
On the Power of Claw-Free Permutations

Yevgeniy Dodis∗ Leonid Reyzin†

10 October 2002

Abstract

The popular random-oracle-based signature schemes, such as Probabilistic Signature Scheme
(PSS) and Full Domain Hash (FDH), output a signature of the form

〈
f−1(y), pub

〉
, where y

somehow depends on the message signed (and pub) and f is some public trapdoor permutation
(typically RSA). Interestingly, all these signature schemes can be proven asymptotically secure
for an arbitrary trapdoor permutation f , but their exact security seems to be significantly better
for special trapdoor permutations like RSA. This leads to two natural questions: (1) can the
asymptotic security analysis be improved with general trapdoor permutations?; and, if not, (2)
what general cryptographic assumption on f — enjoyed by specific functions like RSA — is
“responsible” for the improved security?

We answer both these questions. First, we show that if f is a “black-box” trapdoor per-
mutation, then the poor exact security is unavoidable. More specifically, the “security loss” for
general trapdoor permutations is Ω(qhash), where qhash is the number of random oracle queries
made by the adversary (which could be quite large). On the other hand, we show that all
the security benefits of the RSA-based variants come into effect once f comes from a family of
claw-free permutation pairs. Our results significantly narrow the current “gap” between general
trapdoor permutations and RSA to the “gap” between trapdoor permutations and claw-free per-
mutations. Additionally, they can be viewed as the first security/efficiency separation between
these basic cryptographic primitives. In other words, while it was already believed that certain
cryptographic objects can be built from claw-free permutations but not from general trapdoor
permutations, we show that certain important schemes (like FDH and PSS) provably work with
either, but enjoy a much better tradeoff between security and efficiency when deployed with
claw-free permutations.

1 Introduction

FDH-like Signature Schemes. In 1993, Bellare and Rogaway [BR93] formalized the well-
known “hash-and-sign” paradigm for digital signature schemes by using the random oracle model.
Specifically, they showed that if f is a trapdoor permutation and RO is a random function from
{0, 1}∗ to the domain of f , then signing a message m via f−1(RO(m)) is secure. This signature
scheme was subsequently called “Full-Domain-Hash” or FDH.

In 1996, Bellare and Rogaway [BR96] pointed out that no tight security reduction from breaking
FDH to inverting f was known. The best known security reduction lost a factor of qhash + qsig in
security (qhash and qsig represent the number of queries the forger makes to RO and to the signing

∗New York University Computer Science, 251 Mercer Street, New York NY 10012
USA,http://www.cs.nyu.edu/~dodis/

†Boston University Computer Science, 111 Cummington Street, Boston MA 02215
USA,http://www.cs.bu.edu/~reyzin/

1

oracle, respectively). This meant that the inverter could invert f with much lower probability
than the probability of forgery. This in turn required one to make a stronger assumption on f ,
potentially increasing key size and losing efficiency.

To overcome this problem in case the trapdoor permutation is RSA (or Rabin), [BR96] proposed
to hash the message with a random seed and format the result in a particular way (to fit it into the
domain) before putting it through the permutation. The resulting scheme was thus probabilistic
even when RO was fixed; it was termed PSS for “Probabilistic Signature Scheme.” The security
reduction for PSS (analyzed with RSA) is essentially lossless.

A natural question thus arose: was PSS necessary? In other words, could it be that a lossless
security reduction for RSA-FDH was simply overlooked? In 2000, Coron [Cor00] found a better
reduction for RSA-FDH that lost a factor of qsig (instead of (qhash + qsig)), suggesting that perhaps
further improvements were possible. However, in 2002 Coron [Cor02] answered the question by
showing that any black-box reduction for RSA-FDH had to lose a factor of at least qsig, thus
justifying the necessity of PSS. In the same paper, he also introduced a scheme called PFDH
(for “Probabilistic Full-Domain Hash”), which signs m by computing

〈
RSA−1(RO(m‖r)), r〉 for

a random r. This scheme is essentially PSS without the complicated formatting (and hence with
slightly longer outputs), but with the same tight security.
From Generic Assumption to RSA. While in 1993 [BR93] FDH was introduced to work with
any trapdoor permutation, in 1996 [BR96] PSS, and in 2002 [Cor02] PFDH were considered only
for RSA. Moreover, in 2002 [Cor00] the improved security reduction for FDH was only shown with
RSA as well. This shift from generic assumptions to specific ones, while motivated by practical
applications of the constructions, obscured what it was exactly about RSA that made PSS and PFDH
reductions nearly tight, and accounted for the better security reduction for FDH. It is beneficial
to consider which properties of RSA are crucial here, and which are merely incidental. Among
other potential insights to be gained from such a consideration, is the possibility of using FDH,
PSS or PFDH with other permutations. To emphasize this point and to avoid further confusion, we
will denote by FDH, PFDH and PSS the signature schemes above considered with general trapdoor
permutation f , and by RSA-FDH, RSA-PFDH, RSA-PSS the specific variants with f being RSA.
Our Contribution. We consider the question of identifying the general cryptographic assump-
tions that make the aforementioned efficient security reductions possible. Because all these schemes
can be easily proven asymptotically secure with any trapdoor permutation f , it is natural to consider
whether trapdoorness of f is the only security assumption necessary for a tight security reduction.
The answer is “no”: we show that a tight security reduction is impossible for FDH, PFDH, PSS,
and in fact any scheme that consists of applying f−1 to the result of applying the random oracle
to the message (possibly formatted with some randomness), if the scheme is to be analyzed with a
general “black-box” trapdoor permutation f . Moreover, any black-box security reduction for such
schemes has to lose a factor of qhash with a generic black-box trapdoor permutation f : thus, the
current security analysis for generic FDH, PFDH and PSS cannot be improved.

We also show that the general cryptographic assumption that makes the security proof for the
schemes PSS/PFDH tight, and the improved security proof for FDH [Cor00] work, is the assumption
of claw-free permutations. In other words, while all three schemes are asymptotically secure with
any trapdoor permutation f , the exact security is dramatically improved once f comes from a
family of claw-free permutations (and the bounds are exactly the same as one gets with RSA)! We
remark that from a technical point, the proof of security with general claw-free permutations is
going to be almost completely identical to the corresponding proof with RSA. Indeed, we are not
claiming that we found a new proof. Instead, our goal is to find an elegant general assumption on

2

f so that essentially the same (in fact, conceptually simpler!) proof works.1

Claw-Free vs. Trapdoor. Our results also shed new light on the relationship between claw-
free and trapdoor permutations. So far, it was already believed that the existence of claw-free
permutations is a strictly stronger complexity assumption than the existence of trapdoor permuta-
tions. For example, it is known how to construct collision-resistant hash functions (CRHF) [Dam87]
and (non-interactive) trapdoor commitments [KR00] based on claw-free permutations, but no such
constructions from trapdoor permutations seem likely. In fact, Simon [Sim98] showed a black-box
separation between the existence of one-way permutations and the existence of CRHF’s, and his
result seems to extend to trapdoor permutations. Coupled with the above-mentioned construc-
tion of CRHF from claw-free permutations, we get a plausible separation between the existence of
claw-free permutations and trapdoor permutations.

Our results provide another, quite different way to separate claw-free permutations from trap-
door ones. Namely, instead of showing that something constructible with claw-free permutations
(e.g., CRHF) is not constructible with trapdoor ones, we show that claw-free permutations can be
provably more efficient (or, equivalently, more secure) for some constructions (e.g., those of FDH-
like signature schemes) than trapdoor ones. In other words, a stronger assumption provides better
exact security/efficiency than a weaker one, even though both of them work asymptotically. To the
best of our knowledge, this is the first separation of the above form, where a stronger primitive is
provably shown to improve security of a scheme already working with a slightly weaker primitive.
A Word on Black-Box Lower Bounds. We briefly put our black-box separation in relation to
existing black-box lower bounds. Originating with the work of Impagliazzo and Rudich [IR89], sev-
eral works (e.g., [Sim98, GMR01]) showed impossibility of constructing one primitive from another.
In contrast, several other works (e.g. [KST99, GT00, GGK02]) showed the efficiency limitations
of constructing one cryptographic primitive from another. On the other hand, the recent work
of Coron [Cor02] showed that the existing security analysis of a certain useful scheme cannot be
improved, if the reduction accesses the adversary in a black-box way. In our work, we show that
the existing security analysis cannot be improved when based on a general complexity assumption,
even though it can be improved in (quite general, but still) special cases.

2 Definitions

We let PPT stand for probabilistic polynomial time, and negl(k) refer to some negligible function
in the a parameter k. The random oracle model assumes the existence of a publicly accessible truly
random function RO : {0, 1}∗ → {0, 1}. Using trivial encoding tricks, however, we can always
assume that RO(·) will return as many truly random bits as we need in a given application.

2.1 Trapdoor and Claw-free Permutations

Definition 1 A collection of permutations F = {fi : Di → Di | i ∈ I} over some index set I ⊆
{0, 1}∗ is said to be a family of trapdoor permutations if:

• There is an efficient sampling algorithm TD-Gen(1k) which outputs a random index i ∈
{0, 1}k ∩ I and a trapdoor information TK.

1A good analogy could be to look at the famous Cauchy-Schwartz inequality in mathematics stating ‖a‖ · ‖b‖ ≥
〈a, b〉. This inequality was originally proved for the case of real vectors under Euclidean norm. However, once one
generalizes this proof to arbitrary Hilbert spaces, the proof actually becomes more transparent, since one does not
get distracted by the specifics of real numbers, concentrating only on the essential properties of inner product spaces.

3

• There is an efficient sampling algorithm which, on input i, outputs a random x ∈ Di. We
write x← Di as a shorthand for running this algorithm.

• Each fi is efficiently computable given index i and input x ∈ Di.

• Each fi is efficiently invertible given the trapdoor information TK and output y ∈ Di. Namely,
using TK one can efficiently compute (unique) x = f−1

i (y).

• For any probabilistic algorithm A, define the advantage AdvFA(k) of A as

Pr[x′ = x | (i,TK) ← TD-Gen(1k), x← Di, y = fi(x), x′ ← A(i, y)]

If A runs in time at most t(k) and AdvFA(k) ≥ ε(k), then A is said to (t(k), ε(k))-break F . F
is said to be (t(k), ε(k))-secure if no adversary A can (t(k), ε(k))-break it. In the asymptotic
setting, we require that the the advantage of any PPT A is negligible in k. Put differently, fi
is hard to invert without the trapdoor TK.

A classical example of a trapdoor permutation family is RSA, where TD-Gen(1k) picks two random
k/4-bit primes p and q, sets n = pq, ϕ(n) = (p − 1)(q − 1), picks random e ∈ Z

∗
ϕ(n), sets d =

e−1 mod ϕ(n) and outputs i = (n, e), TK = d. Here Di = Z
∗
n, fi(x) = xe mod n, f−1

i (y) =
yd mod n. The RSA assumption states that this F is indeed a trapdoor permutation family.

Remark 1 When things are clear from the context, we will abuse the notation (in order to “sim-
plify” it) and write: f for fi, D or Df for Di, A(f, . . .) for A(i, . . .), f ← F for (i← I∩{0, 1}k; f =
fi), and (f, f−1) ← TD-Gen(1k) for (i,TK) ← TD-Gen(1k). Also, we will sometimes say that f by
itself is a “trapdoor permutation”.

Definition 2 For an index set I ⊆ {0, 1}∗, a collection of pairs of functions C =
{(fi : Di → Di, gi : Ei → Di) | i ∈ I} is a family of claw-free permutations if:

• There is an efficient sampling algorithm CF-Gen(1k) which outputs a random index i ∈
{0, 1}k ∩ I and a trapdoor information TK.

• There are efficient sampling algorithms which, on input i, output a random x ∈ Di and a
random z ∈ Ei. We write x← Di, z ← Ei as a shorthand.

• Each fi (resp. gi) is efficiently computable given index i and input x ∈ Di (resp. z ∈ Ei).

• Each fi is a permutation which is efficiently invertible given the trapdoor information TK and
output y ∈ Di. Namely, using TK one can efficiently compute (unique) x = f−1

i (y).

• Each gi induces a uniform distribution over Di when z ← Ei and y = gi(z) is computed.

• For any probabilistic algorithm B, define the advantage of B as

AdvCB(k) = Pr[fi(x) = gi(z) | (i,TK) ← CF-Gen(1k), (x, z) ← B(i)]

If B runs in time at most t(k) and AdvCB(k) ≥ ε(k), then B is said to (t(k), ε(k))-break C. C
is said to be (t(k), ε(k))-secure if no adversary B can (t(k), ε(k))-break it. In the asymptotic
setting, we require that the the advantage of any PPT B is negligible in k. Put differently, it
is hard to find a “claw” (x, z) (meaning fi(x) = gi(z)) without the trapdoor TK.

4

We remark that the usual definition in fact assumes that Ei = Di, each gi is also a permutation,
and the generation algorithm also outputs a trapdoor TK′ for gi. We do not need this extra
functionality for our application, which is why we use our slightly more general definition.

We also remark that a claw-free permutation family C = {(fi, gi)} immediately implies that
the corresponding family F def= {fi} is a trapdoor permutation family. Indeed, an inverter A for F
immediately implies a claw-finder B for C who feeds A a random challenge y = gi(z), where z ← Ei:
finding x = f−1

i (y) then implies that fi(x) = gi(z). Moreover, the reduction is tight: AdvCB = AdvFA .
We will say that the resulting trapdoor permutation family F = F(C) is induced by C.

Several examples of claw-free permutations will be given in Section 5. We briefly mention
just one example based on RSA. CF-Gen(1k) runs TD-Gen(1k) to get (n, e, d), also picks a random
y ∈ Z

∗
n, sets i = (n, e, y), TK = d and fi(x) = xe mod n, gi(z) = yze mod n. Finding a claw (x, z)

implies y = (x/z)e mod n, which implies inverting RSA on a random input y. Thus, this family is
claw-free under the RSA assumption. Notice, the induced trapdoor permutation family is exactly
the regular RSA family.

Remark 2 When things are clear from the context, we will abuse the notation (in order to “sim-
plify” it) and write: f/g for fi/gi, D/E or Df/Eg for Di/Ei, A(f, g, . . .) for A(i, . . .), (f, g) ← C
for (i ← I ∩ {0, 1}k; f = fi; g = gi), and (f, f−1, g) ← CF-Gen(1k) for (i,TK) ← CF-Gen(1k).
Also, we will sometimes say that f by itself is a “claw-free permutation”, and (f, g) is a “claw-free
pair”.

2.2 Full Domain Hash and Related Signature Schemes

We first define the notion of a signature scheme and its security, and then describe the specific
schemes considered in this paper.
Syntax. A signature scheme consists of three efficient algorithms: S = (Sig-Gen,Sig,Ver). The
algorithm Sig-Gen(1k), where k is the security parameter, outputs a pair of keys (SK,VK). SK is
the signing key, which is kept secret, and VK is the verification key which is made public. The
randomized signing algorithm Sig takes as input a key SK and a message m from the associated
message space M, internally flips some coins and outputs a signature σ; we write σ ← SigSK(m).
We will usually omit SK and write σ ← Sig(m). The deterministic verification algorithm Ver takes
as input the messagem, the signature σ, the public key VK, and outputs the answer a which is either
succeed (signature is valid) or fail (signature is invalid). We require that Ver(m,Sig(m)) = succeed,
for any m ∈ M.

In case a signature scheme (like most of the schemes considered in this paper) is build in the
random oracle model, we allows both Sig and Ver to use the random oracle RO.
Security of Signatures. The security of signatures addresses two issues: what we want to
achieve (security goal) and what are the capabilities of the adversary (attack model). In this
paper we will talk about the the most common security goal: existential unforgeability [GMR88],
denoted by UF. This means that any PPT adversary C should have a negligible probability of
generating a valid signature of a “new” message. To clarify the meaning of “new”, we will consider
the following two attack models. In the no message attack (NMA), C gets no help besides VK.
In the chosen message attack (CMA), in addition to VK, the adversary C gets full access to the
signing oracle Sig, i.e. C is allowed to query the signing oracle to obtain valid signatures σ1, . . . , σn

of arbitrary messages m1, . . . ,mn adaptively chosen by A (notice, NMA corresponds to n = 0). C
is considered successful only if it forges a valid signature σ of a message m not queried to signing
oracle: m �∈ {m1 . . .mn}. We denote the resulting asymptotic security notions by UF-NMA and

5

UF-CMA, respectively. Quantitatively, we define AdvSC(k) as

Pr[VerVK(m,σ) = succeed | (SK,VK) ← Sig-Gen(1k), (m,σ) ← CSigSK(·)(VK)]

(where m should not be queried to the signing oracle Sig(·)). Of course, in the random oracle model
the adversary is also given oracle access to RO.

Definition 3 The adversary C is said (t(k), qhash(k), qsig(k), ε(k))-break S, if C runs is time
at most t(k), makes at most qhash(k) hash queries to RO, qsig(k) signing queries to Sig(·), and
AdvSC(k) ≥ ε(k). If no adversary C can (t(k), qhash(k), qsig(k), ε(k))-break S, then S is said to be
(t(k), qhash(k), qsig(k), ε(k))-secure. In asymptotic terms, S is UF-CMA-secure if AdvSC(k) = negl(k)
for any PPT C, and UF-NMA-secure if AdvSC(k) = negl(k) for any PPT C which does not make
any signing queries.

FDH-like Schemes. The random oracle based signatures we will consider all have the following
simple form. The verification key will be the description of some trapdoor permutation f , the
secret key is the corresponding inverse f−1. To sign a message m, the signer first transforms m
into a pair (y, pub) ← T (m) (where pub could be empty). This transformation T only utilizes the
random oracle (and possibly some fresh randomness), but not anything related to f or f−1. It also
has the property that one can easily verify the validity of the triple (m, y, pub). Then the signer
computes x = f−1(y) and returns σ = (x, pub). On the verifying side, one first computes y = f(x)
and then verifies the validity of the triple (m, y, pub). Of course, for the resulting signature to
be secure, the transformation T should satisfy some additional properties. Intuitively, the value y
should be random (since f is hard to invert on random inputs) for every m, and also “independent”
for different m’s (more or less, this way the inverse of y(m) should not give any information about
the inverse of y(m′)). Transformations T satisfying the above informally stated properties do not
seem to exist in the standard model, but are easy to come up with in the random oracle model.

Below we describe three popular signature schemes of the above form: Full Domain Hash (FDH
[BR93]), Probabilistic Full Domain Hash (PFDH [Cor02]), and Probabilistic Signature Scheme
(PSS [BR96]). We remark that another family of similar schemes is described in [MR02]. These
signatures utilize the “swap” method, and are designed for the purpose of improving the exact
security of several Fiat-Shamir based signature schemes [FS86, GQ88, OS90, Mic94]. However,
one can observe that the resulting signature schemes can be all viewed as less efficient and more
complicated variants of the PFDH scheme, so we do not describe them. In the following, f is a
trapdoor permutation with domain D, public key is f and secret key is f−1.

FDH: Sig(m) returns σ = f−1(RO(m)), and Ver(m,σ) checks if f(σ) = RO(m) (we assume that
RO returns a random element of D, by implicitly running the corresponding sampling algo-
rithm with the randomness returned by RO).

PFDH: This signature is parameterized by the length parameter k0. Sig(m) picks a random r ∈
{0, 1}k0 and returns σ =

〈
f−1(RO(m‖r)), r〉, and Ver(m,σ) checks if f(σ) = RO(m‖r)

(again, we assume that RO returns a random element of D). Notice that FDH is a special
case with |r| = k0 = 0. In general, we will see that the length of “salt” r plays a crucial role
in the exact security of PFDH.

PSS: This signature is parameterized by two length parameters k0 and k1. For convenience, we
will assume that it takes between n− 1 and n bits to encode an element of D, so that every
(n − 1)-bit number is a valid element of D (this is not crucial, but makes the description

6

simpler). We also syntactically split the random oracle RO into three independent random
oracles H : {0, 1}∗ → {0, 1}k1 , G1 : {0, 1}k1 → {0, 1}k0 and G2 : {0, 1}k1 → {0, 1}n−k0−k1−1.
Then, Sig(m) picks a random salt r ∈ {0, 1}k0 , computes w = H(m‖r), r∗ = G1(w) ⊕ r and
returns σ = f−1(0‖w‖r∗‖G2(w)). The verification Ver(m,σ) computes y = f(σ) ∈ D, splits
y = b‖w‖r∗‖γ, recovers r = G1(w) ⊕ r∗, and accepts if H(m‖r) = w, G2(w) = γ and b = 0.

We remark that all these schemes makes sense for arbitrary trapdoor permutation families. To
emphasize a specific family F , we sometimes write F-FDH, F-PFDH, F-PSS. In particular, when
F = RSA, we get 3 specific schemes RSA-FDH, RSA-PFDH, RSA-PSS.
Security of FDH-like Signatures. All the FDH-like signatures above can be shown asymp-
totically UF-CMA-secure for arbitrary trapdoor permutation family F . Unfortunately, in terms of
exact security, the situation is not entirely satisfactory. Specifically, if F is (t′, ε′)-secure, then one
can show (t, qhash, qsig, ε)-security of any of the above signature schemes where roughly t ∼ t′ and
ε ∼ ε′qhash. Put differently, in all three schemes above, the “generic” analysis loses a very large
factor qhash in terms of exact security. Intuitively, the security reduction has to “guess” which of
the qhash random oracle queries made by the hypothetical signature breaker is “relevant” for the
final forgery, and respond to this query in a manner that will help inverting the trapdoor permu-
tation f on a challenge y. In case this guess is unsuccessful, the forgery of the breaker is useless.
Unfortunately, we will show in Section 4 that this large security loss is inevitable when dealing with
arbitrary trapdoor permutations.

On the other hand, the situation is much better for the RSA-based examples of the above three
schemes. Specifically, for RSA-FDH we one can get t ∼ t′ and ε = O(ε′qsig) [Cor00] (and [Cor02]
showed that this analysis cannot be improved for RSA). Namely, even though the reduction is still
not tight (i.e., ε� ε′), the security loss is only a factor qsig � qhash. On the other hand, RSA-PFDH
and RSA-PSS are tight, i.e. t ∼ t′ and ε ∼ ε′ (provided the salt length is somewhat larger than the
very moderate quantity log qsig [Cor02]), which dramatically improves on the the generic security
loss of qhash.

To summarize, generic bounds for FDH, PFDH and PSS are much worse than the specific bounds
when F = RSA. One of the main objectives of this paper was to try finding a general reason for
this gap. Namely, to find a general condition of F , so that all the benefits of RSA come into effect
with any F satisfying this condition. As we show next in Section 3, the needed condition is that
F is induced by some family C of claw-free permutations. Indeed, we saw in Section 2.1 that RSA
could be viewed as being induced by the some natural claw-free family, which explains much tighter
exact security.

3 Claw-Free Permutations Yield Improved Security

Why claw-free permutations seem useful. The precise reason why claw-free permutations
are useful for FDH-like schemes will be obvious from the proof we present later. Here, however,
we give some preliminary observations why claw-freeness seems to be relevant. First, assume we
are not working in the random oracle model. The most basic signature scheme that comes to
mind is σ = f−1(m), where f is a trapdoor permutation. Unfortunately, it is trivially forgeable
since every σ is a valid signature of m = f(σ). The next fix would be to utilize some function g
and to output σ = f−1(g(m)). Notice, finding a forgery (m,σ) for this signature is equivalent to
finding m and σ such that f(σ) = g(m), which exactly amounts to finding a claw (σ,m) for the
function pair (f, g). Thus, the above signature scheme is UF-NMA-secure iff (f, g) comes from a
pair of claw-free permutations! In fact, the first UF-CMA signature scheme [GMR88] was based on

7

claw-free permutations (and a non-trivial extension of the simple observation above), before more
general UF-CMA constructions were obtained [BM88, NY89, Rom90].

Alternatively, let us return to the random oracle model and consider the FDH scheme (in fact,
even more general PFDH scheme). The adversary C successfully forges a signature of some message
if it can come up with σ and τ = m‖r, such that f(σ) = RO(τ). In other words, C has to find a
claw (σ, τ) for the function pair (f,RO)! Of course, the family {(f,RO)} is not a regular family of
claw-free permutations, since the random oracle is not a regular function.2 In the security proof,
however, we may (and will in a second) simulate the random oracle by picking a random z and
setting RO(τ) = g(z). In this case, any forgery σ, τ by C will result in a claw (σ, z) for a “regular”
claw-free pair (f, g).
Our Result. We show that all the security (and efficiency) benefits of RSA-FDH, RSA-PFDH
and RSA-PSS over using general trapdoor permutation family F come into effect once F is induced
by a family C of claw-free permutations. In particular, the security loss for FDH becomes only
O(qsig), while the reductions for PFDH and PSS are essentially tight (once the salt length is at
least log qsig). For concreteness of the discussion, we concentrate on a representative case of PFDH.
Similar discussion holds for FDH and PSS. The theorem below contrasts our proof with claw-free
permutations with a much looser (yet inevitably so) proof with general trapdoor permutations.

Theorem 1 (Security of PFDH)

(a) Assume C is a claw-free permutation which is (t′, ε′)-secure, and let F = F(C) be the induced
trapdoor permutation family. Then F-PFDH with salt length3 k0 ≥ log qsig is (t, qhash, qsig, ε)-
secure, where4 t = t′− (qhash + qsig +1) · poly(k) and ε = ε′/(1− qsig2−k0), so that ε ∼ ε′ (up
to a small constant factor) when k0 > log qsig.

(b) In contrast, if F is a general (t′, ε′)-secure family of trapdoor permutations, then for any
salt length k0, F-PFDH is only (t, qhash, qsig, ε)-secure, where t = t′ − (qhash + qsig + 1) ·
poly(k) and ε = ε′(qhash + 1).

Proof: We start with more interesting part (a). Let C be the forger for F-PFDH which (t, qhash, qsig, ε)-
breaks it. We construct a claw-finder B for C. B gets the function pair (f, g) as an input. It makes
f the public key for PFDH and gives it to C, keeping g for itself. It also prepares qsig random
elements r1 . . . rqsig ∈ {0, 1}k0 — these will be the salts of the messages it will sign for C. We call
this initial list L (this list will shrink as we move along).

To respond to a hash query m′‖r′, we distinguish three cases. First, if the value is already
defined, we return it. Else, if r′ ∈ L, B picks and remembers a random x′, and returns RO(m′‖r′) =
f(x′) to C. Finally, if r′ �∈ L, B picks and remembers a random z′, and returns RO(m′‖r′) = g(z′)
to C.

If the forger makes a signature query mi, we pick the next element ri from the current list,
and see if RO(mi‖ri) is defined. If so, it is equal to f(xi) for some xi, so we return 〈xi, ri〉 as the
signature of mi. Else, we pick a random xi, define RO(mi‖xi) = f(xi) and return 〈xi, ri〉 to C. In
either case, we remove ri from the list L.

2We could extend the notion of claw-free permutations to the random oracle model, where we allow the function
g (as well as the adversary) to depend on the random oracle. In this setting, for any trapdoor permutation f , the
security of PFDH indeed implies that the pair (f,RO) results in a family of such “oracle claw-free permutations”
(again, with a large “security loss” qhash). This is to be contrasted with the regular model, where the existence of
trapdoor permutations is unlikely to imply the existence of claw-free permutations.

3As shown in [Cor02], the analysis can be extended even to k0 < log qsig, but the reduction stops being tight.
4Here poly(k) is a fixed polynomial depending on the time it takes to evaluate f and g in C.

8

Eventually, (with probability ε) C will output a forgery 〈x, r〉 of some message m. Without loss
of generality we assume that C asked the hash query m‖r before (if not, B can do it for C; this
increases the number of hash queries by one). If the answer was g(z), we get that f(x) = g(z), so
B outputs the claw (x, z). Otherwise (the answer was f(x)), we did not learn anything, so B fails.

We see that the probability ε′ that B finds a claw is εPr(E), where E is the event that the
forgery corresponded to g(z) rather than to f(x), so that B does not fail. It remains to show that
Pr(E) ≥ 1 − qsig2−k0 . We notice, however, that the only way that B will fail is if the value r was
still in the list L at the time the hash query m‖r was asked. But at this point C has no information
about at most qsig totally random elements in L (remember, an element is discarded from L after
each signing query). So the probability that r ∈ L is at most qsig2−k0 , completing the proof.

Finally, we briefly sketch the proof of (b). This proof is essentially from [BR93], and is given
mainly for the purposes of contrasting it with the proof of (a) above. From the signature forger C,
we need to construct an inverter A for F . A picks a random index (∈ {1 . . . qhash + 1}, hoping that
the (-th hash query will be on a new value (not defined in a previous hash query or signature query),
and that C will forge a signature based on it (note that if C is successful, such (has to exist).
For all hash queries j except for the (-th one, A responds by picking a random x′ and returning
f(x′) (unless the value is already defined, in which case this value is returned). For the (-th one, A
responds with its challenge y (unless the hash value is already defined through a previous hash or
signing query, in which case A fails). To answer a signing query mi, A picks a random ri and xi and
defines RO(mi‖ri) = f(xi) (unless it was already defined, in which case it uses the corresponding
answer). It then returns 〈xi, ri〉 as the signature of mi. Finally, C returns a forgery 〈x, r〉 for some
message m with probability ε. If the (-th hash query happens to be exactly m‖r, x is the correct
preimage of the challenge y. Otherwise, A fails. It is easy to see that A’s simulation of the random
oracle is perfect and reveals no information about (. Thus, A correctly guesses (with probability
1/(qhash + 1), obtaining a total probability of ε/(qhash + 1) of inverting y. ✷

Notice, the proof of part (a) is indeed identical to the the corresponding proof for RSA [Cor02],
except we abstract away all the specifics about RSA. As before, the fact that k0 > log qhash ensures
that we can tell apart the hash queries related to qsig signing queries from those maybe related to
the forgery. But we see the crucial way the proof uses the claw-freeness of C: the “signing-related”
queries get answered with f(x), while the “forging-related” queries get answered with g(z) (where
x and z are random to ensure a random answer). In particular, there is no need to guess in advance
a single “forging-related” query which actually happens to be the one we need: no matter which
of these queries will result in the forgery x, one still gets a claw (x, z) such that f(x) = g(z).
This should be contrasted with the standard proof of part (b), where we have to guess this query
in advance in order to embed our challenge y in the answer. As we show in the next section,
the security loss of qhash is optimal for general trapdoor permutations, so the above “guessing”
argument cannot be improved.

4 Trapdoor Permutations Cannot Yield Better Security

In this section we explain our “black-box” model and the limitations of proving tighter security
results for FDH-like schemes based on general trapdoor permutations. Specifically, our argument
will show that the security loss of Ω(qhash) is inevitable for FDH, PFDH, PSS, showing the tightness
of the kind of analysis we used in part (b) of Theorem 1. In order to unify our argument, we
consider any signature scheme of the form

〈
f−1(y), pub

〉
, where (y, pub) ← T (m) is obtained from

the messagem using a constant (in our schemes, one or two) number of random oracle calls, possibly

9

some additional randomness, but without utilizing f or f−1. The only thing we require from T
in our proof is that for any distinct messages m1 . . .mq, setting 〈yj , pubj〉 ← T (mj) will result in
all distinct yj ’s with all but negligible probability (over the choices of the random oracle, for any
q polynomial in the security parameter). In the following, we will call any signature scheme S (of
the above form) utilizing such “collision-resistant” mapping T legal. Certainly, FDH, PFDH and
PSS are all legal.

Assume now that one claims to have proven a statement of the form: “if F is (t′, ε′)-secure,
then some particular legal S is (t, qhash, qsig, ε)-secure, for any trapdoor permutation family F .”
We remark that our lower bound will apply even for proving much weaker UF-NMA security (i.e.,
disallowing the adversary to make any signing queries), so will assume throughout that qsig = 0 and
denote q = qhash. A natural proof for such a statement will give a reduction R from any adversary
C which (t, q, 0, ε)-breaks the unforgeability of S in the random oracle model, to a forger A which
(t′, ε′)-breaks the one-wayness of f in the standard model. Intuitively, this reduction R (which we
sometimes identify with A since the goal of R is to construct A) is black-box if it only utilizes the
facts that: (1) f is a trapdoor permutation, but the details of f ’s implementation are unimportant;
(2) C (t, q, 0, ε)-breaks S whenever it is given oracle access to a true random oracle (which has to
be “simulated” by R), but the details how C does it are unimportant. In other words, there are
two objects that a “natural” reduction R (or inverter A) utilizes in a “black-box” manner: the
trapdoor permutation f and the forger C. We explain our modeling of each separately.

4.1 Modeling Black-Box Trapdoor Permutation Family F
Following previous work [GT00, GGK02], we model black-box access to a trapdoor permutation F
by three oracles (G,F, F−1), available to all the participants of the system. For simplicity, we will
assume that the domain of all our functions is D = {0, 1}k, both the index i and the trapdoor TK
also range over {0, 1}k, and are in one-to-one correspondence with each other. F is the forward
evaluation oracle, which takes the index i of our trapdoor permutation fi and the input x, and
simply returns the value of fi(x). G takes the trapdoor value TK and returns the index i of the
function fi whose trapdoor is TK (informally, knowing the trapdoor one also knows the function,
but not vice versa). Finally, F−1 takes the trapdoor TK and the value y and returns f−1

i (y), where
i = G(TK). Intuitively, any choice of the oracles G,F, F−1 will yield a trapdoor permutation as
long as:

(a) G(·) is a permutation over {0, 1}k.

(b) F (i, ·) is a permutation over {0, 1}k for every index i.

(c) F−1(TK, ·) is a permutation over {0, 1}k for every trapdoor TK.

(d) F−1(TK, F (G(TK), x)) = x, for any x,TK ∈ {0, 1}k.

(e) For any A, let AdvFA(k) be

Pr[x′ = x | x,TK ← {0, 1}k, i = G(TK), y = F (i, x), x′ ← AG,F,F−1
(i, y)]

Then we want to require that for any A making polynomial in k number of queries to
G,F, F−1, we have AdvFA(k) = negl(k). For exact security, we say that F is (qG, qF , qF−1 , ε)-
secure, if AdvFA ≤ ε, for any A making at most qG queries to G, qF queries to F and qF−1

10

queries to F−1.5

Put differently, we simply rewrote Definition 1, except the efficient computation of fi and f−1
i

(the latter with the trapdoor) are replaced by oracle access to the corresponding oracles, and the
notion of “polynomial time” became “polynomial query complexity”.6 In particular, any choice
of (G,F, F−1) satisfying conditions (a)-(e) above forms a valid “black-box” trapdoor permutation
family. And, therefore, our black-box reduction from forger C to inverter A for F should work with
any such black-box trapdoor permutation. We choose a specific very natural black-box trapdoor
permutation for this purpose. G is simply a random permutation, and so is F (i, ·) (for any i, and
independently for different i’s). Finally, F−1(TK, y) is defined in an obvious way so as to satisfy
(d) (in particular, it is also a random permutation for any value of TK).

With respect to this family, we can compute the expected advantage of any inverter A (taken
over the random choice of G,F, F−1). For that, assume that A(i, y) makes qG queries to G, qF
queries to F and qF−1 to F−1. In fact, for future use7 we will also allow A to make qF̃−1 queries to

the new oracle F̃−1(i′, y′) def= F−1(G−1(i′), y′), with the obvious restriction that this oracle cannot
be called on input (i, y). Without loss of generality, let us assume that A never makes a call to
F−1(TK′, ·) before first inquiring about G(TK′). In this case, since F−1(TK′, ·) is totally random
for every TK′, there is no need for A to ever call the inverse oracle F−1(TK′, y′) more than once:
unless G(TK′) = i, such call is useless for inverting y, and if the equality holds, calling F−1(TK′, y)
immediately inverts y. So we may assume that qF−1 = 0, and A wins if it ever makes a call G(·)
with the “correct” trapdoor TK = G−1(i), and addition to when it correctly inverts y. Then,
naturally extending the definition of AdvFA to also account for querying F̃−1 on inputs different
from (i, y), we show

Lemma 1 E[AdvFA(k)] ≤ qG

2k + qF

2k−qF̃−1
.

Hence, with all but 2−Ω(k) probability, AdvFA(k) = 2−Ω(k), for any PPQ A.

Proof: The first term qG/2k is the probability that A calls G on TK = G−1(i). Assuming that this
did not happen, the best strategy of A is to perform qF̃−1 arbitrary queries to F̃−1(i, ·) (with no
second input equal to y). This will eliminate qF̃−1 values of x as possible preimages of y, so that
there is no need to query F (i, x) for these values of x. Finally, the probability that qF queries to
F will hit one of (2k − qF̃−1) equally likely possibilities for the needed F−1(TK, y) is at most the
second term. ✷

Intuitively, the above result says that a truly random family of permutations forms a family of trap-
door permutations with very high probability, since there is no way to invert a random permutation
other than by sheer luck.

4.2 Modeling Black-Box Forger C

Let us now turn our attention to the black-box way the reduction R can utilize some signature
forger C when constructing the inverter A. (From now on, we identify R and A.) Recall, R is given
an index i for F and a random element y to invert. It is natural to assume that is sets the same

5In the black-box model, time is less important, since the efficiency conditions for certain functionalities are
replaced by having oracle access to these functionalities. So query complexity is a more natural complexity measure
in this setting.

6For this section, we let PPQ stand for “probabilistic polynomial query complexity”.
7Intuitively, this oracle will correspond to the forgeries returned to A by C.

11

public key i for C, and then simply runs C(i) one or more times (possibly occasionally “rewinding”
the state of C, but always leaving i as the public key for S). Of course, R has to simulate for C
the q = qhash random oracle queries, since there is no random oracle in the “world of A”.8 Finally,
somewhere in the latter simulation, A will utilize the challenge y, so that the forgery returned by
C will help A to invert y.

We see that the only thing about C that this kind of reduction is concerned about is the upper
bound q on the number of hash queries made by C, and the forged signature returned by C. In
other words, from R’s perspective, there are q+1 rounds of interaction between between R and C:
q responses to C’s hash queries, followed by a forgery (m,σ, pub) returned by C. Hence, it is very
natural to measure the complexity of the reduction (or the inverter A) as the number of rounds of
interaction it makes with C.9 We will call this complexity qR.

On the other hand, R should succeed in inverting y with the claimed probability ε′ for any
(q, ε)-valid forger C. This means that C is guaranteed to output a forgery to S with probability ε
by making at most q hash queries to R, provided R answers them in a manner “indistinguishable”
for a true random oracle. On the other hand, it is not important (and the success of R should
depend on it) how C managed to obtain the forgery, why it asks some particular hash query, how
long it takes C to decide which next hash query to ask, etc. Therefore, in particular, R should
succeed even when we give (as we will do in our proof below) to C oracle access to the F̃−1 oracle,
which can invert any ỹ that C wishes (this allows C to trivially forge any signature it wants).

Also, we will assume that C can choose randomness in a manner not controllable by R (wlog,
C chooses all the randomness it needs at the very beginning of its run). This requires a bit of
justification. Indeed, it seems natural to give our reduction the ability to run C with different
random tapes. But consider a deterministic C with some particular fixed random tape. In this
case, R should not be able to “know” this fixed tape given only oracle access to C, but should still
work with this C. But now taking an average over all such C’s with a fixed tape, we effectively
get that R should work with a forger who chooses its random tape at the beginning, without R
“knowing” this choice.
Summary. We are almost done with our modeling, which we now summarize. C is allowed to:
(1) choose some arbitrarily large random tape at the beginning (possibly of exponential size since
R should work even with computationally unbounded C); (2) have oracle access to F̃−1, allowing
it to forge arbitrary signatures; (3) make at most q hash queries to R. On the other hand, provided
R answers these queries in a manner indistinguishable from the random oracle, C has to output a
forgery (m,x, pub) (i.e., (m,F (i, x), pub) should pass the verification test) with probability at least
ε. Similarly, R can: (1) interact with C for at most qR rounds; (2) call F at most qF times; (3) call
G at most qG times; (4) rewind C to any prior point in C’s run; (5) start a new copy of C where
C will choose fresh randomness. Finally, R has to: (1) “properly” answer hash queries of C; (2)
invert the challenge y with probability at least ε′. Our objective is to prove an upper bound on ε′

as a function of qR, qF , qG, q, ε in the black-box model outlined above. We do it in the next section.
8Recall, to get a stronger result we assume that C makes no signing queries.
9Of course, we should also remember the quantities qG and qF , having to do with the black-box access to a

trapdoor permutation. We will return to those later.

12

4.3 Our Bound

Theorem 2 For any legal signature scheme S analyzed in the black-box model with general trapdoor
permutations, we have

ε′ ≤
(
qG
2k

+
qF

2k − (2qR/q)

)
+ 4 · qR

q
· ε
q

(1)

In particular, for any PPQ reduction R running C at most a constant number of times (i.e.,
qR = O(q)), we have ε′ = O(ε/q), so the reduction loses at least a factor Ω(qhash) in security.

Proof: We describe a particular (q, ε)-legal forger C for S. Recall, to sign m, our signature first
gets (y, pub) ← T (m), and then returns (x, pub), where x = F̃−1(i, y). We also assumed that the
transformation T is such that: (1) it calls the random oracle at most a constant number of times (in
the proof, we assume this number is 1; the large number will only affect constant 4 in Equation (1));
and (2) when invoked with distinct mj ’s, with all but negligible probability all the yj ’s are distinct.

First, C chooses a truly random function H from q/2-tuples of elements of {0, 1}k to a random
index (∈ {1 . . . q/2}. This function will control the index of a forgery that C will compute later.
Next, C uses q hash query calls to obtain (yj , pubj) ← T (mj) (if needed, using some additional
randomness prepared separately from the function H) for q arbitrary, but distinct and fixed mes-
sages m1 . . .mq. If any of the answers yj are the same, C rejects, since we assumed that with a
true random oracle such collision does not happen with all but negligible probability (i.e., that
S is legal). Otherwise, if all of them are distinct, C computes (= H(y1 . . . yq/2), and then, with
probability ε, outputs a forged signature (F̃−1(i, y�), pub�) of m�.

Clearly, this C is (q, ε)-legal, so our reduction R should be able to invert y with this C, with
probability at least ε′. Before arguing that this ε′ must satisfy Equation (1), we observe the
following. The number of times R has to interact with C between any two successive distinct
forgeries is at least q/2. Indeed, unless any of the values y1 . . . yq/2 change, C will return exactly
the same forgery to R, since the function H is fixed by now. So R has to either start a new copy
of C and wait for q steps, or rewind one of the current copies of C to at least some query j ≤ q/2,
somehow change the value yj by returning a different random oracle answer, and then run C for

another q− j ≥ q/2 steps. In particular, R never sees more than N def= 2qR/q different forgeries (in
fact, the actual number is roughly εN , but this is not important).

Let us now estimate the success probability of R. Let E denote the event that C ever returns
the inverse of y to R, i.e. it happens that y� = y for one of the forgeries returned by C. Clearly,
Pr(R succeeds) ≤ Pr(E) + Pr(R succeeds | E) def= p1 + p2. We start with estimating p2. Notice,
since E did not happen, we get that C never called F̃−1(i, y). Thus, combining R and C into one
“super-inverter” A′, we get that A′ made qG calls to G, qF calls to F and at most N calls to F̃−1

on inputs different from (i, y). By Lemma 1, we get that p2 ≤ qG

2k + qF

2k−N
.

As for p1, recall that the number of different forgeries that C can return is at most the number
of times it evaluates H on a different q/2-tuple of values, which in turn is at most N , as we just
argued. Indeed, the input to H predetermines the forgery that C can return, so these inputs should
be different for different forgeries, and it takes R at least q/2 steps to “change” the input to H.
Take any one of these (at most) N times with the input to H being y1 . . . yq/2. Since C will never
proceed with a forgery if at least two of the yj ’s are the same, at most one of the first q/2 values of
yj can be equal to y. Since H is truly random function, the probability that it will return (such
that y� = y is at most 2/q. Moreover, even if this event happened, the probability it inverts this y
is ε, giving an overall probability of at most 2ε/q of inverting y, each time C might output a new

13

forgery. By the union bound, the overall probability of the event E is p1 ≤ N · 2ε/q. Combining
the bounds we got for p1 and p2, we get Equation (1). ✷

Intuitively, the argument above said that the reduction must guess the “relevant” hash query where
it can give the answer dependent on the challenge y. And it can do it for only one query since the
signature S is legal and there is no “structure” to a random trapdoor permutation which would
allow to use random but “related” values of y for the other hash queries. So this guess is correct
with probability only 1/q. Finally, we remark that the term qR/q in Equation (1) can be roughly
interpreted as the number of times our reduction ran C. Not surprisingly, running C from scratch
qR/q times will improve the chances of success by a factor proportional to qR/q, which is indeed
the behavior we see in Equation (1). For qR/q = O(1), however, we see that we lose the factor
Ω(q).

5 Some Constructions of Claw-free Permutations

Since we know so few number-theoretic constructions of trapdoor permutations (essentially RSA,
Rabin and Paillier [Pai99]), we know very few constructions of claw-free permutations as well. Luck-
ily, every current trapdoor permutation we know in fact yields some natural claw-free permutation.
On the other hand, we mentioned that this implication from trapdoor to claw-free permutations
is very unlikely to hold in general. Therefore, in this section we give several general conditions
on trapdoor permutations (enjoyed by currently known trapdoor permutations), which suffice to
imply the existence of claw-free permutations (in fact, via very efficient constructions). These con-
ditions can be viewed as narrowing the gap between the general claw-free permutations and the
very specific ones based on trapdoor permutations like RSA. We also point out at the end of this
section that that not all known claw-free permutations actually follow the general constructions we
present below.
Using Homomorphic Trapdoor Permutations. This is the most natural generalization of
the RSA-based construction presented in Section 2.1. Assume we have a family F of trapdoor
permutations with two group operations + and � so that each f ∈ F is homomorphic with respect
to these operations: f(a+ b) = f(a)� f(b). We can construct the following claw-free permutation
family C out of F . CF-Gen(1k) runs (f, f−1) ← TC-Gen(1k), also picks a random y ∈ D, sets
gy(b) = y � f(b), and outputs (f, f−1, gy). Now finding a claw (a, b) implies that f(a) = y � f(b)
which means that f(a−b) = y, which means that a−b = f−1(y), so we manage to invert a trapdoor
permutation f on a random point y.
Using Random-Self-Reducible Trapdoor Permutations. This is a further generalization
of the previous construction. Assume, there are efficient functions I and O which satisfy the
following conditions. For any output value y ∈ D, picking a random b and applying O(y, b) results
in a random point z ∈ D (notice, O(y, ·) does not have to be a permutation or to be invertible).
Then, if one finds out the value a = f−1(z), applying I(y, a, b) will result in finding the correct value
x = f−1(y). So one effectively reduces the worst-case task of inverting y to an average-case task
of inverting a random z. We say that such f is random-self-reducible (RSR) if O and I satisfying
the above conditions exist. Notice, homomorphic f is RSR via z = O(y, b) def= y � f(b) (which is
actually f(x+ b)). Then a = f−1(z) = x+ b, so we can define I(y, a, b) def= a− b.

We can construct the following claw-free permutation family C out of any RSR trapdoor per-
mutation family F . CF-Gen(1k) runs (f, f−1) ← TC-Gen(1k), also picks a random y ∈ D, sets
gy(b) = O(y, b), and outputs (f, f−1, gy). Now, finding a claw (a, b) implies that f(a) = O(y, b)

14

which means that I(y, a, b) = f−1(y) = x. Thus, we inverted a trapdoor permutation f on a
random point y.
An ad hoc claw-free permutation. Any of the above constructions can be applied to trapdoor
permutations like RSA, Rabin and Paillier. However, we know of some ad hoc constructions of
claw-free permutations which do not follow the above methodology. One such example (based on
factoring Blum-Willams integers) is the original claw-free permutation family of [GMR88]. Here
n = pq, where p ≡ 3 mod 4, q ≡ 7 mod 8, and QR(n) stands for the group of quadratic residues
modulo n. Then we set our domain D = QR(n), and f(a) = a2 mod n, g(b) = 4b2 mod n. If
f(a) = g(b) for a, b ∈ QR(n), then (a − 2b) is divisible by p or q, but not n, which allows one to
factor n.

References

[ACM89] Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing,
Seattle, Washington, 15–17 May 1989.

[BM88] Mihir Bellare and Silvio Micali. How to sign given any trapdoor function. In Goldwasser
[Gol88], pages 200–215.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communication Security, pages 62–73, November 1993. Revised version available from
http://www.cs.ucsd.edu/~mihir/.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures:
How to sign with RSA and Rabin. In Ueli Maurer, editor, Advances in
Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Sci-
ence, pages 399–416. Springer-Verlag, 12–16 May 1996. Revised version appears in
http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[Cor00] Jean-Sébastian Coron. On the exact security of full domain hash. In Mihir Bellare, editor,
Advances in Cryptology—CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 229–235. Springer-Verlag, 20–24 August 2000.

[Cor02] Jean-Sébastian Coron. Optimal security proofs for PSS and other signature schemes.
In Lars Knudsen, editor, Advances in Cryptology—EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 272–287. Springer-Verlag, 28 April–2 May
2002.

[Dam87] Ivan Damg̊ard. Collision-free hash functions and public-key signature schemes. In David
Chaum and Wyn L. Price, editors, Advances in Cryptology—EUROCRYPT 87, volume
304 of Lecture Notes in Computer Science. Springer-Verlag, 1988, 13–15 April 1987.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology—
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer-Verlag, 1987, 11–15 August 1986.

[GGK02] Rosario Gennaro, Yael Gertner, and Jonathan Katz. Bounds on the efficiency
of encryption and digital signatures. Technical Report 2002-22, DIMACS: Center

15

for Discrete Mathematics and Theoretical Computer Science, 2002. Available from
http://dimacs.rutgers.edu/TechnicalReports/2002.html.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trap-
door functions on trapdoor predicates. In 42nd Annual Symposium on Foundations of
Computer Science, Las Vegas, Nevada, October 2001. IEEE.

[Gol88] Shafi Goldwasser, editor. Advances in Cryptology—CRYPTO ’88, volume 403 of Lecture
Notes in Computer Science. Springer-Verlag, 1990, 21–25 August 1988.

[GQ88] Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based
signature scheme resulting from zero-knowledge. In Goldwasser [Gol88], pages 216–231.

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of generic crypto-
graphic constructions. In 41st Annual Symposium on Foundations of Computer Science,
Redondo Beach, California, November 2000. IEEE.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In ACM [ACM89], pages 44–61.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, pages 143–154. The Internet Society, 2000.

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the efficiency of one-
way permutation-based hash functions. In 40th Annual Symposium on Foundations of
Computer Science, New York, October 1999. IEEE.

[Mic94] Silvio Micali. A secure and efficient digital signature algorithm. Technical Report
MIT/LCS/TM-501, Massachusetts Institute of Technology, Cambridge, MA, March
1994.

[MR02] Silvio Micali and Leonid Reyzin. Improving the exact security of digital signature
schemes. Journal of Cryptology, 15:1–18, 2002.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In ACM [ACM89], pages 33–43.

[OS90] Heidroon Ong and Claus P. Schnorr. Fast signature generation with a Fiat Shamir-like
scheme. In I. B. Damg̊ard, editor, Advances in Cryptology—EUROCRYPT 90, volume
473 of Lecture Notes in Computer Science, pages 432–440. Springer-Verlag, 1991, 21–
24 May 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Jacques Stern, editor, Advances in Cryptology—EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science. Springer-Verlag, 2–6 May 1999.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Proceedings of the Twenty Second Annual ACM Symposium on Theory of Computing,
pages 387–394, Baltimore, Maryland, 14–16 May 1990.

16

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions. In Kaisa Nyberg, editor, Advances in Cryptology—
EUROCRYPT 98, volume 1403 of Lecture Notes in Computer Science. Springer-Verlag,
May 31–June 4 1998.

17

