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Abstract
This paper presents a brief and (necessarily) incomplete survey of some notions of entropy

that have been recently used in the analysis of cryptographic constructions. It focuses on min-
entropy and its extensions to the cases when the adversary has correlated information and/or is
computationally bounded. It also presents results that can be used to bound such entropy and
apply it to the analysis of cryptographic constructions.

1 Information-Theoretic Case

In many contexts, particularly in security-related ones, the ability to guess the value of a random
variable (in a single attempt) is an important measures of the variable’s quality. This ability is
captured by the following notion.

Definition 1. A random variable X has min-entropy k, denoted H∞(X) = k, if

max
x

Pr[X = x] = 2−k.

Randomness extractors were defined to work with any distribution that has min-entropy [NZ96].
Moreover, strong extractors (whose outputs are nearly uniform even the presence of the seed)
produce outputs that have, with high probability over the choice of seed, almost maximal min-
entropy.

Lemma 1 ([CKOR10]). If Ext : N × I → {0, 1}` is a (k, ε)-strong extractor with inputs from a set
N and seeds from a distribution I, and X is a random variable taking values in N with H∞(X) ≥ k,
then H∞(Ext(X; i)) ≥ `− 1 with probability at least 1− 2`ε over the choice of the seed i.

A less demanding notion is sometimes more suitable and allows for better analysis of con-
structions, because one can “pretend” to work with a very close distribution Y that has more
min-entropy:

Definition 2 ([RW04]). A random variable X has ε-smooth min-entropy k if

max
Y : SD(X,Y )≤ε

H∞(Y ) = k

(here, SD (X, Y ) is the usual statistical distance, defined as maxT Pr[X ∈ T ]− Pr[Y ∈ T ]).
∗A slightly updated and corrected version of [Rey11]
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Quite often, the adversary has some additional information Z that is correlated with X. Con-
ditional min-entropy H∞(X|Z) is defined in [RW05] as − log maxx,z Pr(X = x | Z = z) =
minz H∞(X | Z = z) (an ε-smooth version is also defined in [RW05, Section 1.3] by eliminat-
ing bad portions of (X, Z) that occur with probability at most ε). Again, a less restrictive notion
is sometimes more suitable:

Definition 3 ([DORS08, Section 2.4]). Let (X, Z) be a pair of random variables. The average
min-entropy of X conditioned on Z is

H̃∞(X|Z) def= − log E
z←Z

max
x

Pr[X = x|Z = z] = − log[ E
z←Z

(2−H∞(X|Z=z))] .

Average min-entropy, like min-entropy, is simply the logarithm of the probability that the
adversary (this time, given the value of Z) will guess the value of X in a single attempt. Again,
an ε-smooth variant of it can be defined (a comparison of ε-smooth, conditional, and average
min-entropy notions is given in [DORS08, Appendix B]).

Average min-entropy exhibits some properties that agree with our intuition: conditioning on Z
that has b bits of information reduces the entropy of X by at most b.

Lemma 2 ([DORS08, Lemma 2.2b]). H̃∞(X | Z) ≥ H∞(X, Z) − b, where 2b is the number of
elements in Z (more generally, H̃∞(X | Z1, Z2) ≥ H̃∞(X, Z1 | Z2) − b, where 2b is the number of
elements in Z2).

Randomness extractors, which were originally analyzed for distribution of min-entropy, can also
be used on distributions that have average min-entropy, with essentially the same results. A (k, ε)-
average-case extractor is defined in [DORS08, Section 2.5] as a function that takes in a sample
from a distribution X such that H̃∞(X | Z) ≥ k and a random seed, and produces an output that
is ε-close to uniform even in the presence of the correlated value from Z and the seed. In some
cases (for instance, in universal-hashing-based extractors), a (k, ε)-extractor is also a (k, ε)-average-
case extractor [DORS08, Lemma 2.4]; in all but the most pathological cases, a (k, ε)-extractor is
a (k, 3ε)-average-case extractor [Vad11]. The following lemma shows that outputs extracted by
average-case extractors will themselves have average min-entropy.

Lemma 3 ([KR09, Lemma 1]). If Ext : N × I → {0, 1}` is a (k, ε)-average-case extractor with
inputs from a set N and seeds from a distribution I, and (X, Z) is a pair of random variables with
X taking values in N and H̃∞(X|Z) ≥ k, then H̃∞(Ext(X; I) | Z, I) ≥ min

(
`, log 1

ε

)
− 1.

Average min-entropy often allows for simpler statements and analyses; for example, the security
of information-theoretic MACs with nonuninform keys can be analyzed using the average min-
entropy of the keys (see [KR09, Proposition 1]). However, average min-entropy can be converted
to min-entropy when needed.

Lemma 4 ([DORS08, Lemma 2.2a]). For any δ > 0, H∞(X|Z = z) is at least H̃∞(X|Z)−log(1/δ)
with probability at least 1− δ over the choice of z.

This style of analysis—using average min-entropy wherever possible and converting it to min-
entropy when needed—was used, for example, in [KR09], [CKOR10], to analyze complex interactive
protocols involving extractors and MACs.
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2 Computational Case

It is natural to say that if a distribution cannot be distinguished by a resource-bounded adver-
sary from one that has entropy, then it has computational entropy. For example, pseudorandom
distributions have this property.

Definition 4 ([HILL99, BSW03]). A distribution X has HILL entropy at least k, denoted by
HHILL

ε,s (X) ≥ k, if there exists a distribution Y such that H∞(Y ) ≥ k and no circuit of size s can
distinguish X and Y with advantage more than ε.

(Here and below, unless otherwise specified, distinguishers are randomized and output a single
bit.)

A conditional notion can be defined similarly.

Definition 5 ([HLR07, Section 2]). X has conditional HILL entropy at least k conditioned on
Z, denoted HHILL

ε,s (X|Z) ≥ k, if there exists a collection of distributions Yz (for z ∈ Z) giving rise
to a joint distribution (Y, Z), such that the average min-entropy H̃∞(Y |Z) ≥ k and no circuit of
size s can distinguish (X, Z) and (Y, Z) with advantage more than ε.

However, there are many variations of the computational definitions, and which one is “right”
is unclear. For example, [GW11, Lemma 3.1] allow one to change not only X, but also Z, as long
as the change is computationally indistinguishable.

As another example, [BSW03], following [Yao82], proposed an alternative way to measure com-
putational entropy: by measuring compressibility of the string by efficient algorithms. It was further
converted to conditional entropy in [HLR07].

Definition 6 ([HLR07, Section 2]). X has Yao entropy at least k conditioned on Z, denoted by
HYao

ε,s (X|Z) ≥ k, if for every pair of circuits c, d of total size s with the outputs of c having length
`,

Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] ≤ 2`−k + ε.

It was shown in [HLR07, Theorem 4] that the two notions (which are equivalent in the information-
theoretic case) are actually different in the computational setting: Yao entropy may be higher than
HILL (but never lower), and measuring Yao entropy rather than HILL entropy may allow one to
extract more pseudorandom bits from a distribution.

Another seemingly natural computational analog of min-entropy is “unpredictability” entropy,
because it also measures the chances of correctly guessing X in a single try.

Definition 7 ([HLR07, Section 5]). X has unpredictability entropy at least k conditioned on
Z, denoted by Hunp

ε,s (X|Z) ≥ k, if there exists a collection of distributions Yz (for z ∈ Z), giving
rise to a joint distribution (Y, Z), such that no circuit of size s can distinguish (X, Z) and (Y, Z)
with advantage more than ε, and for all circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

As shown in [HLR07, Section 5], unpredictability entropy can be higher than HILL entropy but
never higher than Yao entropy. We know that extractors work with conditional HILL entropy to
produce pseudorandom outputs; some extractors (“reconstructive” ones) also work with conditional
compressibility and unpredictability entropies.
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Understanding how conditioning on information leakage Z impacts the entropy of X is partic-
ularly difficult. It would be highly desirable to have an analog of the simple statement of Lemma 2
to simplify the analysis of protocols in a variety of scenarios, particularly in leakage-resilient cryp-
tography. The following result, for both average-case and worst-case entropy, is relatively simple to
state. However, it is for a notion of entropy that is a lot less natural: Metric∗ entropy, which differs
from HILL entropy in two respects: there can be a different distribution Y for each distinguishing
circuit of size s, and the circuit, instead outputting 1 with some probability p and 0 with probability
1− p, deterministically outputs a value p in the interval [0, 1].

Theorem 1 ([FR11]). Define Pz as Pr[Z = z]. Assume Z has 2b elements. Then

HMetric∗

ε/Pz ,s′ (X|Z = z) ≥ HMetric∗
ε,s (X)− log 1/Pz

and
HMetric∗

ε2b,s′ (X|Z) ≥ HMetric∗
ε,s (X)− b ,

where s′ ≈ s.

A weaker version of this statement appeared in [DP08]. Fortunately, Metric∗ entropy can
be converted, with some relatively small loss in s and ε, to HILL entropy ([BSW03, Theorem
5.2],[FR11]). A similar statement, but with the conversion to HILL entropy already performed,
appeared in [RTTV08].

An alternative statement, in which the circuit size (rather than the distinguishability ε) loses a
factor polynomial in 2b, is implied by [GW11, Lemma 3.1] and Lemma 2. Again, the statement is
not with respect to HILL conditional entropy of Definition 5, but rather with respect to a relaxed
notion that I will denote here HILL-relaxed. It is the same as conditional HILL, except we are allowed
to change not just X, but the entire pair (X, Z) to an indistinguishable pair (Y, W ).

Theorem 2 ([GW11]). Assume elements of Z are length-b bit strings (or, more generally, can be
enumerated in time poly(2b)). Then

HHILL-relaxed
2ε,s′/poly(ε,2b)(X|Z) ≥ HHILL

ε,s (X)− b .

This theorem extends to the case when the initial entropy of X is conditional HILL-relaxed
(conditioned on some Z1), similarly to the more general case of Lemma 2.
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