/*****************************************************************************/ /* */ /* declare.c */ /* */ /* Parse variable and function declarations */ /* */ /* */ /* */ /* (C) 1998-2013, Ullrich von Bassewitz */ /* Roemerstrasse 52 */ /* D-70794 Filderstadt */ /* EMail: uz@cc65.org */ /* */ /* */ /* This software is provided 'as-is', without any expressed or implied */ /* warranty. In no event will the authors be held liable for any damages */ /* arising from the use of this software. */ /* */ /* Permission is granted to anyone to use this software for any purpose, */ /* including commercial applications, and to alter it and redistribute it */ /* freely, subject to the following restrictions: */ /* */ /* 1. The origin of this software must not be misrepresented; you must not */ /* claim that you wrote the original software. If you use this software */ /* in a product, an acknowledgment in the product documentation would be */ /* appreciated but is not required. */ /* 2. Altered source versions must be plainly marked as such, and must not */ /* be misrepresented as being the original software. */ /* 3. This notice may not be removed or altered from any source */ /* distribution. */ /* */ /*****************************************************************************/ #include #include #include /* common */ #include "addrsize.h" #include "mmodel.h" #include "xmalloc.h" /* cc65 */ #include "anonname.h" #include "codegen.h" #include "datatype.h" #include "declare.h" #include "declattr.h" #include "error.h" #include "expr.h" #include "funcdesc.h" #include "function.h" #include "global.h" #include "litpool.h" #include "pragma.h" #include "scanner.h" #include "standard.h" #include "symtab.h" #include "typeconv.h" /*****************************************************************************/ /* Data */ /*****************************************************************************/ typedef struct StructInitData StructInitData; struct StructInitData { unsigned Size; /* Size of struct */ unsigned Offs; /* Current offset in struct */ unsigned BitVal; /* Summed up bit-field value */ unsigned ValBits; /* Valid bits in Val */ }; /*****************************************************************************/ /* Forwards */ /*****************************************************************************/ static void ParseTypeSpec (DeclSpec* D, long Default, TypeCode Qualifiers); /* Parse a type specificier */ static unsigned ParseInitInternal (Type* T, int AllowFlexibleMembers); /* Parse initialization of variables. Return the number of data bytes. */ /*****************************************************************************/ /* Internal functions */ /*****************************************************************************/ static void DuplicateQualifier (const char* Name) /* Print an error message */ { Warning ("Duplicate qualifier: `%s'", Name); } static TypeCode OptionalQualifiers (TypeCode Allowed) /* Read type qualifiers if we have any. Allowed specifies the allowed * qualifiers. */ { /* We start without any qualifiers */ TypeCode Q = T_QUAL_NONE; /* Check for more qualifiers */ while (1) { switch (CurTok.Tok) { case TOK_CONST: if (Allowed & T_QUAL_CONST) { if (Q & T_QUAL_CONST) { DuplicateQualifier ("const"); } Q |= T_QUAL_CONST; } else { goto Done; } break; case TOK_VOLATILE: if (Allowed & T_QUAL_VOLATILE) { if (Q & T_QUAL_VOLATILE) { DuplicateQualifier ("volatile"); } Q |= T_QUAL_VOLATILE; } else { goto Done; } break; case TOK_RESTRICT: if (Allowed & T_QUAL_RESTRICT) { if (Q & T_QUAL_RESTRICT) { DuplicateQualifier ("restrict"); } Q |= T_QUAL_RESTRICT; } else { goto Done; } break; case TOK_NEAR: if (Allowed & T_QUAL_NEAR) { if (Q & T_QUAL_NEAR) { DuplicateQualifier ("near"); } Q |= T_QUAL_NEAR; } else { goto Done; } break; case TOK_FAR: if (Allowed & T_QUAL_FAR) { if (Q & T_QUAL_FAR) { DuplicateQualifier ("far"); } Q |= T_QUAL_FAR; } else { goto Done; } break; case TOK_FASTCALL: if (Allowed & T_QUAL_FASTCALL) { if (Q & T_QUAL_FASTCALL) { DuplicateQualifier ("fastcall"); } Q |= T_QUAL_FASTCALL; } else { goto Done; } break; case TOK_CDECL: if (Allowed & T_QUAL_CDECL) { if (Q & T_QUAL_CDECL) { DuplicateQualifier ("cdecl"); } Q |= T_QUAL_CDECL; } else { goto Done; } break; default: goto Done; } /* Skip the token */ NextToken (); } Done: /* We cannot have more than one address size far qualifier */ switch (Q & T_QUAL_ADDRSIZE) { case T_QUAL_NONE: case T_QUAL_NEAR: case T_QUAL_FAR: break; default: Error ("Cannot specify more than one address size qualifier"); Q &= ~T_QUAL_ADDRSIZE; } /* We cannot have more than one calling convention specifier */ switch (Q & T_QUAL_CCONV) { case T_QUAL_NONE: case T_QUAL_FASTCALL: case T_QUAL_CDECL: break; default: Error ("Cannot specify more than one calling convention qualifier"); Q &= ~T_QUAL_CCONV; } /* Return the qualifiers read */ return Q; } static void OptionalInt (void) /* Eat an optional "int" token */ { if (CurTok.Tok == TOK_INT) { /* Skip it */ NextToken (); } } static void OptionalSigned (void) /* Eat an optional "signed" token */ { if (CurTok.Tok == TOK_SIGNED) { /* Skip it */ NextToken (); } } static void InitDeclSpec (DeclSpec* D) /* Initialize the DeclSpec struct for use */ { D->StorageClass = 0; D->Type[0].C = T_END; D->Flags = 0; } static void InitDeclaration (Declaration* D) /* Initialize the Declaration struct for use */ { D->Ident[0] = '\0'; D->Type[0].C = T_END; D->Index = 0; D->Attributes = 0; } static void NeedTypeSpace (Declaration* D, unsigned Count) /* Check if there is enough space for Count type specifiers within D */ { if (D->Index + Count >= MAXTYPELEN) { /* We must call Fatal() here, since calling Error() will try to * continue, and the declaration type is not correctly terminated * in case we come here. */ Fatal ("Too many type specifiers"); } } static void AddTypeToDeclaration (Declaration* D, TypeCode T) /* Add a type specifier to the type of a declaration */ { NeedTypeSpace (D, 1); D->Type[D->Index++].C = T; } static void FixQualifiers (Type* DataType) /* Apply several fixes to qualifiers */ { Type* T; TypeCode Q; /* Using typedefs, it is possible to generate declarations that have * type qualifiers attached to an array, not the element type. Go and * fix these here. */ T = DataType; Q = T_QUAL_NONE; while (T->C != T_END) { if (IsTypeArray (T)) { /* Extract any type qualifiers */ Q |= GetQualifier (T); T->C = UnqualifiedType (T->C); } else { /* Add extracted type qualifiers here */ T->C |= Q; Q = T_QUAL_NONE; } ++T; } /* Q must be empty now */ CHECK (Q == T_QUAL_NONE); /* Do some fixes on pointers and functions. */ T = DataType; while (T->C != T_END) { if (IsTypePtr (T)) { /* Fastcall qualifier on the pointer? */ if (IsQualFastcall (T)) { /* Pointer to function which is not fastcall? */ if (IsTypeFunc (T+1) && !IsQualFastcall (T+1)) { /* Move the fastcall qualifier from the pointer to * the function. */ T[0].C &= ~T_QUAL_FASTCALL; T[1].C |= T_QUAL_FASTCALL; } else { Error ("Invalid `_fastcall__' qualifier for pointer"); } } /* Apply the default far and near qualifiers if none are given */ Q = (T[0].C & T_QUAL_ADDRSIZE); if (Q == T_QUAL_NONE) { /* No address size qualifiers specified */ if (IsTypeFunc (T+1)) { /* Pointer to function. Use the qualifier from the function * or the default if the function don't has one. */ Q = (T[1].C & T_QUAL_ADDRSIZE); if (Q == T_QUAL_NONE) { Q = CodeAddrSizeQualifier (); } } else { Q = DataAddrSizeQualifier (); } T[0].C |= Q; } else { /* We have address size qualifiers. If followed by a function, * apply these also to the function. */ if (IsTypeFunc (T+1)) { TypeCode FQ = (T[1].C & T_QUAL_ADDRSIZE); if (FQ == T_QUAL_NONE) { T[1].C |= Q; } else if (FQ != Q) { Error ("Address size qualifier mismatch"); T[1].C = (T[1].C & ~T_QUAL_ADDRSIZE) | Q; } } } } else if (IsTypeFunc (T)) { /* Apply the default far and near qualifiers if none are given */ if ((T[0].C & T_QUAL_ADDRSIZE) == 0) { T[0].C |= CodeAddrSizeQualifier (); } } ++T; } } static void ParseStorageClass (DeclSpec* D, unsigned DefStorage) /* Parse a storage class */ { /* Assume we're using an explicit storage class */ D->Flags &= ~DS_DEF_STORAGE; /* Check the storage class given */ switch (CurTok.Tok) { case TOK_EXTERN: D->StorageClass = SC_EXTERN | SC_STATIC; NextToken (); break; case TOK_STATIC: D->StorageClass = SC_STATIC; NextToken (); break; case TOK_REGISTER: D->StorageClass = SC_REGISTER | SC_STATIC; NextToken (); break; case TOK_AUTO: D->StorageClass = SC_AUTO; NextToken (); break; case TOK_TYPEDEF: D->StorageClass = SC_TYPEDEF; NextToken (); break; default: /* No storage class given, use default */ D->Flags |= DS_DEF_STORAGE; D->StorageClass = DefStorage; break; } } static void ParseEnumDecl (void) /* Process an enum declaration . */ { int EnumVal; ident Ident; /* Accept forward definitions */ if (CurTok.Tok != TOK_LCURLY) { return; } /* Skip the opening curly brace */ NextToken (); /* Read the enum tags */ EnumVal = 0; while (CurTok.Tok != TOK_RCURLY) { /* We expect an identifier */ if (CurTok.Tok != TOK_IDENT) { Error ("Identifier expected"); continue; } /* Remember the identifier and skip it */ strcpy (Ident, CurTok.Ident); NextToken (); /* Check for an assigned value */ if (CurTok.Tok == TOK_ASSIGN) { ExprDesc Expr; NextToken (); ConstAbsIntExpr (hie1, &Expr); EnumVal = Expr.IVal; } /* Add an entry to the symbol table */ AddConstSym (Ident, type_int, SC_ENUM, EnumVal++); /* Check for end of definition */ if (CurTok.Tok != TOK_COMMA) break; NextToken (); } ConsumeRCurly (); } static int ParseFieldWidth (Declaration* Decl) /* Parse an optional field width. Returns -1 if no field width is speficied, * otherwise the width of the field. */ { ExprDesc Expr; if (CurTok.Tok != TOK_COLON) { /* No bit-field declaration */ return -1; } /* Read the width */ NextToken (); ConstAbsIntExpr (hie1, &Expr); if (Expr.IVal < 0) { Error ("Negative width in bit-field"); return -1; } if (Expr.IVal > (int) INT_BITS) { Error ("Width of bit-field exceeds its type"); return -1; } if (Expr.IVal == 0 && Decl->Ident[0] != '\0') { Error ("Zero width for named bit-field"); return -1; } if (!IsTypeInt (Decl->Type)) { /* Only integer types may be used for bit-fields */ Error ("Bit-field has invalid type"); return -1; } /* Return the field width */ return (int) Expr.IVal; } static SymEntry* StructOrUnionForwardDecl (const char* Name, unsigned Type) /* Handle a struct or union forward decl */ { /* Try to find a struct/union with the given name. If there is none, * insert a forward declaration into the current lexical level. */ SymEntry* Entry = FindTagSym (Name); if (Entry == 0) { Entry = AddStructSym (Name, Type, 0, 0); } else if ((Entry->Flags & SC_TYPEMASK) != Type) { /* Already defined, but no struct */ Error ("Symbol `%s' is already different kind", Name); } return Entry; } static unsigned CopyAnonStructFields (const Declaration* Decl, int Offs) /* Copy fields from an anon union/struct into the current lexical level. The * function returns the size of the embedded struct/union. */ { /* Get the pointer to the symbol table entry of the anon struct */ SymEntry* Entry = GetSymEntry (Decl->Type); /* Get the size of the anon struct */ unsigned Size = Entry->V.S.Size; /* Get the symbol table containing the fields. If it is empty, there has * been an error before, so bail out. */ SymTable* Tab = Entry->V.S.SymTab; if (Tab == 0) { /* Incomplete definition - has been flagged before */ return Size; } /* Get a pointer to the list of symbols. Then walk the list adding copies * of the embedded struct to the current level. */ Entry = Tab->SymHead; while (Entry) { /* Enter a copy of this symbol adjusting the offset. We will just * reuse the type string here. */ AddLocalSym (Entry->Name, Entry->Type, SC_STRUCTFIELD, Offs + Entry->V.Offs); /* Currently, there can not be any attributes, but if there will be * some in the future, we want to know this. */ CHECK (Entry->Attr == 0); /* Next entry */ Entry = Entry->NextSym; } /* Return the size of the embedded struct */ return Size; } static SymEntry* ParseUnionDecl (const char* Name) /* Parse a union declaration. */ { unsigned UnionSize; unsigned FieldSize; int FieldWidth; /* Width in bits, -1 if not a bit-field */ SymTable* FieldTab; if (CurTok.Tok != TOK_LCURLY) { /* Just a forward declaration. */ return StructOrUnionForwardDecl (Name, SC_UNION); } /* Add a forward declaration for the struct in the current lexical level */ AddStructSym (Name, SC_UNION, 0, 0); /* Skip the curly brace */ NextToken (); /* Enter a new lexical level for the struct */ EnterStructLevel (); /* Parse union fields */ UnionSize = 0; while (CurTok.Tok != TOK_RCURLY) { /* Get the type of the entry */ DeclSpec Spec; InitDeclSpec (&Spec); ParseTypeSpec (&Spec, -1, T_QUAL_NONE); /* Read fields with this type */ while (1) { Declaration Decl; /* Get type and name of the struct field */ ParseDecl (&Spec, &Decl, DM_ACCEPT_IDENT); /* Check for a bit-field declaration */ FieldWidth = ParseFieldWidth (&Decl); /* Ignore zero sized bit fields in a union */ if (FieldWidth == 0) { goto NextMember; } /* Check for fields without a name */ if (Decl.Ident[0] == '\0') { /* In cc65 mode, we allow anonymous structs/unions within * a struct. */ if (IS_Get (&Standard) >= STD_CC65 && IsClassStruct (Decl.Type)) { /* This is an anonymous struct or union. Copy the fields * into the current level. */ CopyAnonStructFields (&Decl, 0); } else { /* A non bit-field without a name is legal but useless */ Warning ("Declaration does not declare anything"); } goto NextMember; } /* Handle sizes */ FieldSize = CheckedSizeOf (Decl.Type); if (FieldSize > UnionSize) { UnionSize = FieldSize; } /* Add a field entry to the table. */ if (FieldWidth > 0) { AddBitField (Decl.Ident, 0, 0, FieldWidth); } else { AddLocalSym (Decl.Ident, Decl.Type, SC_STRUCTFIELD, 0); } NextMember: if (CurTok.Tok != TOK_COMMA) { break; } NextToken (); } ConsumeSemi (); } /* Skip the closing brace */ NextToken (); /* Remember the symbol table and leave the struct level */ FieldTab = GetSymTab (); LeaveStructLevel (); /* Make a real entry from the forward decl and return it */ return AddStructSym (Name, SC_UNION, UnionSize, FieldTab); } static SymEntry* ParseStructDecl (const char* Name) /* Parse a struct declaration. */ { unsigned StructSize; int FlexibleMember; int BitOffs; /* Bit offset for bit-fields */ int FieldWidth; /* Width in bits, -1 if not a bit-field */ SymTable* FieldTab; if (CurTok.Tok != TOK_LCURLY) { /* Just a forward declaration. */ return StructOrUnionForwardDecl (Name, SC_STRUCT); } /* Add a forward declaration for the struct in the current lexical level */ AddStructSym (Name, SC_STRUCT, 0, 0); /* Skip the curly brace */ NextToken (); /* Enter a new lexical level for the struct */ EnterStructLevel (); /* Parse struct fields */ FlexibleMember = 0; StructSize = 0; BitOffs = 0; while (CurTok.Tok != TOK_RCURLY) { /* Get the type of the entry */ DeclSpec Spec; InitDeclSpec (&Spec); ParseTypeSpec (&Spec, -1, T_QUAL_NONE); /* Read fields with this type */ while (1) { Declaration Decl; ident Ident; /* If we had a flexible array member before, no other fields can * follow. */ if (FlexibleMember) { Error ("Flexible array member must be last field"); FlexibleMember = 0; /* Avoid further errors */ } /* Get type and name of the struct field */ ParseDecl (&Spec, &Decl, DM_ACCEPT_IDENT); /* Check for a bit-field declaration */ FieldWidth = ParseFieldWidth (&Decl); /* If this is not a bit field, or the bit field is too large for * the remainder of the current member, or we have a bit field * with width zero, align the struct to the next member by adding * a member with an anonymous name. */ if (BitOffs > 0) { if (FieldWidth <= 0 || (BitOffs + FieldWidth) > (int) INT_BITS) { /* We need an anonymous name */ AnonName (Ident, "bit-field"); /* Add an anonymous bit-field that aligns to the next * storage unit. */ AddBitField (Ident, StructSize, BitOffs, INT_BITS - BitOffs); /* No bits left */ StructSize += SIZEOF_INT; BitOffs = 0; } } /* Apart from the above, a bit field with width 0 is not processed * further. */ if (FieldWidth == 0) { goto NextMember; } /* Check if this field is a flexible array member, and * calculate the size of the field. */ if (IsTypeArray (Decl.Type) && GetElementCount (Decl.Type) == UNSPECIFIED) { /* Array with unspecified size */ if (StructSize == 0) { Error ("Flexible array member cannot be first struct field"); } FlexibleMember = 1; /* Assume zero for size calculations */ SetElementCount (Decl.Type, FLEXIBLE); } /* Check for fields without names */ if (Decl.Ident[0] == '\0') { if (FieldWidth < 0) { /* In cc65 mode, we allow anonymous structs/unions within * a struct. */ if (IS_Get (&Standard) >= STD_CC65 && IsClassStruct (Decl.Type)) { /* This is an anonymous struct or union. Copy the * fields into the current level. */ StructSize += CopyAnonStructFields (&Decl, StructSize); } else { /* A non bit-field without a name is legal but useless */ Warning ("Declaration does not declare anything"); } goto NextMember; } else { /* A bit-field without a name will get an anonymous one */ AnonName (Decl.Ident, "bit-field"); } } /* Add a field entry to the table */ if (FieldWidth > 0) { /* Add full byte from the bit offset to the variable offset. * This simplifies handling he bit-field as a char type * in expressions. */ unsigned Offs = StructSize + (BitOffs / CHAR_BITS); AddBitField (Decl.Ident, Offs, BitOffs % CHAR_BITS, FieldWidth); BitOffs += FieldWidth; CHECK (BitOffs <= (int) INT_BITS); if (BitOffs == INT_BITS) { StructSize += SIZEOF_INT; BitOffs = 0; } } else { AddLocalSym (Decl.Ident, Decl.Type, SC_STRUCTFIELD, StructSize); if (!FlexibleMember) { StructSize += CheckedSizeOf (Decl.Type); } } NextMember: if (CurTok.Tok != TOK_COMMA) { break; } NextToken (); } ConsumeSemi (); } /* If we have bits from bit-fields left, add them to the size. */ if (BitOffs > 0) { StructSize += ((BitOffs + CHAR_BITS - 1) / CHAR_BITS); } /* Skip the closing brace */ NextToken (); /* Remember the symbol table and leave the struct level */ FieldTab = GetSymTab (); LeaveStructLevel (); /* Make a real entry from the forward decl and return it */ return AddStructSym (Name, SC_STRUCT, StructSize, FieldTab); } static void ParseTypeSpec (DeclSpec* D, long Default, TypeCode Qualifiers) /* Parse a type specificier */ { ident Ident; SymEntry* Entry; /* Assume we have an explicit type */ D->Flags &= ~DS_DEF_TYPE; /* Read type qualifiers if we have any */ Qualifiers |= OptionalQualifiers (T_QUAL_CONST | T_QUAL_VOLATILE); /* Look at the data type */ switch (CurTok.Tok) { case TOK_VOID: NextToken (); D->Type[0].C = T_VOID; D->Type[1].C = T_END; break; case TOK_CHAR: NextToken (); D->Type[0].C = GetDefaultChar(); D->Type[1].C = T_END; break; case TOK_LONG: NextToken (); if (CurTok.Tok == TOK_UNSIGNED) { NextToken (); OptionalInt (); D->Type[0].C = T_ULONG; D->Type[1].C = T_END; } else { OptionalSigned (); OptionalInt (); D->Type[0].C = T_LONG; D->Type[1].C = T_END; } break; case TOK_SHORT: NextToken (); if (CurTok.Tok == TOK_UNSIGNED) { NextToken (); OptionalInt (); D->Type[0].C = T_USHORT; D->Type[1].C = T_END; } else { OptionalSigned (); OptionalInt (); D->Type[0].C = T_SHORT; D->Type[1].C = T_END; } break; case TOK_INT: NextToken (); D->Type[0].C = T_INT; D->Type[1].C = T_END; break; case TOK_SIGNED: NextToken (); switch (CurTok.Tok) { case TOK_CHAR: NextToken (); D->Type[0].C = T_SCHAR; D->Type[1].C = T_END; break; case TOK_SHORT: NextToken (); OptionalInt (); D->Type[0].C = T_SHORT; D->Type[1].C = T_END; break; case TOK_LONG: NextToken (); OptionalInt (); D->Type[0].C = T_LONG; D->Type[1].C = T_END; break; case TOK_INT: NextToken (); /* FALL THROUGH */ default: D->Type[0].C = T_INT; D->Type[1].C = T_END; break; } break; case TOK_UNSIGNED: NextToken (); switch (CurTok.Tok) { case TOK_CHAR: NextToken (); D->Type[0].C = T_UCHAR; D->Type[1].C = T_END; break; case TOK_SHORT: NextToken (); OptionalInt (); D->Type[0].C = T_USHORT; D->Type[1].C = T_END; break; case TOK_LONG: NextToken (); OptionalInt (); D->Type[0].C = T_ULONG; D->Type[1].C = T_END; break; case TOK_INT: NextToken (); /* FALL THROUGH */ default: D->Type[0].C = T_UINT; D->Type[1].C = T_END; break; } break; case TOK_FLOAT: NextToken (); D->Type[0].C = T_FLOAT; D->Type[1].C = T_END; break; case TOK_DOUBLE: NextToken (); D->Type[0].C = T_DOUBLE; D->Type[1].C = T_END; break; case TOK_UNION: NextToken (); /* */ if (CurTok.Tok == TOK_IDENT) { strcpy (Ident, CurTok.Ident); NextToken (); } else { AnonName (Ident, "union"); } /* Remember we have an extra type decl */ D->Flags |= DS_EXTRA_TYPE; /* Declare the union in the current scope */ Entry = ParseUnionDecl (Ident); /* Encode the union entry into the type */ D->Type[0].C = T_UNION; SetSymEntry (D->Type, Entry); D->Type[1].C = T_END; break; case TOK_STRUCT: NextToken (); /* */ if (CurTok.Tok == TOK_IDENT) { strcpy (Ident, CurTok.Ident); NextToken (); } else { AnonName (Ident, "struct"); } /* Remember we have an extra type decl */ D->Flags |= DS_EXTRA_TYPE; /* Declare the struct in the current scope */ Entry = ParseStructDecl (Ident); /* Encode the struct entry into the type */ D->Type[0].C = T_STRUCT; SetSymEntry (D->Type, Entry); D->Type[1].C = T_END; break; case TOK_ENUM: NextToken (); if (CurTok.Tok != TOK_LCURLY) { /* Named enum */ if (CurTok.Tok == TOK_IDENT) { /* Find an entry with this name */ Entry = FindTagSym (CurTok.Ident); if (Entry) { if (SymIsLocal (Entry) && (Entry->Flags & SC_ENUM) == 0) { Error ("Symbol `%s' is already different kind", Entry->Name); } } else { /* Insert entry into table ### */ } /* Skip the identifier */ NextToken (); } else { Error ("Identifier expected"); } } /* Remember we have an extra type decl */ D->Flags |= DS_EXTRA_TYPE; /* Parse the enum decl */ ParseEnumDecl (); D->Type[0].C = T_INT; D->Type[1].C = T_END; break; case TOK_IDENT: Entry = FindSym (CurTok.Ident); if (Entry && SymIsTypeDef (Entry)) { /* It's a typedef */ NextToken (); TypeCopy (D->Type, Entry->Type); break; } /* FALL THROUGH */ default: if (Default < 0) { Error ("Type expected"); D->Type[0].C = T_INT; D->Type[1].C = T_END; } else { D->Flags |= DS_DEF_TYPE; D->Type[0].C = (TypeCode) Default; D->Type[1].C = T_END; } break; } /* There may also be qualifiers *after* the initial type */ D->Type[0].C |= (Qualifiers | OptionalQualifiers (T_QUAL_CONST | T_QUAL_VOLATILE)); } static Type* ParamTypeCvt (Type* T) /* If T is an array, convert it to a pointer else do nothing. Return the * resulting type. */ { if (IsTypeArray (T)) { T->C = T_PTR; } return T; } static void ParseOldStyleParamList (FuncDesc* F) /* Parse an old style (K&R) parameter list */ { /* Some fix point tokens that are used for error recovery */ static const token_t TokenList[] = { TOK_COMMA, TOK_RPAREN, TOK_SEMI }; /* Parse params */ while (CurTok.Tok != TOK_RPAREN) { /* List of identifiers expected */ if (CurTok.Tok == TOK_IDENT) { /* Create a symbol table entry with type int */ AddLocalSym (CurTok.Ident, type_int, SC_AUTO | SC_PARAM | SC_DEF | SC_DEFTYPE, 0); /* Count arguments */ ++F->ParamCount; /* Skip the identifier */ NextToken (); } else { /* Not a parameter name */ Error ("Identifier expected"); /* Try some smart error recovery */ SkipTokens (TokenList, sizeof(TokenList) / sizeof(TokenList[0])); } /* Check for more parameters */ if (CurTok.Tok == TOK_COMMA) { NextToken (); } else { break; } } /* Skip right paren. We must explicitly check for one here, since some of * the breaks above bail out without checking. */ ConsumeRParen (); /* An optional list of type specifications follows */ while (CurTok.Tok != TOK_LCURLY) { DeclSpec Spec; /* Read the declaration specifier */ ParseDeclSpec (&Spec, SC_AUTO, T_INT); /* We accept only auto and register as storage class specifiers, but * we ignore all this, since we use auto anyway. */ if ((Spec.StorageClass & SC_AUTO) == 0 && (Spec.StorageClass & SC_REGISTER) == 0) { Error ("Illegal storage class"); } /* Parse a comma separated variable list */ while (1) { Declaration Decl; /* Read the parameter */ ParseDecl (&Spec, &Decl, DM_NEED_IDENT); if (Decl.Ident[0] != '\0') { /* We have a name given. Search for the symbol */ SymEntry* Sym = FindLocalSym (Decl.Ident); if (Sym) { /* Check if we already changed the type for this * parameter */ if (Sym->Flags & SC_DEFTYPE) { /* Found it, change the default type to the one given */ ChangeSymType (Sym, ParamTypeCvt (Decl.Type)); /* Reset the "default type" flag */ Sym->Flags &= ~SC_DEFTYPE; } else { /* Type has already been changed */ Error ("Redefinition for parameter `%s'", Sym->Name); } } else { Error ("Unknown identifier: `%s'", Decl.Ident); } } if (CurTok.Tok == TOK_COMMA) { NextToken (); } else { break; } } /* Variable list must be semicolon terminated */ ConsumeSemi (); } } static void ParseAnsiParamList (FuncDesc* F) /* Parse a new style (ANSI) parameter list */ { /* Parse params */ while (CurTok.Tok != TOK_RPAREN) { DeclSpec Spec; Declaration Decl; SymEntry* Sym; /* Allow an ellipsis as last parameter */ if (CurTok.Tok == TOK_ELLIPSIS) { NextToken (); F->Flags |= FD_VARIADIC; break; } /* Read the declaration specifier */ ParseDeclSpec (&Spec, SC_AUTO, T_INT); /* We accept only auto and register as storage class specifiers */ if ((Spec.StorageClass & SC_AUTO) == SC_AUTO) { Spec.StorageClass = SC_AUTO | SC_PARAM | SC_DEF; } else if ((Spec.StorageClass & SC_REGISTER) == SC_REGISTER) { Spec.StorageClass = SC_REGISTER | SC_STATIC | SC_PARAM | SC_DEF; } else { Error ("Illegal storage class"); Spec.StorageClass = SC_AUTO | SC_PARAM | SC_DEF; } /* Allow parameters without a name, but remember if we had some to * eventually print an error message later. */ ParseDecl (&Spec, &Decl, DM_ACCEPT_IDENT); if (Decl.Ident[0] == '\0') { /* Unnamed symbol. Generate a name that is not user accessible, * then handle the symbol normal. */ AnonName (Decl.Ident, "param"); F->Flags |= FD_UNNAMED_PARAMS; /* Clear defined bit on nonames */ Decl.StorageClass &= ~SC_DEF; } /* Parse attributes for this parameter */ ParseAttribute (&Decl); /* Create a symbol table entry */ Sym = AddLocalSym (Decl.Ident, ParamTypeCvt (Decl.Type), Decl.StorageClass, 0); /* Add attributes if we have any */ SymUseAttr (Sym, &Decl); /* If the parameter is a struct or union, emit a warning */ if (IsClassStruct (Decl.Type)) { if (IS_Get (&WarnStructParam)) { Warning ("Passing struct by value for parameter `%s'", Decl.Ident); } } /* Count arguments */ ++F->ParamCount; /* Check for more parameters */ if (CurTok.Tok == TOK_COMMA) { NextToken (); } else { break; } } /* Skip right paren. We must explicitly check for one here, since some of * the breaks above bail out without checking. */ ConsumeRParen (); } static FuncDesc* ParseFuncDecl (void) /* Parse the argument list of a function. */ { unsigned Offs; SymEntry* Sym; /* Create a new function descriptor */ FuncDesc* F = NewFuncDesc (); /* Enter a new lexical level */ EnterFunctionLevel (); /* Check for several special parameter lists */ if (CurTok.Tok == TOK_RPAREN) { /* Parameter list is empty */ F->Flags |= (FD_EMPTY | FD_VARIADIC); } else if (CurTok.Tok == TOK_VOID && NextTok.Tok == TOK_RPAREN) { /* Parameter list declared as void */ NextToken (); F->Flags |= FD_VOID_PARAM; } else if (CurTok.Tok == TOK_IDENT && (NextTok.Tok == TOK_COMMA || NextTok.Tok == TOK_RPAREN)) { /* If the identifier is a typedef, we have a new style parameter list, * if it's some other identifier, it's an old style parameter list. */ Sym = FindSym (CurTok.Ident); if (Sym == 0 || !SymIsTypeDef (Sym)) { /* Old style (K&R) function. */ F->Flags |= FD_OLDSTYLE; } } /* Parse params */ if ((F->Flags & FD_OLDSTYLE) == 0) { /* New style function */ ParseAnsiParamList (F); } else { /* Old style function */ ParseOldStyleParamList (F); } /* Remember the last function parameter. We need it later for several * purposes, for example when passing stuff to fastcall functions. Since * more symbols are added to the table, it is easier if we remember it * now, since it is currently the last entry in the symbol table. */ F->LastParam = GetSymTab()->SymTail; /* Assign offsets. If the function has a variable parameter list, * there's one additional byte (the arg size). */ Offs = (F->Flags & FD_VARIADIC)? 1 : 0; Sym = F->LastParam; while (Sym) { unsigned Size = CheckedSizeOf (Sym->Type); if (SymIsRegVar (Sym)) { Sym->V.R.SaveOffs = Offs; } else { Sym->V.Offs = Offs; } Offs += Size; F->ParamSize += Size; Sym = Sym->PrevSym; } /* Leave the lexical level remembering the symbol tables */ RememberFunctionLevel (F); /* Return the function descriptor */ return F; } static void Declarator (const DeclSpec* Spec, Declaration* D, declmode_t Mode) /* Recursively process declarators. Build a type array in reverse order. */ { /* Read optional function or pointer qualifiers. These modify the * identifier or token to the right. For convenience, we allow the fastcall * qualifier also for pointers here. If it is a pointer-to-function, the * qualifier will later be transfered to the function itself. If it's a * pointer to something else, it will be flagged as an error. */ TypeCode Qualifiers = OptionalQualifiers (T_QUAL_ADDRSIZE | T_QUAL_FASTCALL); /* Pointer to something */ if (CurTok.Tok == TOK_STAR) { /* Skip the star */ NextToken (); /* Allow const, restrict and volatile qualifiers */ Qualifiers |= OptionalQualifiers (T_QUAL_CONST | T_QUAL_VOLATILE | T_QUAL_RESTRICT); /* Parse the type, the pointer points to */ Declarator (Spec, D, Mode); /* Add the type */ AddTypeToDeclaration (D, T_PTR | Qualifiers); return; } if (CurTok.Tok == TOK_LPAREN) { NextToken (); Declarator (Spec, D, Mode); ConsumeRParen (); } else { /* Things depend on Mode now: * - Mode == DM_NEED_IDENT means: * we *must* have a type and a variable identifer. * - Mode == DM_NO_IDENT means: * we must have a type but no variable identifer * (if there is one, it's not read). * - Mode == DM_ACCEPT_IDENT means: * we *may* have an identifier. If there is an identifier, * it is read, but it is no error, if there is none. */ if (Mode == DM_NO_IDENT) { D->Ident[0] = '\0'; } else if (CurTok.Tok == TOK_IDENT) { strcpy (D->Ident, CurTok.Ident); NextToken (); } else { if (Mode == DM_NEED_IDENT) { Error ("Identifier expected"); } D->Ident[0] = '\0'; } } while (CurTok.Tok == TOK_LBRACK || CurTok.Tok == TOK_LPAREN) { if (CurTok.Tok == TOK_LPAREN) { /* Function declaration */ FuncDesc* F; /* Skip the opening paren */ NextToken (); /* Parse the function declaration */ F = ParseFuncDecl (); /* We cannot specify fastcall for variadic functions */ if ((F->Flags & FD_VARIADIC) && (Qualifiers & T_QUAL_FASTCALL)) { Error ("Variadic functions cannot be `__fastcall__'"); Qualifiers &= ~T_QUAL_FASTCALL; } /* Add the function type. Be sure to bounds check the type buffer */ NeedTypeSpace (D, 1); D->Type[D->Index].C = T_FUNC | Qualifiers; D->Type[D->Index].A.P = F; ++D->Index; /* Qualifiers now used */ Qualifiers = T_QUAL_NONE; } else { /* Array declaration. */ long Size = UNSPECIFIED; /* We cannot have any qualifiers for an array */ if (Qualifiers != T_QUAL_NONE) { Error ("Invalid qualifiers for array"); Qualifiers = T_QUAL_NONE; } /* Skip the left bracket */ NextToken (); /* Read the size if it is given */ if (CurTok.Tok != TOK_RBRACK) { ExprDesc Expr; ConstAbsIntExpr (hie1, &Expr); if (Expr.IVal <= 0) { if (D->Ident[0] != '\0') { Error ("Size of array `%s' is invalid", D->Ident); } else { Error ("Size of array is invalid"); } Expr.IVal = 1; } Size = Expr.IVal; } /* Skip the right bracket */ ConsumeRBrack (); /* Add the array type with the size to the type */ NeedTypeSpace (D, 1); D->Type[D->Index].C = T_ARRAY; D->Type[D->Index].A.L = Size; ++D->Index; } } /* If we have remaining qualifiers, flag them as invalid */ if (Qualifiers & T_QUAL_NEAR) { Error ("Invalid `__near__' qualifier"); } if (Qualifiers & T_QUAL_FAR) { Error ("Invalid `__far__' qualifier"); } if (Qualifiers & T_QUAL_FASTCALL) { Error ("Invalid `__fastcall__' qualifier"); } if (Qualifiers & T_QUAL_CDECL) { Error ("Invalid `__cdecl__' qualifier"); } } /*****************************************************************************/ /* code */ /*****************************************************************************/ Type* ParseType (Type* T) /* Parse a complete type specification */ { DeclSpec Spec; Declaration Decl; /* Get a type without a default */ InitDeclSpec (&Spec); ParseTypeSpec (&Spec, -1, T_QUAL_NONE); /* Parse additional declarators */ ParseDecl (&Spec, &Decl, DM_NO_IDENT); /* Copy the type to the target buffer */ TypeCopy (T, Decl.Type); /* Return a pointer to the target buffer */ return T; } void ParseDecl (const DeclSpec* Spec, Declaration* D, declmode_t Mode) /* Parse a variable, type or function declaration */ { /* Initialize the Declaration struct */ InitDeclaration (D); /* Get additional declarators and the identifier */ Declarator (Spec, D, Mode); /* Add the base type. */ NeedTypeSpace (D, TypeLen (Spec->Type) + 1); /* Bounds check */ TypeCopy (D->Type + D->Index, Spec->Type); /* Use the storage class from the declspec */ D->StorageClass = Spec->StorageClass; /* Do several fixes on qualifiers */ FixQualifiers (D->Type); /* If we have a function, add a special storage class */ if (IsTypeFunc (D->Type)) { D->StorageClass |= SC_FUNC; } /* Parse attributes for this declaration */ ParseAttribute (D); /* Check several things for function or function pointer types */ if (IsTypeFunc (D->Type) || IsTypeFuncPtr (D->Type)) { /* A function. Check the return type */ Type* RetType = GetFuncReturn (D->Type); /* Functions may not return functions or arrays */ if (IsTypeFunc (RetType)) { Error ("Functions are not allowed to return functions"); } else if (IsTypeArray (RetType)) { Error ("Functions are not allowed to return arrays"); } /* The return type must not be qualified */ if (GetQualifier (RetType) != T_QUAL_NONE && RetType[1].C == T_END) { if (GetType (RetType) == T_TYPE_VOID) { /* A qualified void type is always an error */ Error ("function definition has qualified void return type"); } else { /* For others, qualifiers are ignored */ Warning ("type qualifiers ignored on function return type"); RetType[0].C = UnqualifiedType (RetType[0].C); } } /* Warn about an implicit int return in the function */ if ((Spec->Flags & DS_DEF_TYPE) != 0 && RetType[0].C == T_INT && RetType[1].C == T_END) { /* Function has an implicit int return. Output a warning if we don't * have the C89 standard enabled explicitly. */ if (IS_Get (&Standard) >= STD_C99) { Warning ("Implicit `int' return type is an obsolete feature"); } GetFuncDesc (D->Type)->Flags |= FD_OLDSTYLE_INTRET; } } /* For anthing that is not a function or typedef, check for an implicit * int declaration. */ if ((D->StorageClass & SC_FUNC) != SC_FUNC && (D->StorageClass & SC_TYPEMASK) != SC_TYPEDEF) { /* If the standard was not set explicitly to C89, print a warning * for variables with implicit int type. */ if ((Spec->Flags & DS_DEF_TYPE) != 0 && IS_Get (&Standard) >= STD_C99) { Warning ("Implicit `int' is an obsolete feature"); } } /* Check the size of the generated type */ if (!IsTypeFunc (D->Type) && !IsTypeVoid (D->Type)) { unsigned Size = SizeOf (D->Type); if (Size >= 0x10000) { if (D->Ident[0] != '\0') { Error ("Size of `%s' is invalid (0x%06X)", D->Ident, Size); } else { Error ("Invalid size in declaration (0x%06X)", Size); } } } } void ParseDeclSpec (DeclSpec* D, unsigned DefStorage, long DefType) /* Parse a declaration specification */ { TypeCode Qualifiers; /* Initialize the DeclSpec struct */ InitDeclSpec (D); /* There may be qualifiers *before* the storage class specifier */ Qualifiers = OptionalQualifiers (T_QUAL_CONST | T_QUAL_VOLATILE); /* Now get the storage class specifier for this declaration */ ParseStorageClass (D, DefStorage); /* Parse the type specifiers passing any initial type qualifiers */ ParseTypeSpec (D, DefType, Qualifiers); } void CheckEmptyDecl (const DeclSpec* D) /* Called after an empty type declaration (that is, a type declaration without * a variable). Checks if the declaration does really make sense and issues a * warning if not. */ { if ((D->Flags & DS_EXTRA_TYPE) == 0) { Warning ("Useless declaration"); } } static void SkipInitializer (unsigned BracesExpected) /* Skip the remainder of an initializer in case of errors. Try to be somewhat * smart so we don't have too many following errors. */ { while (CurTok.Tok != TOK_CEOF && CurTok.Tok != TOK_SEMI && BracesExpected > 0) { switch (CurTok.Tok) { case TOK_RCURLY: --BracesExpected; break; case TOK_LCURLY: ++BracesExpected; break; default: break; } NextToken (); } } static unsigned OpeningCurlyBraces (unsigned BracesNeeded) /* Accept any number of opening curly braces around an initialization, skip * them and return the number. If the number of curly braces is less than * BracesNeeded, issue a warning. */ { unsigned BraceCount = 0; while (CurTok.Tok == TOK_LCURLY) { ++BraceCount; NextToken (); } if (BraceCount < BracesNeeded) { Error ("`{' expected"); } return BraceCount; } static void ClosingCurlyBraces (unsigned BracesExpected) /* Accept and skip the given number of closing curly braces together with * an optional comma. Output an error messages, if the input does not contain * the expected number of braces. */ { while (BracesExpected) { if (CurTok.Tok == TOK_RCURLY) { NextToken (); } else if (CurTok.Tok == TOK_COMMA && NextTok.Tok == TOK_RCURLY) { NextToken (); NextToken (); } else { Error ("`}' expected"); return; } --BracesExpected; } } static void DefineData (ExprDesc* Expr) /* Output a data definition for the given expression */ { switch (ED_GetLoc (Expr)) { case E_LOC_ABS: /* Absolute: numeric address or const */ g_defdata (TypeOf (Expr->Type) | CF_CONST, Expr->IVal, 0); break; case E_LOC_GLOBAL: /* Global variable */ g_defdata (CF_EXTERNAL, Expr->Name, Expr->IVal); break; case E_LOC_STATIC: case E_LOC_LITERAL: /* Static variable or literal in the literal pool */ g_defdata (CF_STATIC, Expr->Name, Expr->IVal); break; case E_LOC_REGISTER: /* Register variable. Taking the address is usually not * allowed. */ if (IS_Get (&AllowRegVarAddr) == 0) { Error ("Cannot take the address of a register variable"); } g_defdata (CF_REGVAR, Expr->Name, Expr->IVal); break; case E_LOC_STACK: case E_LOC_PRIMARY: case E_LOC_EXPR: Error ("Non constant initializer"); break; default: Internal ("Unknown constant type: 0x%04X", ED_GetLoc (Expr)); } } static void OutputBitFieldData (StructInitData* SI) /* Output bit field data */ { /* Ignore if we have no data */ if (SI->ValBits > 0) { /* Output the data */ g_defdata (CF_INT | CF_UNSIGNED | CF_CONST, SI->BitVal, 0); /* Clear the data from SI and account for the size */ SI->BitVal = 0; SI->ValBits = 0; SI->Offs += SIZEOF_INT; } } static void ParseScalarInitInternal (Type* T, ExprDesc* ED) /* Parse initializaton for scalar data types. This function will not output the * data but return it in ED. */ { /* Optional opening brace */ unsigned BraceCount = OpeningCurlyBraces (0); /* We warn if an initializer for a scalar contains braces, because this is * quite unusual and often a sign for some problem in the input. */ if (BraceCount > 0) { Warning ("Braces around scalar initializer"); } /* Get the expression and convert it to the target type */ ConstExpr (hie1, ED); TypeConversion (ED, T); /* Close eventually opening braces */ ClosingCurlyBraces (BraceCount); } static unsigned ParseScalarInit (Type* T) /* Parse initializaton for scalar data types. Return the number of data bytes. */ { ExprDesc ED; /* Parse initialization */ ParseScalarInitInternal (T, &ED); /* Output the data */ DefineData (&ED); /* Done */ return SizeOf (T); } static unsigned ParsePointerInit (Type* T) /* Parse initializaton for pointer data types. Return the number of data bytes. */ { /* Optional opening brace */ unsigned BraceCount = OpeningCurlyBraces (0); /* Expression */ ExprDesc ED; ConstExpr (hie1, &ED); TypeConversion (&ED, T); /* Output the data */ DefineData (&ED); /* Close eventually opening braces */ ClosingCurlyBraces (BraceCount); /* Done */ return SIZEOF_PTR; } static unsigned ParseArrayInit (Type* T, int AllowFlexibleMembers) /* Parse initializaton for arrays. Return the number of data bytes. */ { int Count; /* Get the array data */ Type* ElementType = GetElementType (T); unsigned ElementSize = CheckedSizeOf (ElementType); long ElementCount = GetElementCount (T); /* Special handling for a character array initialized by a literal */ if (IsTypeChar (ElementType) && (CurTok.Tok == TOK_SCONST || CurTok.Tok == TOK_WCSCONST || (CurTok.Tok == TOK_LCURLY && (NextTok.Tok == TOK_SCONST || NextTok.Tok == TOK_WCSCONST)))) { /* Char array initialized by string constant */ int NeedParen; /* If we initializer is enclosed in brackets, remember this fact and * skip the opening bracket. */ NeedParen = (CurTok.Tok == TOK_LCURLY); if (NeedParen) { NextToken (); } /* Translate into target charset */ TranslateLiteral (CurTok.SVal); /* If the array is one too small for the string literal, omit the * trailing zero. */ Count = GetLiteralSize (CurTok.SVal); if (ElementCount != UNSPECIFIED && ElementCount != FLEXIBLE && Count == ElementCount + 1) { /* Omit the trailing zero */ --Count; } /* Output the data */ g_defbytes (GetLiteralStr (CurTok.SVal), Count); /* Skip the string */ NextToken (); /* If the initializer was enclosed in curly braces, we need a closing * one. */ if (NeedParen) { ConsumeRCurly (); } } else { /* Curly brace */ ConsumeLCurly (); /* Initialize the array members */ Count = 0; while (CurTok.Tok != TOK_RCURLY) { /* Flexible array members may not be initialized within * an array (because the size of each element may differ * otherwise). */ ParseInitInternal (ElementType, 0); ++Count; if (CurTok.Tok != TOK_COMMA) break; NextToken (); } /* Closing curly braces */ ConsumeRCurly (); } if (ElementCount == UNSPECIFIED) { /* Number of elements determined by initializer */ SetElementCount (T, Count); ElementCount = Count; } else if (ElementCount == FLEXIBLE && AllowFlexibleMembers) { /* In non ANSI mode, allow initialization of flexible array * members. */ ElementCount = Count; } else if (Count < ElementCount) { g_zerobytes ((ElementCount - Count) * ElementSize); } else if (Count > ElementCount) { Error ("Too many initializers"); } return ElementCount * ElementSize; } static unsigned ParseStructInit (Type* T, int AllowFlexibleMembers) /* Parse initialization of a struct or union. Return the number of data bytes. */ { SymEntry* Entry; SymTable* Tab; StructInitData SI; /* Consume the opening curly brace */ ConsumeLCurly (); /* Get a pointer to the struct entry from the type */ Entry = GetSymEntry (T); /* Get the size of the struct from the symbol table entry */ SI.Size = Entry->V.S.Size; /* Check if this struct definition has a field table. If it doesn't, it * is an incomplete definition. */ Tab = Entry->V.S.SymTab; if (Tab == 0) { Error ("Cannot initialize variables with incomplete type"); /* Try error recovery */ SkipInitializer (1); /* Nothing initialized */ return 0; } /* Get a pointer to the list of symbols */ Entry = Tab->SymHead; /* Initialize fields */ SI.Offs = 0; SI.BitVal = 0; SI.ValBits = 0; while (CurTok.Tok != TOK_RCURLY) { /* */ if (Entry == 0) { Error ("Too many initializers"); SkipInitializer (1); return SI.Offs; } /* Parse initialization of one field. Bit-fields need a special * handling. */ if (SymIsBitField (Entry)) { ExprDesc ED; unsigned Val; unsigned Shift; /* Calculate the bitmask from the bit-field data */ unsigned Mask = (1U << Entry->V.B.BitWidth) - 1U; /* Safety ... */ CHECK (Entry->V.B.Offs * CHAR_BITS + Entry->V.B.BitOffs == SI.Offs * CHAR_BITS + SI.ValBits); /* This may be an anonymous bit-field, in which case it doesn't * have an initializer. */ if (IsAnonName (Entry->Name)) { /* Account for the data and output it if we have a full word */ SI.ValBits += Entry->V.B.BitWidth; CHECK (SI.ValBits <= INT_BITS); if (SI.ValBits == INT_BITS) { OutputBitFieldData (&SI); } goto NextMember; } else { /* Read the data, check for a constant integer, do a range * check. */ ParseScalarInitInternal (type_uint, &ED); if (!ED_IsConstAbsInt (&ED)) { Error ("Constant initializer expected"); ED_MakeConstAbsInt (&ED, 1); } if (ED.IVal > (long) Mask) { Warning ("Truncating value in bit-field initializer"); ED.IVal &= (long) Mask; } Val = (unsigned) ED.IVal; } /* Add the value to the currently stored bit-field value */ Shift = (Entry->V.B.Offs - SI.Offs) * CHAR_BITS + Entry->V.B.BitOffs; SI.BitVal |= (Val << Shift); /* Account for the data and output it if we have a full word */ SI.ValBits += Entry->V.B.BitWidth; CHECK (SI.ValBits <= INT_BITS); if (SI.ValBits == INT_BITS) { OutputBitFieldData (&SI); } } else { /* Standard member. We should never have stuff from a * bit-field left */ CHECK (SI.ValBits == 0); /* Flexible array members may only be initialized if they are * the last field (or part of the last struct field). */ SI.Offs += ParseInitInternal (Entry->Type, AllowFlexibleMembers && Entry->NextSym == 0); } /* More initializers? */ if (CurTok.Tok != TOK_COMMA) { break; } /* Skip the comma */ NextToken (); NextMember: /* Next member. For unions, only the first one can be initialized */ if (IsTypeUnion (T)) { /* Union */ Entry = 0; } else { /* Struct */ Entry = Entry->NextSym; } } /* Consume the closing curly brace */ ConsumeRCurly (); /* If we have data from a bit-field left, output it now */ OutputBitFieldData (&SI); /* If there are struct fields left, reserve additional storage */ if (SI.Offs < SI.Size) { g_zerobytes (SI.Size - SI.Offs); SI.Offs = SI.Size; } /* Return the actual number of bytes initialized. This number may be * larger than sizeof (Struct) if flexible array members are present and * were initialized (possible in non ANSI mode). */ return SI.Offs; } static unsigned ParseVoidInit (void) /* Parse an initialization of a void variable (special cc65 extension). * Return the number of bytes initialized. */ { ExprDesc Expr; unsigned Size; /* Opening brace */ ConsumeLCurly (); /* Allow an arbitrary list of values */ Size = 0; do { ConstExpr (hie1, &Expr); switch (UnqualifiedType (Expr.Type[0].C)) { case T_SCHAR: case T_UCHAR: if (ED_IsConstAbsInt (&Expr)) { /* Make it byte sized */ Expr.IVal &= 0xFF; } DefineData (&Expr); Size += SIZEOF_CHAR; break; case T_SHORT: case T_USHORT: case T_INT: case T_UINT: case T_PTR: case T_ARRAY: if (ED_IsConstAbsInt (&Expr)) { /* Make it word sized */ Expr.IVal &= 0xFFFF; } DefineData (&Expr); Size += SIZEOF_INT; break; case T_LONG: case T_ULONG: if (ED_IsConstAbsInt (&Expr)) { /* Make it dword sized */ Expr.IVal &= 0xFFFFFFFF; } DefineData (&Expr); Size += SIZEOF_LONG; break; default: Error ("Illegal type in initialization"); break; } if (CurTok.Tok != TOK_COMMA) { break; } NextToken (); } while (CurTok.Tok != TOK_RCURLY); /* Closing brace */ ConsumeRCurly (); /* Return the number of bytes initialized */ return Size; } static unsigned ParseInitInternal (Type* T, int AllowFlexibleMembers) /* Parse initialization of variables. Return the number of data bytes. */ { switch (UnqualifiedType (T->C)) { case T_SCHAR: case T_UCHAR: case T_SHORT: case T_USHORT: case T_INT: case T_UINT: case T_LONG: case T_ULONG: case T_FLOAT: case T_DOUBLE: return ParseScalarInit (T); case T_PTR: return ParsePointerInit (T); case T_ARRAY: return ParseArrayInit (T, AllowFlexibleMembers); case T_STRUCT: case T_UNION: return ParseStructInit (T, AllowFlexibleMembers); case T_VOID: if (IS_Get (&Standard) == STD_CC65) { /* Special cc65 extension in non ANSI mode */ return ParseVoidInit (); } /* FALLTHROUGH */ default: Error ("Illegal type"); return SIZEOF_CHAR; } } unsigned ParseInit (Type* T) /* Parse initialization of variables. Return the number of data bytes. */ { /* Parse the initialization. Flexible array members can only be initialized * in cc65 mode. */ unsigned Size = ParseInitInternal (T, IS_Get (&Standard) == STD_CC65); /* The initialization may not generate code on global level, because code * outside function scope will never get executed. */ if (HaveGlobalCode ()) { Error ("Non constant initializers"); RemoveGlobalCode (); } /* Return the size needed for the initialization */ return Size; }