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Abstract

We study conditional computational entropy: the amount of randomness a distribution ap-
pears to have to a computationally bounded observer who is given some correlated information.
By considering conditional versions of HILL entropy (based on indistinguishability from truly
random distributions) and Yao entropy (based on incompressibility), we obtain:

e a separation between conditional HILL and Yao entropies (which can be viewed as a
separation between the traditional HILL and Yao entropies in the shared random string
model, improving on Wee’s 2004 separation in the random oracle model);

e the first demonstration of a distribution from which extraction techniques based on Yao
entropy produce more pseudorandom bits than appears possible by the traditional HILL-
entropy-based techniques;

e a new, natural notion of unpredictability entropy, which implies conditional Yao entropy
and thus allows for known extraction and hardcore bit results to be stated and used more
generally.

1 Introduction

The various information-theoretic definitions of entropy measure the amount of randomness a prob-
ability distribution has. As cryptography is able to produce distributions that appear, for com-
putationally bounded observers, to have more randomness than they really do, various notions of
computational entropy attempt to quantify this appearance of entropy. The commonly used HILL
entropy (so named after [HILL99]) says that a distribution has computational entropy k if it is
indistinguishable (in polynomial time) from a distribution that has information-theoretic entropy
k:E| The so-called Yao entropy [Yao82, BSWO03], says that a distribution has computational entropy
k if it cannot be efficiently compressed to below k bits and then efficiently decompressed. Other
computational notions of entropy have been considered as well [BSW03, [HILL99].

Computational notions of entropy are useful, in particular, for extracting strings that are pseu-
dorandom (i.e., look uniform to computationally bounded observers) from distributions that appear

*Appears at Eurocrypt 2007 [HLRO7], ©IACR

TBoston University Computer Science, http://cs-people.bu.edu/cyhsiao/

tAcademia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan, http://www.iis.sinica.edu.
tw/~cjlu/

3Boston University Computer Science, http://www.cs.bu.edu/fac/reyzin

! The specific notion of information-theoretic entropy depends on the desired application; for the purposes of this
paper, we will use min-entropy, defined in Section


http://cs-people.bu.edu/cyhsiao/
http://www.iis.sinica.edu.tw/~cjlu/
http://www.iis.sinica.edu.tw/~cjlu/
http://www.cs.bu.edu/fac/reyzin

to have entropy. Indeed, generation of pseudorandom bits is the very purpose of computational
entropy defined in [HILL99], and its variant considered in [GKR04]. Pseudorandom bits have many
uses, for example, as keys in cryptographic applications.

The adversary in cryptographic applications (or, more generally, an observer) often possesses
information related to the distribution whose entropy is being measured. For example, in the
case of Diffie-Hellman key agreement [DHT76] the adversary has ¢ and ¢¥, and the interesting
question is the amount of computational entropy of ¢g*¥. Thus, the entropy of a distribution for a
particular observer (and thus the pseudorandomness of the extracted strings) depends on what other
information the observer possesses. Because notions of computational entropy necessarily refer to
computationally-bounded machines (e.g., the distinguisher for the HILL entropy or the compressor
and decompressor for the Yao entropy), they must also consider the information available to these
machines. This has sometimes been done implicitly (e.g., in [GKR04]); however, most commonly
used definitions do not do so explicitly.

In this work, we explicitly put forward notions of conditional computational entropy. This
allows us to:

1. Separate conditional Yao entropy from conditional HILL entropy by demonstrating a joint
distribution (X, Z) such that X has high Yao entropy but low HILL entropy when conditioned
on Z.

2. Demonstrate (to the best of our knowledge, first) application of Yao entropy by extracting
more pseudorandom bits from a distribution using Yao-entropy-based techniques than seems
possible from HILL-entropy-based techniques.

3. Define a new, natural notion of unpredictability entropy, which can be used, in particular, to
talk about the entropy of a value that is unique, such as g*¥ where g* and ¢¥ are known to
the observer, and possibly even verifiable, such as the preimage = of a one-way permutation
f, where y = f(x) is known to the observer.

HILL-Yao Separation. The first contribution (Section [3) can be seen as making progress to-
ward the open question of whether Yao entropy implies HILL entropy, attributed in [TVZ05] to
Impagliazzo [Imp99] (the converse is known to be true: HILL entropy implies Yao entropy, because
compressibility implies distinguishability). Wee [Wee04] showed that Yao entropy does not imply
HILL entropy in the presence of a random oracle and a membership testing oracle. Our separation
of conditional Yao entropy from conditional HILL entropy can be seen as an improvement of the
result of [Wee04]: it shows that Yao entropy does not imply HILL entropy in the presence of a
(short) random string, because the distribution Z on which X is conditioned is simply the uniform
distribution on strings of polynomial length. The separation holds under the quadratic residuosity
assumption.

Randomness Extraction. Usually, pseudorandomness extraction is analyzed via HILL entropy,
because distributions with HILL entropy are indistinguishable from distributions with the same
statistical entropy, and we have tools (namely, randomness extractors [NZ96]) to obtain uniform
strings from the latter. Tools are also available to extract from Yao entropy: namely, extractors
with a special reconstruction property [BSW03]. Our second contribution (Section [4)) is to show
that considering the Yao entropy and applying a reconstructive extractor can yield many more
pseudorandom bits than the traditional analysis, because, according to our first result, Yao entropy



can be much higher than HILL entropy. This appears to be the first application of Yao entropy,
and also demonstrates the special power of reconstructive extractors.

It is worth mentioning that while our separation of entropies is conditional, the extraction
result holds even for the traditional (unconditional) notion of pseudorandomness. The analysis of
pseudorandomness of the resulting string, however, relies on the notion of conditional entropy, thus
demonstrating that it can be a useful tool even in the analysis of pseudorandomness of unconditional
distributions.

Unpredictability Entropy. Unpredictability entropy is a natural formalization of a previously
nameless notion that was implicitly used in multiple works.. Our definition essentially says that if
some value cannot be predicted from other information with probability higher than 27%, then it
has entropy k£ when conditioned on that information. For example, when a one-way permutation
f is hard to invert with probability higher than 2%, then conditioned on f(x), the value = has
entropy k. The use of conditional entropy is what makes this definition meaningful for cryptographic
applications.

We demonstrate that almost k pseudorandom bits can be extracted from distributions with
unpredictability entropy k, by showing that unpredictability entropy implies conditional Yao en-
tropy, to which reconstruction extractors can be applied. Thus, unpredictability entropy provides
a simple language that allows, in particular, known results on hardcore bits of one-way functions
to be stated more generally.

We also prove other (fairly straightforward) relations between unpredictability entropy and
HILL and Yao conditional entropies.

2 Definitions and Notation

In this section we recall the HILL and Yao definitions of computational entropy (or pseudoentropy)
and provide the new, conditional definitions.

Notation. We will use n for the length parameter; our distributions will be on strings of length
polynomial in n. We will use s as the circuit size parameter (or running time bound when dealing
with Turing machines instead of circuits). To denote a value x sampled from a distribution X, we
write x < X. We denote by M (X) the probability distribution on the outputs of a Turing machine
M, taken over the coin tosses (if any) of M and the random choice of the input = according to the
distribution X. We use U, to denote the uniform distribution on {0,1}". For a joint distribution
(X,Z), we write X, to denote the conditional distribution of X when Z = z; conversely, given a
collection of distributions X, and a distribution Z, we use (X, Z) to denote the joint distribution
given by Pr[(X,Z) = (z, 2)] = Pr[Z = 2| Pr[X, = z].

We may describe more complicated distributions by describing the sampling process and then
the sampled outcome. For example, {a «— X;b < X : (a,b)} denotes two independent samples
from X, while {a «— X : (a, M(a,Y))} denotes the distribution obtained by sampling X to get a,
sampling Y to get b, running M (a,b) to get ¢, and outputting (a, c).

The statistical distance between two distributions X and Y, denoted by dist(X,Y’), is defined
as maxy | Pr[T(X) = 1] — Pr[T(Y) = 1]| where T is any test (function). (This is equivalent to the
commonly seen dist(X,Y) = 3> |Pr[X = a] — Pr[Y = q]|.) The computational distance with
respect to size s circuits, denoted by cdistg(X,Y), limits T" to be any circuit of size s.



Unconditional Computational Entropy. The min-entropy of a distribution X, denoted by
Hoo(X), is defined as — log(max, Pr[X = z]). Although min-entropy provides a rather pessimistic
view of a distribution (looking only at its worst-case element), this notion is useful in cryptography,
because even a computationally unbounded predictor can guess the value of a sample from X with
probability at most 27 He~(X) Most results on randomness extractors are formulated in terms of
min-entropy of the source distribution.

The first definition says that a distribution has high computational min-entropy if it is in-
distinguishable from some distribution with high statistical min-entropy. It can thus be seen as
generalization of the notion of pseudorandomness of [Yao82], which is defined as indistinguishabil-
ity from uniform.

Definition 1 ([HILL99, BSWO03]). A distribution X has HILL entropy at least k, denoted by
H':'SLL(X) > k, if there exists a distribution Y such that Heo(Y) > k and cdist (X, Y) <e.

(In [HILL99] Y needs to be efficiently samplable; however, for our application, as well as for [BSW03],
samplability is not required.)

Another definition of computational entropy considers compression length. Shannon’s theorem
[Sha48] says that the minimum compression length of a distribution, by all possible compression and
decompression functions, is equal to its average entropy (up to small additive terms). Yao [Yao82]
proposed to measure computational entropy by imposing computational constraints on the com-
pression and decompression algorithmsE] In order to convert this into a worst-case (rather than
average-case) metric similar to min-entropy, Barak et al. [BSWO03| require that any subset in the
support of X (instead of only the entire X) be hard to compress.

Definition 2 ([Yao82, BSW03]). A distribution X has Yao entropy at least k, denoted by
HI@O(X ) > k, if for every pair of circuits ¢,d (called “compressor” and “decompressor”) of total
size s with the outputs of ¢ having length ¢,

Pr [d(c(z)) = 2] <27F + e

CC(—X
Note that just like HILL entropy, for ¢ = 0 this becomes equivalent to min-entropy (this can be
seen by considering the singleton set of the most likely element).

Conditional Computational Entropy. Before we provide the new conditional definitions of
computational entropy, we need to consider the information-theoretic notion of conditional min-
entropy.

Let (Y,Z) be a distribution. If we take the straightforward average of the min-entropies
E.—z[Hoo(Y>)] to be the conditional min-entropy, we will lose the relation between min-entropy and
prediction probability, which is important for many applications (see e.g. Lemma and Lemma.
For instance, if for half of Z, Heo(Y>) = 0 and the other half Ho(Y,) = 100, then, given a ran-
dom z, Y can be predicted with probability over 1/2, much more than 2759 the average would
suggest. A conservative approach, taken in [RWO05], would be to take the minimum (over z) of
Ho(Y.). However, this definition may kill “good” distributions like Y, = U, for all z # 0™ and
Y, = 0" for z = 0™; although this problem can be overcome by defining a so-called “smooth”
version [RW05, RW04], we follow a different approach.

For the purposes of randomness extraction, Dodis et al. [DORS06] observed that because Z

is not under adversarial control, it suffices that the average, over Z, of the maximum prob-

ability is low. They define average min-entropy: Hoo(Y|2) o —10g(R.z[2- He(Y12=2)] =

2Yao called it “effective” entropy.



—log(E;—z[max, Pr[Y, = y]]). This definition averages prediction probabilities before taking the
logarithm and ensures that for any predictor P, Pr(, .)—(v,z)[P(2) = y] < 2~ Ho(Y12) Tt also
ensures that randomness extraction works almost as well as it does for unconditional distributions;
see Section [l

Using this definition of conditional min-entropy, defining conditional HILL-entropy is straight-
forward.

Definition 3 (Conditional HILL entropy). For a distribution (X, Z), we say X has HILL entropy at
least k conditioned on Z, denoted by HH\-H(X|Z) > k, if there exists a collection of distributions Y,
(giving rise to a joint distribution (Y, Z)) such that Hoo(Y|Z) > k and cdists((X, Z), (Y, 2)) < e.

For conditional Yao entropy, we simply let the compressor and decompressor have z as input.

Definition 4 (Conditional Yao entropy). For a distribution (X, Z), we say X has Yao entropy at
least k conditioned on Z, denoted by HZ;P(X |Z) > k, if for every pair of circuits ¢, d of total size
s with the outputs of ¢ having length ¢,

Pr dlc(z,2),2) =x <27k e
L Pr (). 0) = 1] <

We postpone the discussion of unpredictability entropy until Section

Asymptotic Definitions. All above definitions are with respect to a single distribution and
fixed-size circuits. We are also interested in their asymptotic behaviors, so we consider distribution
ensembles. In this case, everything is parameterized by n: X, s(n), and €(n). In such a case,
whether circuits in our definitions are determined after n is chosen (the nonuniform setting), or
whether an algorithm of running time s(n) is chosen independent of n (the uniform setting) makes
a difference. We consider the nonuniform setting.

We omit the subscripts s(n) and €(n) when they “denote” any polynomial and negligible func-
tions, respectively (e(n) is negligible if e(n) € n=“(1)). More precisely, we write H' (X () > k(n),
if there is a distribution ensemble Y (™) such that Hao(Y™) > k(n) for all n, and for every polyno-
mial s(n), there exists a negligible €s(n) such that cdist,) (X, Y() < ¢,(n). Similarly for the
other definitions.

3 Separating HILL Entropy from Yao Entropy

In this section we construct a joint distribution (X, Z )E] such that given Z, the distribution X
has high Yao but low HILL entropy; namely, H'*°(X|Z) > H"''*(X|Z). This is a separation of
conditional HILL and Yao entropies. Since Z will be simply a polynomially long random string,
this result can also be viewed as a separation of Yao entropy and HILL entropy in the Common
Reference String (CRS) model. (In this model one assumes that a uniformly-distributed string of
length ¢(n), for some fixed polynomial ¢, is accessible to everyone.)

Our construction uses a non-interactive zero knowledge proof system, so we describe it briefly
in the following subsection.

3 Actually, (X, Z) should be defined as a distribution ensemble (X(">, Z(">), but we’ll omit the superscript for ease
of notation.



3.1 Non-Interactive Zero Knowledge (NIZK)

NIZK was introduced by Blum et al. [BFMS88, BDMP91]. For our purposes, a single-theorem
variant suffices. Let A be a positive polynomial and L € NP be a language that has witnesses
of length n for theorems of lengths (A(n — 1),A(n)]. (It is easier for us to measure everything
in terms of witness length rather than the more traditional theorem length, but they are anyway
polynomially related for the languages we are interested in.) NIZK works in the CRS model. Let
q be a positive polynomial, and let the CRS be r « Uy,) when witnesses are of length n. A NIZK
proof system for L is a pair of polynomial-time Turing machines (P, V), called the prover and the
verifier (as well as the polynomial ¢) such that the following three conditions hold.

1. Completeness: V¢ € L with NP witness w, if 7 = P(¢, w, ) is the proof generated by P, then
Pr.y,,, [V(¢,m,r)=1] = 1E|

2. Soundness: Call r bad if 3¢ ¢ L, 37’ such that V(¢,7',r) = 1 (and good otherwise). Then
Pr..y,,, [r is bad] is negligible in n.

3. Zero-knowledgeness: There is a probabilistic polynomial time Turing machine SIM called
the simulator, such that V¢ € L and every witness w for ¢, SIM(¢) = (¢,Ism, Rsim) is
computationally indistinguishable from (¢, II, R) = {r < Uyn) ; ™ < P(é,w,7) : (¢, 7,7)}.

For our analysis, we need two additional properties. First, we need the proofs 7 not to add too
much entropy. For this, we use ideas on unique NIZK by Lepinski, Micali and shelat [LMS05]. We
do not need the full-fledged uniZK system; rather, the single-theorem system described as the first
part of the proof of [LMS05, Theorem 1] suffices (it is based on taking away most of the prover
freedom for the single-theorem system of [BDMP91]). The protocol of [LMS05| is presented in the
public-key model, in which the prover generates the public key (x,y) consisting of an n-bit modulus
x and n-bit value y € Z}. To make it work for our setting, we simply have the prover generate
the public key during the proof and put it into w. Once the public key is fixed, the prover has
no further choices in generating 7, except choosing a witness w for ¢ € L (note that this actually
requires a slight modification to the proof of [LMS05], which we describe in Appendix [A]).

The second property we need is that the simulated shared randomness Rgjy is independent of
the simulator input ¢. It is satisfied by the [LMS05] proof system (as well as by the [BDMP9I]
system on which it is based).

The zero-knowledge property of the [LMS05] proof system is based on the following assumption
(the other properties are unconditional).

Assumption 1 (Quadratic Residuousity |[GM84] for Blum Integers). For all probabilistic polyno-
mial time algorithms P, if p; and ps are random n/2-bit primes congruent to 3 modulo 4, y is a

random integer between 1 and pips with Jacobi symbol (L) =1, and b =1 if y is a quadratic

p1p2
residue modulo p;ps and 0 otherwise, then |1/2 — Pr[P(y, pip2) = b]| is negligible in n.

The formal statement of the properties we need from [LMSO05] follows.

Lemma 1 ([LMS05]+Appendix [A)). If the above assumption holds, then there exists an NIZK
proof system for any language L € NP with the following additional properties: (1) if r is good
and ¢ has t distinct witnesses w, then the number of proofs 7 for ¢ that are accepted by V is at
most #2%27, and (2) the string Rgywy output by the simulator is independent of the simulator input

?.

4If P is probabilistic, the probability is taken over the choice r and random choices made by P.



3.2 The Construction

Our intuition is based on the separation by Wee [Wee04], who demonstrated an oracle relative to
which there is a random variable that has high Yao and low HILL entropy. His oracle consists of a
random length-increasing function and an oracle for testing membership in the sparse range of this
function. The random variable is simply the range of the function. The ability to test membership
in the range helps distinguish it from uniform, hence HILL entropy is low. On the other hand,
knowing that a random variable is in the range of a random function does not help to compress it,
hence Yao entropy is high.

We follow this intuition, but replace the length-increasing random function and the membership
oracle with a pseudorandom generator and an NIZK proof of membership, respectively. Our dis-
tribution X consists of two parts: 1) output of a pseudorandom generator and, 2) an NIZK proof
that the first part is as alleged. However, an NIZK proof requires a polynomially long random
string (shared, but not controlled, by the prover and the verifier). So we consider the computa-
tional entropy of X, conditioned on a polynomially long random string r chosen from the uniform
distribution Z = Uy(y,)-

Let G : {0,1}" — {0,1}*"), for some polynomial ), be a pseudorandom generator (in order to
avoid adding assumptions, we can build based on Assumption [1), and let ((P,V),q) be the NIZK
proof system guaranteed by Lemma [I| for the NP language L = {¢ | Ja such that ¢ = G(a)}. Let
Z = R = Uy(yy. Our random variable X consists of two parts (G(Uy,), ), where 7 is the proof,
generated by P, that the first part is an output of G. More precisely, the joint distribution (X, Z)
is defined as {a < Uy, ; 7 < Uy ; ™ < P(G(a),a,7) : ((G(a),7),7)}. Note that because X
contains a proof relative to the random string r, it is defined only after the value r of Z is fixed.

Lemma 2 (Low HILL entropy). H'"*(X|2) < 3n + 1.

Proof. Suppose there is some collection {Y, },cz for which Heo(Y]Z) > 3n + 1. We will show that
there is a distinguisher that distinguishes (X, Z) from (Y, Z). In fact, we will use the verifier V of

the NIZK proof system as a universal distinguisher, which works for every such Y.

Let p(r) def max, Pr[Y, = y| be the probability of most likely value of the random variable Y.

When 7 is good, the number of (¢, 7) pairs for which V(¢,7,r) = 1 is at most 237: the total
number 2" of witnesses times the number of proofs 22" for each witness. Now, parse y as a theorem-
proof pair. The number of y such that V(y,r) = 1 is at most 23", and each of these y happens with
probability at most p(r). Therefore, when r is good, Pry_y, [V(y,7) = 1] < 237p(r), by the union
bound. Hence, for any r, Pr,_y,[V(y,7) =1 A ris good] < 23p(r) (for good r this is the same
as above, and for bad r this probability is trivially 0, because of the conjunction).

Now consider running V on a sample from (Y, Z).

Pr V(y,r) =1 < Prlrisbad]+ Pr V(y,r) =1 A ris good
(y’r)(_(yz)[ (y, ) = 1] Prl ] (y,r)<—(Y,Z)[ (y,7) ]
< negl(n)+ E [Pr [V(y,7) =1 A ris good]]
r—/7 yHYT
< negl(n)+ E [2%p(r)]
1
< negl(n) + 5

(the last inequality follows from the definition of He: 2~ He(Y12) — Erz[p(r)] < 2-Grth)),
Since Pr(, o (x,7)[V(z,r) = 1] = 1, V distinguishes (X, Z) from (Y, Z) with advantage close
to 1/2. O



Lemma 3 (High Yao entropy). If Assumption 1| holds, then HY2°(X|Z) > A(n).

Proof. Let s(n) be a polynomial. The following two statements imply that under Assumption
es(n) & cdisty) (X, Z),SIM(Uy(,)) is negligible, by the triangle inequality.
L. cdisty(,) (X, Z),SIM(G(Uy))) is negligible. Indeed, fix a seed a € {0,1}" for G, and let
(Xa, Z) = {r < Uyn); ™ < P(G(a),a,7) : ((G(a),7),7)}. By the zero-knowledge property,
we know that cdisty,)((Xa, Z),SIM(G(a))) is negligible. Since it holds for every a € {0,1}",
it also holds for a random «; we conclude that cdist,)((X, Z), SIM(G(U,))) is negligible.

2. cdistyy,) (SIM(Uy), SIM(G(Uy))) is negligible, because G is a pseudorandom generator.

By definition of es(n), if the compressor and decompressor ¢ and d have total size ¢, then

Pr  [d(c(x,2),2) =x] — Pr [d(c(x,z),2) = ]

< €s (n) ’
(xvz)H(sz) (xvz)(_SIM(U)\(n))

where s = t+(size of circuit to check equality of strings of length |z|), because we can use d(c(-, ), -)
together with the equality operator as a distinguisher.

Let the output length of ¢ be £. Then Pr(, .)_simw, m)[d(c(a:, 2),z) = z] < 262" because for
every fixed z, z contains ¢ € Uy(,) (because by Lemmall} z is independent of ¢ in the NIZK system

we use). Hence Pr(, .y (x, 2z ld(c(z,2),2) = 2] < 20=A) 4 ¢,(n), and HYa&)’t(n) (X|Z) > A(n). For

€s
every polynomial ¢(n), the value s(n) is polynomially bounded, and therefore €5(n) is negligible, so

H"°(X|Z) > A(n). 0

Remark 1. In the previous paragraph, we could consider also the simulated proof 7 (recall
x = (¢, 7)) when calculating Pr(x’z)HgM(UMn))[d(c(m,z),z) = z| for even higher Yao entropy. A
simulated proof 7 contains many random choices made by the simulator. Although the simulator
algorithm for [LMSO05] is not precisely specified, but rather inferred from the simulator in [BDMP91],
it is quite clear that the simulator will get to flip at least three random coins per clause in the 3-
CNF formula produced out of ¢ in the reduction to 3-SAT (these three coins are needed in order
to simulate the location of the (0,0, 0) triple [LMS05, proof of Theorem 1, step 9] among the eight
triples). This more careful calculation of Pr(w)<_5|M(UMn>)[d(c(x, z),z) = x| will yield the slightly
stronger statement H"*°(X|Z) > A(n) + 3v(n), where (n) is the number of clauses in the 3-CNF
formula. This more careful analysis is not needed here, but will be used in Section

Since for any polynomial A(n), we have pseudorandom generators of stretch A, Lemma [2| and
Lemma (3] yield the following theorem.

Theorem 4 (Separation). Under the Quadratic Residuosity Assumption, for every polynomial
)\, there exists a joint distribution ensemble (X (™) Z() such that HY*°(X™ | Z(™) > X\(n) and
HML (X ™| 2(M) < 3n + 1. Moreover, Z( = Ug(n) for some polynomial q(n).

4 Randomness Extraction

As mentioned in the introduction, one of the main applications of computational entropy is the
extraction of pseudorandom bits. Based on Theorem [ in this section we show that the analysis
based on Yao entropy can yield many more pseudorandom bits than the traditional analysis based
on HILL entropy. Although Theorem [ is for the conditional setting, we will see an example of



extraction that benefits from the conditional-Yao-entropy analysis for the unconditional setting as
well.

Before talking about extracting pseudorandom bits from computational entropy, let us look at
a tool for analogous task in the information-theoretic setting: an extractor takes a distribution Y
of min-entropy k, and with the help of a uniform string called the seed, “extracts” the randomness
contained in Y and outputs a string of length m that is almost uniform even given the seed.

Definition 5 ([NZ96]). A polynomial-time computable function E : {0,1}" x {0,1}¢ — {0,1}" x
{0,1}% is a strong (k, €)-extractor if the last d outputs of bits of E are equal to the last d input bits
(these bits are called seed), and dist((E(X,Uy),Un x Ug) < € for every distribution X on {0,1}"
with Hoo(X) > k. The number of extracted bits is m, and the entropy loss is k — m.

There is a long line of research on optimizing the parameters of extractors: minimizing seed
length, minimizing €, and maximizing m. For applications of primary interest here—using extracted
randomness for cryptography—seed length is less important, because strong extractors can use
non-secret random seeds, which are usually much easier to create than the secret from which the
pseudorandom bits are being extracted. It is more important to maximize m (as close to k as
possible), while keeping € negligibleﬂ

4.1 Extracting from Conditional HILL Entropy

It is not hard to see that applying an extractor on distributions with HILL entropy yields pseudo-
random bits; because otherwise the extractor together with the distinguisher violate the definition
of HILL entropy. We show the same for the case of conditional HILL entropy. We reiterate that in
the conditional case, the variable Z is given to the distinguisher who is trying to tell the output of
the extractor from random.

Lemma 5. If H''\"(X|Z) > k, then for any (k—log }, e2)-extractor E : {0,1}"x{0,1}¢ — {0,1}™,

€1,8

cdist ({(z,2) « (X, 2) : (B(z,U4),2)},Un xUg x Z) <e1 + €2+ 6,

where s’ = s — size(E).

Proof. HA'YH(X|Z) > k means that there exists a collection of distributions {Y.}.cz such that
cdists((X,2)(Y,2)) < €1, and Hoo(Y|Z) > k. By Markov’s inequality, Pr.cz[Hoo(Y,) < k —
log %] < 4. Hence, the extractor works as expected in all but ¢ fraction of the cases; that is, for all

but ¢ fraction of z values, dist(E(Y,Uy),Up x Ug) < €9. Taking expectation over z € Z, we get
dist ({(y,2) < (Y. Z) : (E(y,Ua),2)},Um x Ug X Z) < €246,
because dist is bounded by 1. The desired result follows by triangle inequality. O

Remark 2. The entropy loss of E is at least 2logé — O(1), by a fundamental constraint on
extractors [RT00], giving us a total entropy loss of at least 10g% + 2logé — O(1). The loss of

log% can be avoided for some specific E, such as pairwise-independent (a.k.a. strongly universal)
hashing [CWT79], as shown in [DORS06, Lemma 4.2]; because pairwise-independent hashing has
optimal entropy loss of 2log é — 2, this gives us the maximum possible number of extracted bits.

The loss of log 3 can be also avoided when min.cz Hoo(Yz) > k (as is the case in, e.g., [GKRO04]).

5 This is in contrast to the derandomization literature, where a small constant e suffices, and one is more interested
in (simultaneously) maximizing m and minimizing d.



Using an extractor on distributions with HILL entropy (the method that we just showed ex-
tends to conditional HILL entropy) is a common method for extracting pseudorandom bits. HILL
entropy is used, in particular, because it is easier to analyze than Yao entropy. In fact, in the
unconditional setting, the only way we know how to show that a distribution has high Yao entropy
(incompressibility) is by arguing that it has high HILL entropy (indistinguishability). Nevertheless,
Barak et al. [BSWO03| showed that some extractors can also extract from Yao entropy.

4.2 Extracting from Conditional Yao Entropy

Barak et al. [BSW03] observed that extractors with the so-called reconstruction procedure can be
used to extract from Yao Entropy. Thus, Theorem H| (H2°(X|Z) > H"''N(X|Z)) suggests that
such a reconstructive extractor with a Yao-entropy-based analysis may yield more pseudorandom
bits than a generic extractor with a traditional HILL-entropy-based analysis. We begin with a
definition from [BSWO03].

Definition 6 (Reconstruction procedure). An (¢, ¢€)-reconstruction for a function E : {0,1}" x
{0,1}¢ — {0,1}™ x {0,1} (where the last d outputs are equal to the last d inputs bits) is a
pair of machines C' and D, where C : {0,1}" — {0,1}¢ is a randomized Turing machine, and
DO : {0,1}¢ — {0,1}" is a randomized oracle Turing machine which runs in time polynomial in
n. Furthermore, for every z and T, if |Pr[T(E(x,Uy)) = 1] — Pr[T'(Up, x Ug) = 1]| > €, then
Pr[DT(CT(z)) = 2] > 1/2 (the probability is over the random choices of C and D).

Trevisan [Tre99] showed, implicitly, that any E with an (¢, €)-reconstruction is an (£ +log %, 3e)-
extractor, and Barak et al. [BSW03] showed that such extractors can be used to extract pseudo-
random bits from distributions with Yao entropy. We extend the proof of Barak et al. so that their
result holds for the conditional version of Yao entropy.

Lemma 6. Let X be a distribution with HY3°(X|Z) > k, and let E be an extractor with a
(k —log 1, €)-reconstruction (C, D). Then cdisty((E(X,Uy),Z),Un x Ug x Z) < 5e¢, where s’ =
s/(size(C)+size(D)).

Proof. Assume, for the purpose of contradiction, that there is a distinguisher T' of size s’ such that
Pr[T(E(X,Uy), Z) = 1]—-Pr[T(Uy, xUgx Z) = 1] > 5e. By the Markov inequality, there is a subset
S in the support of (X, Z) such that Pr[(X,Z) € S| > 4¢, and V(z,2) € S, Pr[T(E(z,Uy), 2) =
1] = Pr[T(U,, x Ug,2) = 1] > €. For every pair (z,2) € S, Pr[DT:?)(C(z)) = x] > 1/2, where
the probability is over the random choices of C' and D. Thus, there is a fixing of the random
choices of C and D, denoted by circuits C', D, such that Pr(, .y (x,2) [DTCA)(C(x)) = 2] > 2e. Let
c(x,z) = C(z) and d(y, z) = DT(+?)(y)) be the compression and decompression circuits, respectively.
Then Pr, .y (x,z)[d(c(x, 2),z) = 2] > 2e = 2°7% + ¢, a contradiction. O

The above lemma does not yield more pseudorandom bits when given a distribution that has
high Yao but low HILL entropy, unless we have a reconstructive extractor with long output length
(compared to generic extractors, which work for HILL entropy). Fortunately, there is a simple way
to increase the output length of a reconstructive extractor, at the expense of increasing the seed
length; namely, by applying the extractor multiple times on the same input distribution but each
time with an independent fresh seed. Furthermore, there do exist reconstructive extractors; e.g.,

the Goldreich-Levin extractor: GL(x,y) def (x-y) oy, where o denotes concatenation and - denotes
inner product. Below, we describe more precisely how to increase the output length. For a proof,
we refer the readers to Section 3.5 in the survey by Shaltiel [Sha02].
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Proposition 1. Let GL : {0,1}" x {0,1}" — {0,1} x {0,1}" be an extractor with (¢,€) recon-
struction. Then E : {0,1}" x {0,1}™ — {0,1}™ x {0,1}"" defined below is an extractor with
(m—+ £, me)-reconstruction. Let o denote component-wise concatenation (i.e., to agree syntactically
with the definition of extractor, we concatenate the 1-bit outputs and the n-bit seeds separately)

E@, 1, ym) = GL(,y1) 0+ 0 GL(x, ym) -

For the Goldreich-Levin extractor, £ = O(log ). Then Lemma |§| implies that E extracts m
pseudorandom bits out of any distribution that has Yao entropy m + £+ log % =m—+O(log %) This
shows that it is possible to extract almost all of Yao entropy (e.g., if the negligible € = 9~ polylog(n)
suffices, then all but a polylogarithmic amount of entropy can be extracted).

Using the distribution of Theorem {4} we can set € = 27" to extract A(n) — O(n) bits from X
that are pseudorandom even given Z. This is more than the linear number of bits extractable from
X using the analysis based on conditional HILL entropy.

4.3 Unconditional Extraction

In this subsection, let (X, Z) = ((G(Uyn),11),R) = {a « Up ; 7« Uyy) ; ™ < P(G(a),a,7) :
((G(aw),m),r)} as defined in Section The question is: how many pseudorandom bits can we
extract from the unconditional distribution (X, Z)? Surprisingly, analysis based on conditional
entropy yields more bits than unconditional analysis, demonstrating that the notion of conditional
entropy may be a useful tool even in the analysis of pseudorandomness of unconditional distribu-
tions.

Analysis based on unconditional entropy. The straightforward way is to apply an extrac-
tor on (X, Z). This gives us almost k pseudorandom bits provided that H™'' (X, Z) > k, or
H°(X, Z) > k for reconstructive extractors (see previous subsections). However, the best we can
show is that H''Y (X, Z) = A(n) + q(n) + O(n) (the analysis appears in Appendix , and hence
we cannot prove, using HILL entropy, that more than A(n)+g(n)+ O(n) bits can be extracted. On
the other hand, we do not know if H"2°(X, Z) is higher; this is closely related to the open problem
of whether HILL entropy is equivalent to Yao entropy, and appears to be difﬁcultﬁ Thus, analysis
based on unconditional entropy does not seem to yield more than A(n) + ¢(n) + O(n) bits.

More bits from conditional Yao entropy. Analysis based on conditional HILL entropy seems
to yield even fewer bits (see Lemma . But using conditional Yao entropy, we get the following
result.

Lemma 7. It is possible to extract 4\(n) 4+ ¢(n) — O(n) pseudorandom bits out of (X, 7).

Sketch. According to Remark 1 following Lemma [3], we can show that the conditional Yao entropy
H"°(X|Z) > A(n) + 37y(n), where v(n) is the number of clauses in the 3-CNF formula produced
from ¢ in the reduction from L to 3-SAT. Since y(n) > A(n), we can extract 4\(n) — O(n) bits
from X that are pseudorandom even given Z, by the last paragraph of Section Noting that

5 To show that H"*°(X, Z) is high, one would have to show that the pair (X, Z) cannot be compressed; the same
indistinguishability argument as in Lemma does not work for the pair (X, Z), because in the simulated distribution,
Z is simulated and thus has less entropy. It is thus possible that both the real distribution (where Z is random
and ¢ in X is pseudorandom) and the simulated distribution (where ¢ is random and Z is pseudorandom), although
indistinguishable, can be compressed with the help of the proof 7.
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Z is simply a uniform stringﬂ we can append it to the pseudorandom bits extracted from X and
obtain an even longer pseudorandom string. Thus, we get 4\(n) + g(n) — O(n) pseudorandom bits
using the analysis based on conditional Yao entropy. O

5 Unpredictability Entropy

In this section, we introduce a new computational entropy, which we call unpredictability entropy.
Analogous to min-entropy, which is the logarithm of the maximum predicting probability, unpre-
dictability entropy is the logarithm of the maximum predicting probability where the predictor is
restricted to be a circuit of polynomial size. Note that in the unconditional setting, unpredictabil-
ity entropy is just min-entropy; a small circuit can have the most likely value hardwired. In the
conditional setting, however, this new definition can be very different from min-entropy, and in
particular, allows us to talk about the entropy of a value that is unique, such as ¢*¥ where ¢* and
g¥ are known to the observer, and possibly even verifiable, such as the preimage = of a one-way
permutation f, where y = f(z) is known to the observer.

Definition 7 (Unpredictability entropy). For a distribution (X, Z), we say that X has unpre-
dictability entropy at least k conditioned on Z, denoted by Hes (X|Z) > k, if there exists a col-
lection of distributions Y, (giving rise to a joint distribution (Y, Z)) such that cdists((X, Z), (Y, Z))
< ¢, and for all circuits C of size s,

Remark 3. The parameter € and the variable Y do not seem to be necessary in the definition; we
can simply require Pr[C(Z) = X] < 27*. However, they make this definition smooth [RW04] and
easier to compare with existing definitions of HILL and Yao entropy.

Remark 4. Note that our entropy depends primarily on the predicting probability, as opposed to
on the size of the predicting circuit or the combination of both (see e.g., [T'SZ01, HILL99]). We
choose to have s fixed, in order to accommodate distributions with nonzero information-theoretic
entropy; otherwise the computational entropy of such distribution would be infinite because the
predicting probability doesn’t increase no matter how big the predicting circuit grows. For the case
of one-way function, unpredictability entropy is what is often called “hardness.” This notion is more
general, and provides a simple language for pseudorandomness extraction: namely, a distribution
with computational entropy k contains k pseudorandom bits that can be extracted (see below).

5.1 Relation to Other Notions and Bit Extraction

In this subsection we show that high conditional HILL entropy implies high unpredictability entropy,
which in turn implies high conditional Yao entropy. Note that, assuming exponentially strong
one-way permutations f exist, unpredictability entropy does not imply conditional HILL entropy:
simply let (X, Z) = (=, f(x)).

Lemma 8. H''N(X|Z) > k = HEY (X|Z) > k.

Proof. H''M(X|Z) > k means that there is a Y such that Heo(Y]Z) > k and cdist (X, 2), (Y, Z))
<e And Hw(Y|Z) > k means that E,.z[max, Pr[Y = y|Z = 2]] < 27%, which implies that for
all circuits C of size s, Pr[C(Z) = Y] < 27*. O

>
<

"In case Z is not uniform but contains some amount of entropy, we can apply another extractor on it.

12



Lemma 9. HeY (X|Z) > k = H*(X|Z) > k.

Proof. Hes (X|Z) > k means that there is a collection of {Y,}.cz such that cdists((X, Z), (Y, Z))
< ¢, and for all circuits C of size s, Pr[C(Z) = Y] < 27%. We will show that HP](?S°(Y|Z) >k,
which in turn implies HY2*(X|Z) > k.

Suppose for contradiction that HB(;"(Y]Z ) < k. Then there exists a pair of circuits ¢,d of

total size s with the outputs of ¢ having length ¢, such that Pr, .y (v.z)ld(c(y, 2),2) = y] > 2°7F.
Because |c(y, z)| = ¢, guessing the correct value is at least 27, so Priy ), v.z)ld(a,z) = y] >
2t=k . 2=t — 2% 4 contradiction since d(a,-) (with some fixing of a) is a circuit of size at most s.
So Hy®(Y|Z) > k.

Next, suppose for contradiction that H2°(X|Z) < k. Then there exists a pair of circuits c, d of
total size s with the outputs of ¢ having length ¢, such that Pr(, .y (x, z)d(c(z, 2), 2) = 2] > 20k e,
But Pr(, .y (v,z)ld(c(y, 2),2) = y] < 20=F which means that d(c(-,-),-) can be used to distinguish
(X,Z) from (Y,Z) with advantage more than e, a contradiction to cdists((X, Z2),(Y,Z)) < e.
Hence HZ?(X\Z) > k. O

From Section [ we know how to extract almost & bits from distributions with Yao entropy k, by
using reconstructive extractors. Lemma [9]implies that the same method works for unpredictability
entropy. Thus, the notion of unpredictability entropy allows for more general statements of results
on hardcore bits (such as, for example, [GL89, [TSZ01]), which are usually formulated in terms of
one-way functions. Most often these results generalize easily to other conditionally unpredictable
distributions, for instance, the Diffie-Hellman distribution (¢*¥ | g, g%, ¢¥). However, such general-
ization is not automatic, because a prediction of a one-way function inverse is verifiable (namely,
knowing y, one can check if the guess for f~1(y) is correct), while a guess of a value of a condition-
ally unpredictable distribution in general is not (indeed, the Diffie-Hellman distribution does not
have it unless the decisional Diffie-Hellman problem is easy). Thus, it would be beneficial if results
were stated for the more general case of unpredictable distributions whenever such verifiability is
not crucial. Unpredictability entropy provides a simple language for doing so.
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A Modifications to the Proof of [LMSO05]

The proof of Theorem 1 in [LMS05] requires the n-bit modulus = chosen by the prover (and, in
our case, included as part of the proof) to be a Blum integer, i.e., a product of two primes that
are each congruent to 3 modulo 4. However, the proof 7 (using the techniques from [BDMP91])
guarantees only that x is “Regular(2),” i.e., is square-free and has exactly two distinct odd prime
divisors. In other words, we are assured only that x is of the form p’¢’ for some odd primes p, g
and some %, j not simultaneously even. Soundness does not suffer if a prover maliciously chooses
such an x that is not a Blum integer, but the uniqueness property does: there may be more than
one valid proof 7, because 7 consists of square roots s of values in Z} such that the Jacobi symbol
(%) =1 and s < x/2, and there may be more than one such square root if = is not a Blum integer.

One approach to remedy this problem is to use the technique proposed in countable zero-
knowledge of Naor [Nao96, Theorem 4.1]: to include into 7 the proof that x is a Blum integer.
Another, simpler, approach (which does not seem to work for the problem in [Na0o96], because the
length of the primes is important there) is to require the verifier to check that z =1 (mod 4). This
guarantees that either p = ¢ = 3 mod 4 and ¢, j are odd, in which case uniqueness of a square root
r < x/2 with (g) = 1 is guaranteed, or p' = ¢ = 1 mod 4, in which case simple number theory
(case analysis by the parity of i, j) shows that half the quadratic residues in Z} have no square
root r with ( ) = 1. Thus, such an x that allows for non-unique proofs is very unlikely to work for

r
T
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a shared random string r, and we can simply add strings r for which such an x exists to the set of
bad strings (which will remain of negligible size).

B

Unconditional HILL Entropy of (X, 7)

Recall that (X, Z) = (G(Un),l1), R) = {a < Uy ; 7 < Uyp) ; ™ < P(G(a),a,7) : (G(a),7),7)}.
Below, we show that HM' (X, Z) > A(n) + ¢(n) + O(n); it is unclear if higher HILL entropy can
be shown. The discussion assumes some familiarity with the NIZK system for 3-SAT, by Lepinski,
Micali, and shelat [LMSO05].

By the zero-knowledgeness, the output distribution (Xsym, Zsim) of the simulator is indistin-
guishable from (X, Z). So HM' (X, Z) is no less than the min-entropy of (Xsim, Zsim). We count
how many choices the simulator SIM has: there are,

2M") theorems to prove,

fewer than 22" proving pairs to choose from (a proving pair is an n-bit Blum integer x and
an n-bit quadratic residue y € Z%),

24(M)=#(n) choices for shared “random” string r, where (n) is the number of Jacobi symbol
1 elements of Z* included in r (because in the simulated r, these elements must be quadratic
residues in Z7),

26(n) choices for claiming, in the simulated proof, whether each of the Jacobi symbol 1 elements
in 7 is a quadratic residue or a quadratic nonresidue (the simulator gets to make false claims
about that, because in the simulated r, they are all residues).

Taking the logarithm of the number of choices, we have H''M (X, Z) > A(n) + ¢(n) + O(n). This
seems to be the best we can do, as we do not know whether there are other distribution that is
indistinguishable from (X, 7).
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