg), E->Size); if (E->RI) { char RegIn[32]; char RegOut[32]; WriteOutput (" In %s Out %s", RegContentDesc (&E->RI->In, RegIn), RegContentDesc (&E->RI->Out, RegOut)); } } /* Terminate the line */ WriteOutput ("\n"); }