Wyner's Wire-Tap Channel, Forty Years Later

Leonid Reyzin

These slides are a superset of the talks given at:

- Theory of Cryptography Conference on March 24, 2015 (parts I and II)
- École Normale Supérieure Crypto Seminar on March 26, 2015 (parts I and II)
- Charles River Crypto Day on April 17, 2015 (parts I and most of III)

Part I

History and Context

Two Events in October 1975 Enabled This Talk

- 1. I was born
- 2. Aaron D. Wyner published "The Wire-Tap Channel"

Aaron Wyner c. 1975 (courtesy of Adi Wyner)

THE BELL SYSTEM TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 54 October 1975 Number 8

Copyright © 1975, American Telephone and Telegraph Company. Printed in U.S.A.

The Wire-Tap Channel

By A. D. WYNER

(Manuscript received May 9, 1975)

We consider the situation in which digital data is to be reliably transmitted over a discrete, memoryless channel (DMC) that is subjected to a wire-tap at the receiver. We assume that the wire-tapper views the channel output via a second DMC. Encoding by the transmitter and decoding by the

Premise of "The Wire-Tap Channel"

Goal: transfer information from Alice to Bob reliably while hiding it from Eve

Results: Upper/lower bounds on information rate ("secrecy capacity")

Constructive for a special case (in a few slides)

Context: mid-1970s surge of interest in crypto

Q: Where Does Secrecy Come From?

- 1. Public Keys [Diffie-Hellman 1976, Merkle 1978]
- 2. Secret Keys [Shannon 1949] ... [Hellman 1974-77]
- 3. Nature [Wyner 1975]Only 5 references: 3 for basic info-theory background +

Simple Special Case

Simple Special Case

Wyner: XOR amplifies information-theoretic uncertainty

- Alice sends a string $p = p_1 p_2 p_3 \dots$
- Eve will see $q_i = p_i \oplus \text{noise}$; most, but not all, $q_i = p_i$
- Given enough bits, parity of p looks uniform

Yao 1982: "Theory and Applications of Trapdoor Functions"

PK Alice
$$-f(x_1), f(x_2), \dots$$
 Bob K

Securely conveys $b = \bigoplus P(x_i)$ Eve (noiseless but bounded wire-tapper)

Yao: XOR amplifies computational uncertainty

Setup: Weak TDP f(x) with somewhat hardcore predicate P(x) Alice has PK and Bob has SK

Yao 1982: "Theory and Applications of Trapdoor Functions"

PK Alice
$$-f(x_1), f(x_2), \dots$$
 Bob K

Securely conveys $b = \bigoplus P(x_i)$ Eve (noiseless but bounded wire-tapper)

"this situation has an exact analogue in the classical information theory, known as the Wyner wiretap channel [25]. Wyner showed that even when the noise in [Eve's] channel is small, [Alice] can magnify the noise by properly encoding [her] messages."

Levin 1985,87

"One-Way Functions and Pseudorandom Generators" (proof of Yao's XOR Lemma)

"One of the important ideas of [Yao 82] is that the methods of [Wyner 75] can be applied for computational as well as for purely probabilistic unpredictability."

Back to Wyner

Alice
$$p = p_1 p_2 \dots$$
, no noise $p = p_1 p_2 \dots$ Bob

Conveys
$$b = \bigoplus p_i$$
bits flipped with small probability small probability

Eve (wire-tapper)

Consider the conditional distribution $p \mid \text{Eve's knowledge}$ (= $U \mid U \oplus \text{binary symmetric noise}$)

Wyner's observation (reformulated):

parity is a deterministic extractor from this distribution

Q: Can we do better? (i.e., extract more bits = increase rate)

A [Wyner]: Yes!

Back to Wyner

Alice
$$p = p_1 p_2 \dots$$
, no noise $p = p_1 p_2 \dots$ Bob

Conveys
 $p = p_1 p_2 \dots$, no noise $p = p_1 p_2 \dots$ Bob

Size $p = p_1 p_2 \dots$, no noise $p = p_1 p_2 \dots$ Bob

bits flipped with small probability small probabi

Consider the conditional distribution $p \mid \text{Eve's knowledge}$ (= $U \mid U \oplus \text{binary symmetric noise}$)

Wyner's observation (reformulated): parity is a deterministic extractor from this distribution

Q: Can we do better? (i.e., extract more bits = increase rate)

A [Wyner]: Yes!

"the coding scheme [above] is based on an idea of Mr. [Colin] Mallows"

Santha-Vazirani 1986

"Generating quasi-random sequences from semi-random sources"

"Wyner shows how to achieve optimal rate of communication, using parity-check codes.

We show how to use the same method to extract quasi-random sequences at a higher rate."

Thm: *Hp* is an extractor from any distribution where each bit has pre-selected bounded bias (under stronger demands on quality of output than Wyner)

Note the two views of extractors

[Santha-Vazirani]:

[Wyner]:

Summary of Wyner's paper

Goal: transfer information from Alice to Bob reliably while hiding it from Eve

Results: - Derive best achievable "secrecy capacity"

- Achieve it constructively for the case above (assuming good linear codes)
- Achieve it nonconstructively in all other cases

<u>Drawback</u>: Weak notion of security ("low rate of leakage")

Lessons

- There is interesting work to do in provable information-theoretic security
- Noise can be your friend
- Secrets can come from nature

Early Generalization

[Csiszár-Körner 1978]:

no reason Eve's channel should be a degraded version of Bob's: it just needs to be worse

A Different Model for Eve's Knowledge

[Ozarow-Wyner 1985]: wire-tapper gets to choose specific symbols to see

Result: Hp is still a good deterministic extractor

Adding a Feedback Channel

[Leung-Yan-Cheong 1976] (Ph.D. Thesis under Hellman), [Maurer 1993], [Ahlswede-Csiszár 1993]: Eve's channel need not be noisier if Bob has a feedback channel

Generalizing

- [Bennett, Brassard, Robert 1985, 88] (motivated by quantum):
 - errors can be adversarial information reconciliation
 - leakage can be arbitrary privacy amplification
- Better security notion
- Generalized further, better notions of entropy in [Bennett, Brassard, Crépeau, Maurer 1995]

Privacy Amplification

- Bennett-Brassard-Robert: no fixed function will work (as opposed to Wyner's specific kind of leakage)
- But: a random universal hash function is an extractor ("leftover hash lemma")
- Just send the choice of the function ("extractor seed") over the public channel

Privacy Amplification = Strong Extractor

Privacy Amplification = Strong Extractor

Privacy Amplification = Strong Extractor

- Note the power of the public channel: fewer assumptions on adversarial knowledge
- Modified goal: derive a good key (can use public channel once the key is derived)

Privacy Amplification and Extractors Hardness

Håstad-Impagliazzo-Levin-Luby 1989,99 (OWF⇒PRG) another version of the same result:

universal hash function is an extractor

(thus, three chain from Wyner to extractors:

Wyner 75 → Yao 82 → Levin 87 → HILL

Wyner 75 → Santha-Vazirani

Wyner 75 → Bennett-Brassard-Robert)

New Model: no authentic channels (besides w) [Maurer, Maurer-Wolf 1997, 2003]

- Alice \leftarrow unauthenticated public channel \rightarrow Bob w Bob's last protocol message w last protocol message, $r \oplus m$ Eve
- Can no longer simply send the extractor seed: adversary may tamper
- Single-message protocols still possible: "robust" extractors [Maurer-Wolf 97, Boyen-Dodis-Katz-Ostrovsky-Smith 05] but they exist only if w at least ½-entropic [Dodis-Wichs 09]
- Lots of work on multi-message protocols
 [RW03,KR09,DW09,CKOR10,DLWZ11,CRS12,Li12,Li15...];
 important tool: "non-malleable" extractors [Dodis-Wichs 09]
- Two kinds of robustness: tampering before/after r is used (pre/post-application) [Dodis-Kanukurthi-Katz-Reyzin-Smith]

New Requirement: Source Privacy

Alice \leftarrow unauthenticated public channel \rightarrow Bob w

- Risk: tampering Eve may learn something about w by observing how the parties behave after she tampers
- Standalone security guarantees it won't be enough to cause problems
- But what about sequential security? Imagine w is obtained using a secret process; the next one uses the same process
- Need: "source private" extractors [Bouman, Fehr 2011] (Def'n: an active attack won't tell Eve anything about w)
- Relevant in, e.g., bounded storage model [Maurer 1990] and quantum key distribution

Bounded Storage Model

 $\operatorname{\mathsf{Bob}}^k_{w}$

- [Maurer 1990, 92]: W is a HUGE (perhaps streaming) string no one can store
- Alice and Bob have a short shared secret k for probing W to get w
- Eve stores arbitrary information about $\it W$
- Need "locally computable" extractors [Lu 2002, 04]
 - Also used in "bounded retrieval model"[Dziembowski 06] [Di Crescenzo, Lipton, Walfish 06]
- k is the secret used to obtain w and needs to be reusable: hence need source privacy

Dealing With Errors

- Recall that Wyner's original paper had noise on the main channel, but no constructions for this case
- Common approach: reduce to the no-tampering case by performing information reconciliation over public channel
- Add whatever leaks during that process to Eve's knowledge
- Solve the no-tampering case using appropriate extractors
- Information reconciliation + extractors = "fuzzy extractors"
 [Dodis-Ostrovsky-Reyzin-Smith 2004, 08]

Applying to Biometrics

- Most of us have ≤10 fingers and ≤2 eyes
- Variants of w_0 derived from same iris scan may be used in different systems without coordination
- A single-protocol security guarantee doesn't extend: information reconciliation leakage may be additive
- Can we prevent multiple protocols from revealing w_0 ?
- Need: "reusable" extractors [Boyen 2004]

Many Kinds of Extractors [robust/n-m] [local] [source-private] [fuzzy] [reusable]

Most combinations are interesting and valid as models

Many Kinds of Extractors

[robust/n-m] [local] [source-private] [fuzzy] [reusable]

<u>Interaction</u>: Deterministic / Single-Message / Interactive <u>Input constraints</u>: what's minimum required entropy <u>Protocol quality</u>: entropy loss, number of rounds if interactive

- Ex 1: active adversary, need to handle errors: robust + fuzzy
 [RW04,BDKOS05,DKKRS06,KR09,DW09,CKOR10, ...]
- Ex 2: bounded storage model with errors local + fuzzy + source-private [Dodis-Smith 2005]
- Ex 3: active adversary, large secret, need to protect source post-app robust + source-private + local [Aggarwal-Dodis-Jafargholi-Miles-Reyzin 2014]

Information-Theoretic Protocols Beyond Key Agreement

- [Crépeau, Kilian 1988]
 [Benett, Brassard, Crépeau, Skubiszweska 1991]
 [Damgard, Kilian, Salvail 1999]
 oblivious transfer and variations using noise/quantum
- [Crépeau 1997] bit commitment using noise
- Other works I probably don't know about, including many in quantum cryptography

Given all this follow-up, what about Wyner's paper?

Google Scholar Citation Counts by Decade

- Half the total citations are from the 2012-2015
- Most (?) are in the info-theory community, nonconstructive, with security definitions that won't make us happy
- Many are due to recent interest in physical-layer security

Given all this follow-up, what about Wyner's paper?

- Wyner's model is artificial for crypto community: we assume a free public channel and thus focus on key derivation
- Question: what can you do without a free channel (every bit counts – so "derive key + encrypt" loses half the rate)
- [Bellare Tessaro Vardy 2012]: first cryptographic treatment ("semantic security") and first optimal construction

Alice w_0 public channel Bob w_0 Eve (passive or active)

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

Alice public channel Bob w_0 Eve (passive or active)

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

Part II **Fuzzy Extractors** for **Noisy Sources** with More Errors than Entropy

Ran Canetti, Benjamin Fuller, Omer Paneth, Leonid Reyzin, and Adam Smith

http://eprint.iacr.org/2014/243

Our Setting

Non-Tampering Eve

- Single message:
 Alice and Bob can be the same person at different times
- Target application: key extraction from unique physical features

Physically Unclonable Functions (PUFs)

Biometrics

Notation

- Enrollment algorithm Gen (Alice): Take a measurement w_0 from the source. Use it to "lock up" a random output in a nonsecret value p.
- Subsequent algorithm Rep (Bob): give same output if $d(w_0, w_1) < t$
- Security: r looks uniform even given p, whenever the source is good enough

Fuzzy Extractors: Goals

- Goal 1: handle as many sources as possible (typically, any source in which w_0 is 2^k hard to guess)
- Goal 2: handle as much error as possible (typically, any w_1 within distance t)
- Most previous approaches are analyzed in terms of t and k

Fuzzy Extractors: Typical Construction

- derive r using a randomness extractor (converts high-entropy sources to uniform, e.g., via universal hashing)
- correct errors using a <u>secure sketch</u>
 (gives recovery of the original from a noisy signal e.g., via the "checksum" bits of an error-correcting code)

Problem with Secure Sketches

- p must store enough information to let you recover w_0
- How much information is that?

Problem with Secure Sketches

- p must store enough information to let you recover w_0
- How much information is that?
- w_0 could be anywhere within distance t, so $\log |B_t| > t$ bits
- No security left if t > k (can be made rigorous for large classes of sources)
- Observation: not necessary to recover w_0

▶ Rep

- Consider some distribution for w_0 with entropy k
- Suppose t > k
- Then $B_t > 2^k$
- Possibly $|B_t| > \#$ of possibilities for w_0
- Possibly all w_0 lie in a single ball
- No matter what we do, adversary can get the output by running Rep on w_1 = center of that ball

But if all the points are far apart, the problem is trivial! (at least information-theoretically)

No construction that is analyzed only in terms of t and k can distinguish the two cases

Moral: our constructions will exploit structure in the source (not "any source of a given k" like prior work)

What Sources Can We Handle?

1. Sources with high-entropy samples

$$w_0 = a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9$$

sample: $a_2 a_5 a_7$

We need: for some superlog sample size you are guaranteed to get superlog entropy

Sufficient assumption: somewhat q-wise independence for superlogarithmic q

E.g., IrisCode [Daugman] is redundant and noisy (t>>k): $\log |B_t| \approx 900$ but $k \approx 250$

Yet this assumption is plausible

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations
- p = locks + positions of symbols needed to unlock

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations
- p = locks + positions of symbols needed to unlock

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations
- -p = locks + positions of symbols needed to unlock

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations
- p = locks + positions of symbols needed to unlock

Rep: Use the symbols of w_1 to open at least one lock

Source: a string of symbols, arbitrary alphabet

Errors: Hamming

Gen: - get random combinations of symbols in w_0

- "lock" r using these combinations
- p = locks + positions of symbols needed to unlock

Rep: Use the symbols of w_1 to open at least one lock Error-tolerance: as long as at least one combination is ok Security: each combination must have enough entropy

How to implement locks?

R.O. model [Lynn Prabhakaran Sahai 04]:

lock = nonce, Hash(nonce, $a_1 a_9 a_2$) \oplus (r||00...0)

How to implement locks?

- A lock is the following program:
 - If input = $a_1 a_9 a_2$, output r
 - Else output ⊥

 $a_1 a_9 a_2$

- Obfuscate this program!
 - Obfuscation: preserve functionality, hide the program
 - Obfuscating this specific program gives a "digital locker":
 encryption of r that is secure
 even multiple times with correlated and weak keys
 [Canetti Kalai Varia Wichs 10]
 - For this specific program: obfuscation is practical
 (R.O. or DL-based) [Canetti Dakdouk 08], [Bitansky Canetti 10]
 - Hiding r as long as the input can't be exhaustively searched (superlogarithmic entropy)

How to implement locks?

- A lock is the following program:
 - If input = $a_1 a_9 a_2$, output r
 - Else output ⊥

 $a_1 a_9 a_2$

Q: if you are going to use obfuscation, why not this:

A: you can do that [Bitansky Canetti Kalai Paneth 14],
 except it's very impractical + has a very strong assumption

How good is this construction?

- We can correct more errors than entropy!
- For correctness: need sublinear error
- Note: computational, not information-theoretic, security

How good is this construction?

- It is reusable!
 - Same source can be enrolled multiple times with multiple independent services

How good is this construction?

- It is reusable!
 - Same source can be enrolled multiple times with multiple independent services
 - Follows from composability of obfuscation
 - In the past: difficult to achieve, because typically new enrollments leak fresh information
 - Previous constructions: non-fuzzy [Dodis Kalai Lovett 09]
 or all readings must differ by fixed constants [Boyen 2004]
 - Our construction:
 each reading individually must satisfy our conditions

What Sources Can We Handle?

- 1. Sources with high-entropy samples (with reusability)!
- 2. Sources with sparse high-entropy marginals (requires large alphabets)

What Sources Can We Handle?

- 1. Sources with high-entropy samples (with reusability)!
- 2. Sources with sparse high-entropy marginals (requires large alphabets)

Constraint: individual symbols have high entropy (but no independence assumed)

$$w_0 = a_1 a_2 a_3 a_4 a_5 a_6$$

Construction for Sparse High-Entropy Marginals

Problem: each low-entropy symbol reveals one bit of r

Solution: use a randomness extractor at the end

$$w_0 = a_1 a_2 a_3 a_4 a_5 a_6$$

Construction for Sparse High-Entropy Marginals

Problem: differences in w_1 will make us miss some bits

Solution: use an error-correcting code

$$w_1 = a_1 a_2 a_3 a_4 a_5 a_6$$

What Sources Can We Handle?

- 1. Sources with high-entropy samples: with reusability! (subconstant error rate)
- 2. Sources with sparse high-entropy marginals: with constant error rate! (requires large alphabets)
- 3. Sparse block sources information theoretically! (stricter entropy condition)

What Sources Can We Handle?

- 1. Sources with high-entropy samples: with reusability! (subconstant error rate)
- 2. Sources with sparse high-entropy marginals: with constant error rate! (requires large alphabets)
- 3. Sparse block sources information theoretically! (stricter entropy condition)

<u>Ideas</u>:

- For sources with more errors than entropy:
 - avoid information reconciliation
 - exploit the source structure
- For reusability:
 - use computational security

What I Just Showed

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

What I will show next

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

Part III

When are Fuzzy Extractors Possible?

Benjamin Fuller, Leonid Reyzin, and Adam Smith

http://eprint.iacr.org/2014/961

Our Setting (same as Part II)

- Single message:
 Alice and Bob can be the same person at different times
- Target application: key extraction from unique physical features

Physically Unclonable Functions (PUFs)

Biometrics

Notation (same as Part II)

- Enrollment algorithm Gen (Alice): Take a measurement w_0 from the source W. Use it to "lock up" a random output in a nonsecret value p.
- Subsequent algorithm Rep (Bob): give same output if $d(w_0, w_1) < t$

An adversary can always try a guess w_0 in W

Define min-entropy: $H_{\infty}(W) = \min -\log \Pr[w]$

Necessary: $H_{\infty}(W) >$ security parameter

And sufficient by Leftover Hash Lemma

An adversary can always try a guess w_1 near many w_0

Define fuzzy min-entropy: $H_{\text{fuzz}}(W) = \min_{B_t} -\log \Sigma_{w \in B_t} \Pr[w]$

Necessary: $H_{\text{fuzz}}(W) > \text{security parameter}$

Sufficient?

$$H_{\text{fuzz}}(W) = \min_{B_t} -\log \text{ (mass inside } B_t)$$

Why bother with this new notion? Can't we use the old one?

$$H_{\text{fuzz}}(W) \ge H_{\infty}(W) - \log |B_t|$$

(since mass inside $B_t \leq \max \Pr[w] \cdot |B_t|$)

$$H_{\text{fuzz}}(W) = \min_{B_t} -\log \text{ (mass inside } B_t)$$

Why bother with this new notion? Can't we use the old one?

$$H_{\text{fuzz}}(W) \ge H_{\infty}(W) - \log |B_t|$$

Because there are distributions "with more errors than entropy"

$$(\log |B_t| > H_{\infty}(W))$$

But perhaps $H_{\text{fuzz}}(W) > 0$

Why is H_{fuzz} the right notion?

An adversary can always try a guess w_1 near many w_0

Q: can we make sure that's all the adversary can do?

A: yes, using obfuscation! [Bitansky Canetti Kalai Paneth 14]

Why is H_{fuzz} the right notion?

An adversary can always try a guess w_1 near many w_0

- $H_{
 m fuzz}$ is necessary
- $H_{
 m fuzz}$ is sufficient against computational adversaries
- What about information-theoretic adversaries?

- p needs to disambiguate the possible points in $B_t(w_1)$
- suppose all w_0 are equiprobable

•
$$l \approx \log (\max \# w_0 \text{ in } B_t) = \log \frac{(\max \max B_t)}{\Pr[w_0]}$$

$$= H_{\infty}(W) - H_{\text{fuzz}}(W)$$

• $|r| \approx H_{\infty}(W) - l = H_{\text{fuzz}}(W)$

- p needs to disambiguate the possible points in $B_t(w_1)$
- suppose all w_0 are equiprobable

•
$$l \approx \log (\max \# w_0 \text{ in } B_t) = \log \frac{(\max \max B_t)}{\Pr[w_0]}$$

$$= H_{\infty}(W) - H_{\text{fuzz}}(W)$$

•
$$|r| \approx H_{\infty}(W) - l = H_{\text{fuzz}}(W)$$

stays grows grows

- p needs to disambiguate the possible points in $B_t(w_1)$
- suppose all w₀ are equiprobable
- $l \approx \log (\max \# w_0 \text{ in } B_t) \neq \log \frac{(\max \max B_t)}{\Pr[w_0]}$ > $H_{\infty}(W) - H_{\text{fuzz}}(W)$
- $|r| \approx H_{\infty}(W) l = H_{\text{fuzz}}(W)$

- p needs to disambiguate the possible points in $B_t(w_1)$
- suppose all w_0 are equiprobable
- $l \approx \log (\max \# w_0 \text{ in } B_t)$ variable, grows with $\log 1/\Pr[w_0]$ reveals $\lfloor \log 1/\Pr[w_0] \rfloor$, a value between 1 and $\log |W|$
- $|r| \approx \frac{H_{\infty}(W)}{l} = \frac{1}{H_{\text{fuzz}}(W)}$

- p needs to disambiguate the possible points in $B_t(w_1)$
- suppose all w₀ are equiprobable
- $l \approx \log (\max \# w_0 \text{ in } B_t)$ variable, grows with $\log 1/\Pr[w_0]$ reveals $\lfloor \log 1/\Pr[w_0] \rfloor$, a value between 1 and $\log |W|$
- $|r| \approx \frac{H_{\infty}(W) l}{H_{\infty}(W)} = H_{\text{fuzz}}(W) \log \log |W|$ (e.g. $\log n$ if W is over $\{0,1\}^n$)

- Feasibility-only result!
- Sketch needs to know $\log \Pr[w_0]$
- *Rec* is not efficient in general.
- Rec needs to know W (to know candidate w_0 values)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Recall:

```
Family of sources with randomness poor quality randomness ⇔ (maybe uniform)

leakage unknown to Gen, Rep
```

(e.g, Eve gets z = Gw for random linear G)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Rec needs to recover from w_1 regardless of which W the original w_0 came from

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Rec needs to recover from w_1 regardless of which Wthe original w_0 came from p has a lot of information about w_0 combined with Eve's $z = Gw_0$ it's too much (because p is generated without knowledge of G)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

Rec needs to recover from w_1 regardless of which Wthe original w_0 came from p has a lot of information about w_0 combined with Eve's $z = Gw_0$ it's too much (because p is generated without knowledge of G)

Theorem: \exists a family $\{W\}$ with superlog $H_{\infty}(W)$ s.t. any Sketch, Rec that corrects 4 Hamming errors with prob. > 1/4 will have $H_{\rm fuzz}(W \mid p) < 2$

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

But we don't have to recover $w_0!$

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

But we don't have to recover $w_0!$

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

But we don't have to recover $w_0!$

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

• Given p, this partition is known

• Nothing near the boundary can have been w_0 (else Rep wouldn't be 100% correct)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

- Given p, this partition is known
- Nothing near the boundary can have been w_0 (else Rep wouldn't be 100% correct)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

- Given p, this partition is known
- Nothing near the boundary can have been w_0 (else Rep wouldn't be 100% correct)
- Leaves little uncertainty about w_0 (high-dimensions \Rightarrow everything near boundary)
- Combined with Eve's $z = Gw_0$ no uncertainty left (because p is generated without knowledge of G)

Common design goal: one construction for family of sources (e.g., all sources of a given $H_{\rm fuzz}$)

- Given p, this partition is known
- Nothing near the boundary can have been w_0 (else Rep wouldn't be 100% correct)
- Leaves little uncertainty about w_0 (high-dimensions \Rightarrow everything near boundary)
- Combined with Eve's $z = Gw_0$ no uncertainty left (because p is generated without knowledge of G)

Theorem:

 \exists a family $\{W\}$ over $\{0,1\}^n$ with superlog $H_{\infty}(W)$ s.t. any Gen, Rep that handles at least $n^{1/2}\log n$ errors can't output even 2 bits (if Rep is 100% correct)

Summary

- Natural and necessary notion: $H_{\text{fuzz}}(W) = \log (1/\max \text{wt}(B_t))$
- Sufficient under computational assumptions
- Sufficient if the distribution is known
- In case of distributional uncertainty:
 - Insufficient for secure sketches
 - Insufficient for perfectly correct fuzzy extractors in high dimensions
- Open: removing perfect correctness limitation

What I just showed

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

Lots more to be done!

Secrets can come from nature, but we need to tame them

Research Directions:

- Finding the right notion of security
- Minimizing assumptions about adversarial knowledge
- Broadening sources of secrets
- Understanding fundamental bounds on what's feasible
 - Finding the right notion of input entropy
- Making it all efficient

Aaron Wyner c. 1975 (courtesy of Adi Wyner)

THE BELL SYSTEM TECHNICAL JOURNAL

DEVOTED TO THE SCIENTIFIC AND ENGINEERING
ASPECTS OF ELECTRICAL COMMUNICATION

Volume 54 October 1975 Number 8

Copyright @ 1975, American Telephone and Telegraph Company. Printed in U.S.A.

The Wire-Tap Channel

By A. D. WYNER

(Manuscript received May 9, 1975)

We consider the situation in which digital data is to be reliably transmitted over a discrete, memoryless channel (DMC) that is subjected to a wire-tap at the receiver. We assume that the wire-tapper views the channel output via a second DMC. Encoding by the transmitter and decoding by the