
Retraction: Theorem 5 in this thesis is not known to be true. The subtle

difficulties in the proof, which were not understood by me at the time, were

pointed out by [SV12], where a new four-round RZK protocol that is con-

currently (and, therefore, also sequentially) sound is proposed. Because the

mistake was discovered ten years after the thesis was published, I chose not

to modify the thesis in order to present a historically accurate record and

assist the reader in understanding [SV12].
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Abstract

In STOC 2000, Canetti, Goldreich, Goldwasser, and Micali put forward the strongest notion
of zero-knowledge to date, resettable zero-knowledge (RZK) and implemented it in constant
rounds in a new model, where the verifier simply has a public key registered before any in-
teraction with the prover. This work explores their new public-key model for zero-knowledge
protocols.

First, it shows that the soundness notion in this model has not been sufficiently under-
stood and is, in fact, more subtle and complex than in the classical model. It identifies four
meaningful notions of soundness, and proves that they are distinct. Thus, protocol designers
should understand the needs of the application in order to avoid designing protocols whose
soundness is too weak (thus resulting in insecure protocols) or too strong (thus resulting in
protocols that are less efficient than necessary).

Second, having precisely defined the model, this work proceeds to demonstrate that
stronger notions of soundness require more rounds to implement. Specifically, it provides
upper and lower bounds on the numbers of rounds needed to implement the various sound-
ness notions.

Finally, to achieve both ultimate round efficiency and strong soundness, this work puts
forward a slightly stronger model. Informally, as long as the honest verifier does not use
a given public key more than a fixed-polynomial number of times, there exist 3-round
(provably optimal) RZK protocols for all of NP that possess strong soundness. This is
particularly surprising, because such 3-round protocols provably do not exist in the public-
key model without such an upper bound.

Thesis Supervisor: Silvio Micali
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Sections 1.1 and 1.2 provide some background information. The remaining sections of this
chapter explain the new results obtained in this work. The new results were obtained jointly
by Silvio Micali and myself. Most of them appear in [MR01a] and [MR01b].

1.1 The Bare Public-Key Model for Interactive Proofs

A novel protocol model, which I call the bare public-key (BPK) model, was introduced
by Canetti, Goldreich, Goldwasser and Micali in the context of resettable zero-knowledge
[CGGM00]. Although introduced with a specific application in mind, the BPK model
applies to interactive proofs in general, regardless of their knowledge complexity. The
model simply assumes that the verifier has a public key, PK , that is registered before any
interaction with the prover begins. No special protocol needs to be run to publish PK , and
no authority needs to check any property of PK . It suffices for PK to be a string known
to the prover, and chosen by the verifier prior to any interaction with him.

The BPK model is very simple. In fact, it is a weaker version of the frequently used
public-key infrastructure (PKI) model, which underlies any public-key cryptosystem or
digital signature scheme. In the PKI case, a secure association between a key and its
owner is crucial, while in the BPK case no such association is required. The single security
requirement of the BPK model is that a bounded number of keys (chosen beforehand) are
“attributable” to a given user. Indeed, having a prover P work with an incorrect public
key for a verifier V does not affect soundness nor resettable zero-knowledgeness; at most, it
may affect completeness. (Working with an incorrect key may only occur when an active
adversary is present—in which case, strictly speaking, completeness does not even apply:
this fragile property only holds when all are honest.)

Despite its apparent simplicity, the BPK model is quite powerful. In particular, it
was introduced in order to dramatically improve the round-efficiency of resettable zero-
knowledge (RZK) protocols: while RZK protocols exist in both the standard and the BPK
models [CGGM00], only in the latter case can they be constant-round (even the weaker
notion of concurrent zero knowledge (CZK) [DNS98] is not implementable in a constant
number of rounds [CKPR01] 1).

1
To be precise, the lower bound of [CKPR01] rules out only the slightly stronger black-box constant-

round RZK and CZK protocols (see Section 2.1 for the definition of “black-box”). While non-black-box

constructions are not ruled out, it is very unlikely one can build such protocols without resorting to strong

assumptions that are not complexity-theoretic in nature, such as those made in [HT98].
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1.2 Resettable Zero-Knowledge

A zero-knowledge (ZK) proof [GMR85, GMR89], is a proof that conveys nothing but the
verity of a given statement. As put forward by Canetti, Goldreich, Goldwasser, and Micali
[CGGM00], resettable zero-knowledge (RZK) is the strongest form of zero-knowledge known
to date. In essence, an RZK proof is a proof that remains ZK even if a polynomial-time
verifier can force the prover to execute the proof multiple times with the same coin tosses.
More specifically,

• The verifier can reset the prover. In each execution, the verifier can choose whether
the prover should execute the protocol with a new random tape or with one of the
tapes previously used.

• The verifier can arbitrarily interleave executions. The verifier can always start (in
particular, in a recursive way) new executions in the middle of old ones, and resume
the old ones whenever it wants.

• The prover is oblivious. As far as it is concerned, the prover is always executing a
single instance of the protocol.

Resettable ZK is a strengthening of Dwork, Naor and Sahai’s [DNS98] notion of concurrent
ZK (CZK). In essence, in a CZK protocol, a malicious verifier acts as in an RZK protocol,
except that it lacks the power of resetting the prover’s random tapes.

Perhaps surprisingly, it is possible to implement such a strong notion without public
keys: RZK protocols for NP-complete languages are constructed in [CGGM00] under spe-
cific complexity assumptions. Their construction is obtained by properly modifying the
CZK protocol of Richardson and Kilian [RK99]. Because this underlying CZK protocol is
not constant-round, neither is the resulting RZK protocol. (The minimum known num-
ber of rounds for implementing the protocol of [RK99] is polylogarithmic in the security
parameter, as shown by Kilian and Petrank [KP01].) In fact, as already pointed out, ob-
taining a constant-round RZK protocol in the standard model may not be possible due to
the lower bound of Canetti, Kilian, Petrank and Rosen [CKPR01] (although, to the best of
my knowledge, the [CKPR01] result was not yet known when [CGGM00] was written).

In the BPK model, however, a constant-round protocol is possible. Specifically, a 5-
round RZK protocol for any NP language is presented in [CGGM00]2.

1.3 The Notions of Soundness in the Bare Public-Key Model

Despite its simple mechanics, the soundness property of the bare public-key model was not
fully understood when the model was first proposed. Indeed, it is more complex than the
soundness notion in the classical case.

In the standard model for interactive proofs, soundness can be defined quite easily:
essentially, there should be no efficient malicious prover P∗ that can convince V of the
verity of a false statement with non-negligible probability. This simple definition suffices
regardless of whether P∗ interacts with the verifier only once, or several times in a sequential

2
Actually, [CGGM00] presents two related constructions: (1) a 4-round protocol with an additional 3-

round preprocessing stage with a trusted third party, and (2) an 8-round protocol without such preprocessing.

Their constructions can be easily modified to yield the 5-round protocol attributed above.
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manner, or several times in a concurrent manner. The reason for this sufficiency is that,
in the standard model, V is polynomial-time and has no “secrets” (i.e., all of its inputs are
known to P∗). Thus, if there were a P∗ successful “against a multiplicity of verifiers,” then
there would also be a malicious prover successful against a single verifier V: it would simply
let P∗ interact with V while “simulating all other verifiers.”

In the BPK model, however, V has a secret key SK , corresponding to its public key
PK . Thus, P∗ could potentially gain some knowledge about SK from an interaction with
V, and this gained knowledge might help P∗ to convince V of a false theorem in a subsequent
interaction. Therefore,

in the BPK model, the soundness property may be affected by the type of interaction
a malicious prover is entitled to have with the verifier, as well as the sheer number of
these interactions.

In addition, other totally new issues arise in the BPK model. For example, should P∗ be
allowed to determine the exact false statement of which it tries to convince V before or after
it sees PK ? Should P∗ be allowed to change that statement after a few interactions with
V?

In sum, a better understanding of the soundness properties of the BPK model is neces-
sary to avoid designing protocols that are unsound (and thus insecure) or “too sound” (and
thus, potentially, less efficient than otherwise possible).

Four Notions of Soundness in the Bare Public-Key Model

Having identified the above issues, I formalize four meaningful notions of soundness in
the BPK model. (These notions correspond in spirit to the commonly used notions of
zero-knowledge in the standard model. That is, the ways in which a malicious prover is
allowed to interact with the honest verifier correspond to those in which a malicious verifier
is allowed to interact with the honest prover in various notions of zero-knowledgeness.)
Roughly speaking, here are the four notions, each of which implies the previous one:

1. one-time soundness, when P∗ is allowed a single interaction with V per theorem
statement;

2. sequential soundness, when P∗ is allowed multiple but sequential interactions with
V;

3. concurrent soundness, when P∗ is allowed multiple interleaved interactions with
the same V; and

4. resettable soundness, when P∗ is allowed to reset V with the same random tape
and interact with it concurrently.

All four notions are meaningful. Sequential soundness (implicitly used in [CGGM00]) is
certainly a very natural notion, and concurrent and resettable soundness are natural ex-
tensions of it. As for one-time soundness, it is also quite meaningful when it is possible to
enforce that a prover who fails to convince the verifier of the verity of a given statement S

does not get a second chance at proving S. (E.g., the verifier may memorize the theorem
statements for which the prover failed, or make suitable use of timestamps assuming some
notion of time is available to both prover and verifier.)
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These four notions of soundness apply both to interactive proofs (where a malicious
prover may have unlimited power [GMR89]) and argument systems (where a malicious
prover is restricted to polynomial time [BCC88]).

Separating the Four Notions

I prove that the above four notions are not only meaningful, but also distinct. Though
conceptually important, these separations are technically simple. They entail exhibiting
three protocols, each satisfying one notion but not the next one. Specifically, in Section 2.3
I prove the following theorems.

Theorem 1 If one-way functions exist, there is a compiler-type algorithm that, for any
language L, and any interactive argument system for L satisfying one-time soundness, pro-
duces another interactive argument system for the same language L that satisfies one-time
soundness but not sequential soundness.

Theorem 2 If one-way functions exist, there is a compiler-type algorithm that, for any
language L, and any argument system for L satisfying sequential soundness, produces an-
other argument system for the same language L that satisfies sequential soundness but not
concurrent soundness.

Theorem 3 There exists a compiler-type algorithm that, for any language L, and any
interactive proof (or argument) system for L satisfying concurrent soundness, produces an-
other interactive proof (respectively, argument) system for the same language L that satisfies
concurrent soundness but not resettable soundness.

Note that the above separation theorems hold with complexity assumptions that are indeed
minimal: the third theorem holds unconditionally; while the first and second rely only on
the existence of one-way functions. (This is why Theorems 1 and 2 only hold for bounded
provers.)

Realizing that there exist separate notions of soundness in the BPK model is crucial
to avoid errors. By relying on a single, undifferentiated, and intuitive notion of soundness,
one might design a BPK protocol sound in settings where malicious provers are limited in
their interactions, while someone else might erroneously use it in settings where malicious
provers have greater powers.

1.4 Upper Bounds on Round Complexity

Given the four distinct notions of soundness, it reasonable to ask how many rounds are
sufficient to achieve zero-knowledge (or, better yet, resettable zero-knowledge) protocols
for each of the soundness notions in the BPK model. For one-time soundness, I prove the
following theorem in Section 3.1.

Theorem 4 Assuming the security of RSA with large prime exponents against adversaries
that are subexponentially strong, for any L ∈ NP, there exists a 3-round black-box RZK
protocol in the BPK model that possesses one-time, but not sequential, soundness.

For sequential soundness, [CGGM00] already provided a 5-round protocol for RZK in the
BPK model (although the four notions of soundness were not distinguished at the time
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[CGGM00] was written, what is informally proven in [CGGM00] is essentially sequential
soundness; in Section 3.2 I provide evidence for why the CGGM protocol is not concurrently
sound). I reduce the number of rounds by one with the following theorem, proven in Section
3.2.

Theorem 5 Assuming there exist certified trapdoor permutation families3 secure against
subexponentially-strong adversaries, for any L ∈ NP, there exists a 4-round black-box RZK
protocol in the BPK model that possesses sequential soundness.

I provide no upper bounds for concurrent or resettable soundness. In the latter case,
this is for a good reason: resettable soundness and black-box ZK cannot be simultaneously
achieved in the BPK model (see the next section). In the former case, concurrent soundness
does not seem inherently unachievable, and finding a concurrently sound protocol in the
BPK model is an open problem.

1.5 Lower Bounds on Round Complexity

Similarly to upper bounds, it is reasonable to ask for lower bounds for achieving resettable
zero-knowledge (or, better yet, achieving even just zero-knowledge) for different notions of
soundness in the BPK model.

For any soundness notion, I prove the following lower bound:

Theorem 6 Any (resettable or not) auxiliary-input4 ZK protocol (satisfying one-time or
stronger soundness) in the BPK model for a language outside of BPP requires at least three
rounds.

Note that the above lower bound matches the known upper bound only for the one-time
soundness case. It remains open whether 3-round sequentially-sound RZK protocols exist.

For concurrent soundness, I prove a stronger lower bound for the case of black-box
zero-knowledgeness, using the techniques of Goldreich and Krawczyk [GK96]:

Theorem 7 Any (resettable or not) black-box ZK protocol satisfying concurrent soundness
in the BPK model for a language outside of BPP requires at least four rounds.

To reiterate, I do not know of any concurrently sound RZK protocol, let alone a 4-round
one. A non-resettable ZK protocol is known in the standard model [FS89] (such a protocol
is, of course, automatically concurrently sound in the BPK model, with null public and
secret keys).

Finally, for resettable soundness, I prove the ultimate lower bound (but, again, only for
the case of black-box zero-knowledge):

Theorem 8 There is no (resettable or not) black-box ZK protocol satisfying resettable
soundness in the BPK model for a language outside of BPP.

3A trapdoor permutation family is certified if it is easy to verify that a given function belongs to the
family.

4Auxiliary-input ZK is a stronger notion than ordinary ZK [GMR85], but is weaker than black-box ZK.
All known ZK protocols satisfy the auxiliary-input ZK property. See Section 2.1 for the precise definition.
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1.6 Beating the Lower Bounds with a New Model

The above lower bounds preclude the existence of a 3-round concurrently sound black-box
RZK protocol. In addition, they demonstrate the difficulty of designing such a protocol even
if one settles for only sequential soundness: one has to design a protocol that is sequentially,
but provably not concurrently, sound.

Because rounds of communication are an expensive resource in an interactive protocol,
it is highly desirable to reduce them as much as possible. Moreover, concurrent soundness is
highly desirable when zero-knowledge protocols are used for identification of users (provers)
to a large system (verifier), when the verifier needs to be able to handle multiple provers at
once. A minimal-round concurrently sound protocol is thus highly desirable.

Unfortunately, as pointed out above, no such protocol is currently known in the BPK
model. However, I show that by strengthening the model only slightly, concurrent soundness
is not only achievable, it is achievable in just three rounds—something provably impossible
in the BPK model!

The Upperbounded Public-Key Model

How many public keys can a verifier establish before it interacts with the prover? Clearly,
no more than a polynomial (in the security parameter) number of keys. Though innocent-
looking, this bound is a source of great power for the BPK model: it allows for the existence
of constant-round black-box RZK, which is impossible in the standard model.

How many times can a verifier use a given public key? Of course, at most a polynomial
(in the security parameter) number of times. Perhaps surprisingly, I show that if such an
innocent-looking polynomial upperbound U is made explicit a priori, then one can further
increase the round efficiency of RZK protocols.

In the new upperbounded public-key (UPK) model, the honest verifier is allowed to fix
a polynomial upperbound, U , on the number of times a public key will be used; keep track,
via a counter, of how many times the key has been used; and refuse to participate once the
counter has reached the upperbound.

Let me now make the following remarks about the UPK model:

• In the RZK setting, the “strong party” is the verifier (who controls quite dramatically
the prover’s executions). Such a strong party, therefore, should have no problems in
keeping a counter in order to save precious rounds of interaction.

• The UPK model does not assume that the prover knows the current value of the ver-
ifier’s counter. (Guaranteeing the accuracy of such knowledge would de facto require
public keys that “change over time.”)

• While the specific protocol in the UPK model presented in Chapter 5 satisfies inter-
esting efficiency constraints with respect to U , these should be considered properties
of the protocol rather than requirements of the UPK model.

(For instance, in the protocol of Chapter 5, the public key length is independent of
U , while the secret key length and each execution of the protocol depend on U only
logarithmically. Only the verifier’s key-generation phase depends linearly on U .)

• The UPK model is somewhat similar to the one originally envisaged in [GMR88]
for secure digital signatures, where the signer posts an explicit upperbound on the
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number of signatures it will produce relative to a given public key, and keeps track of
the number of signatures produced so far. (The purpose and use of the upperbound
in the UPK model, however, are totally different.)

• While sufficient for constant-round implementation of the stronger RZK notion, the
UPK model is perhaps simpler than those of [DS98] (using “timing assumptions”)
and [Dam00] (using trusted third parties to choose some system parameters), which
were proposed for efficient implementations of CZK.

3-Round RZK in the UPK Model

Theorem 9 In the UPK model there exist 3-round concurrently sound black-box RZK argu-
ments for any language in NP, assuming collision-resistant hashing and the subexponential
hardness of discrete logarithm and integer factorization.5

Note that this result is round-optimal in the UPK model. Even one-time soundness with
non-resettable zero-knowledge in the UPK model cannot be achieved in two rounds, by
exactly the same argument as the one used for Theorem 6.

5Alternative complexity assumptions are given in Chapter 5.
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Chapter 2

Definitions

2.1 Resettable ZK in the Bare Public-Key Model

To define an RZK protocol, one needs to define the usual three properties: completeness,
soundness and resettable zero-knowledgeness.

The Honest Parties and Completeness

Let

— A public file F be a polynomial-size collection of records (id ,PK id ), where id is a
string identifying a verifier, and PK id is its (alleged) public key.

— An (honest) prover P (for a language L) be an interactive deterministic polynomial-
time TM that is given as inputs (1) a security parameter 1n, (2) a n-bit string x ∈ L,
(3) an auxiliary input y, (4) a public file F , (5) a verifier identity id , and (6) a random
tape ω.

For the purposes of defining RZK, one can view P as a non-interactive TM that is
given, as an additional input, the entire history of the messages already received in
the interaction, and outputs the next message to be sent. Fixing all inputs, this view
allows one to think of P(1n

, x, y, F, id ,ω) as a simple deterministic oracle that outputs
the next message given the history of the interaction.

— An (honest) verifier V be an interactive deterministic polynomial-time TM that works
in two stages. In stage one (the key-generation stage), on input a security parameter
1n and random tape r, V outputs a public key PK and the corresponding secret key
SK . In stage two (the verification stage), on input SK , an n-bit string x and a random
string ρ, V performs an interactive protocol with a prover, and outputs “accept x” or
“reject x.”

Fixing SK and ρ, one can view the verification stage V(SK , ρ) as a deterministic
oracle that is given x and the entire history of the messages already received in the
interaction, and outputs the next message to be sent, or “accept x”/“reject x.” This
view is helpful in defining the notion of resettable soundness below (however, I will use
the interactive view of V in defining one-time, sequential and concurrent soundness).

Completeness for a pair (P,V) is defined the usual way. Consider the following procedure
for (P,V), a string x ∈ L of length n and a string y.
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Procedure Normal-Interaction
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK ,SK .
2. Pick any id , and let F be a public file that contains the record (id ,PK ).
3. Pick strings ω and ρ at random and run P on inputs 1n

, x, y, id ,ω, and
the verification stage of V on inputs SK , x, ρ, letting them interact.

Definition 1 A pair (P,V) is complete for an NP-language L if for all n-bit strings x ∈ L

and their NP-witnesses y, the probability that in an execution of Normal-Interaction V
outputs “accept” differs from 1 by a quantity negligible in n.

The Various Cheating Provers and Soundness

Now I formally define the four new soundness notions in the BPK model, each stating
that a malicious prover should be unable to get the verifier to accept a false statement.
Note that it is possible to formalize the four notions of soundness by insisting that the
verifier give zero knowledge to the (one-time, sequential, concurrent or resetting) malicious
prover. This would highlight the correspondence of our soundness notions to the notions of
zero-knowledge, and would be simpler to define, because the definitions of zero-knowledge
are already well established. However, such an approach is an overkill, and would result
in unnecessarily restrictive notions of soundness in the BPK model: we do not care if the
prover gains knowledge so long as the knowledge does not allow the prover to cheat.

The definitions below are for interactive arguments [BCC88] rather than interactive
proofs [GMR85]. That is, a malicious prover is limited to polynomial time, and soundness
is computational: the definitions do not preclude cheating by computationally unbounded
provers. All the currently known examples of protocols in any public-key model (including
the ones presented in this work) are arguments anyway, because they enable a malicious
prover to cheat if it can recover the secret key SK from the public key PK . In principle,
however, a public-key model does not seem to rule out interactive proofs: it seems possible
to make clever use of a verifier public key that has no secrets associated with it.

The definitions below can be straightforwardly modified for proofs. Because proofs are
strictly stronger than arguments, all the lower bounds proved in this work extend to proofs
as well.

I now need to define three types of malicious provers. Let

— A s-sequential malicious prover P∗ for a positive polynomial s be a probabilistic
polynomial-time TM that, on first input 1n, runs in at most s(n) stages, so that

1. In stage 1, P∗ receives a public key PK and outputs a string x1 of length n.

2. In every even stage, P∗ starts in the final configuration of the previous stage and
performs a single interactive protocol: it outputs outgoing messages and receives
incoming messages (the machine with which it performs the interactive protocol
will be specified below, in the definition of sequential soundness). It can choose
to abort an even stage at any point and move on to the next stage by outputting
a special message.

3. In every odd stage i > 1, P
∗ starts in the final configuration of the previous stage

and outputs a string xi of length n.
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— An s-concurrent malicious prover P∗, for a positive polynomial s, be a probabilistic
polynomial-time TM that, on inputs 1n and PK , performs at most s(n) interactive
protocols as follows:

1. If P∗ is already running i−1 interactive protocols 1 ≤ i−1 < s(n), it can output
a special message “Start xi,” where xi is a string of length n.

2. At any point it can output a message for any of its (at most s(n)) interactive
protocols (the protocol is unambiguously identified in the outgoing message). It
then immediately receives the party’s response and continues.

— An s-resetting malicious prover P∗, for a positive polynomial s, be a probabilistic
polynomial-time TM that, on inputs 1n and PK , gets access to s(n) oracles for the
verifier (to be precisely specified below, in the definition of resettable soundness).

A pair (P,V) can satisfy one or more of the four different notions of soundness defined
below. Note that each subsequent notion trivially implies the previous one.

For the purposes of defining one-time and sequential soundness, consider the following
procedure for a given s-sequential malicious prover P∗, a verifier V and a security parameter
n.

Procedure Sequential-Attack
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK ,SK .
2. Run the first stage of P∗ on inputs 1n and PK to obtain an n-bit string x1.
3. For i ranging from 1 to s(n)/2:

3.1 Select a random string ρi.
3.2 Run the 2i-th stage of P∗, letting it interact with the verification stage of V with

input SK , xi, ρi.
3.3 Run the (2i + 1)-th stage of P∗ to obtain an n-bit string xi.

Definition 2 (P,V) satisfies one-time soundness for a language L if for all positive poly-
nomials s, for all s-sequential malicious provers P∗, the probability that in an execution of
Sequential-Attack, there exists i such that 1 ≤ i ≤ s(n), xi /∈ L, xj �= xi for all j < i and V
outputs “accept xi” is negligible in n.

Sequential soundness differs from one-time soundness only in that the malicious prover is
allowed to have xi = xj for i < j.

Definition 3 (P,V) satisfies sequential soundness for a language L if for all positive
polynomials s, for all s-sequential malicious provers P∗, the probability that in an execution
of Sequential-Attack, there exists i such that 1 ≤ i ≤ s(n), xi /∈ L, and V outputs “accept
xi” is negligible in n.

For the purposes of defining concurrent soundness, consider the following procedure for a
given s-concurrent malicious prover P∗, a verifier V and a security parameter n.

Procedure Concurrent-Attack
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK ,SK .
2. Run P∗ on inputs 1n and PK .
3. Whenever P∗ outputs “Start xi,” select a fresh random string ρi and let the i-th

machine with which P∗ interacts be the verification stage of V on inputs SK , xi, ρi.
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Definition 4 (P,V) satisfies concurrent soundness for a language L if for all positive
polynomials s, for all s-concurrent malicious provers P∗, the probability that in an execution
of Concurrent-Attack, V ever outputs “accept x” for x /∈ L is negligible in n.

Finally, for the purposes of defining resettable soundness, consider the following procedure
for a given s-resetting malicious prover P∗, a verifier V and a security parameter n.

Procedure Resetting-Attack
1. Run the key-generation stage of V on input 1n and a random string r to obtain

PK ,SK .
2. Run P∗ on inputs 1n and PK .
3. Generate s(n) random strings ρi for 1 ≤ i ≤ s(n).
4. Let P∗ interact with oracles for the second stage of the verifier, the i-th oracle

having input SK , ρi.

Note that concurrent soundness and resettable soundness differ in one crucial aspect: for
the former, every instance of V is an interactive TM that keeps state between rounds of
communication, and thus cannot be rewound; whereas for the latter, every instance of V is
just an oracle, and thus can effectively be rewound.

Definition 5 (P,V) satisfies resettable soundness for a language L if for all positive
polynomials s, for all s-resetting malicious provers P∗, the probability that in an execution
of Resetting-Attack, P∗ ever receives “accept x” for x /∈ L from any of the oracles is
negligible in n.

The Malicious Verifier and Resettable Zero-Knowledgeness

The notion of RZK was first introduced in [CGGM00]. The reader is referred to that paper
for intuition and discussion of the notion. Here, I just present the definitions.

I need to define the malicious verifier and the simulators. Let

— An (s, t)-resetting malicious verifier V∗, for any two positive polynomials s and t, be
a TM that runs in two stages so that, on first input 1n,

1. In stage 1, V∗ receives s(n) values x1, . . . , xs(n) ∈ L of length n each, and outputs
an arbitrary public file F and a list of s(n) identities id1, . . . , ids(n).

2. In stage 2, V∗ starts in the final configuration of stage 1, is given oracle access to
s(n)3 provers, and then outputs its “view” of the interactions: its random string
and the messages received from the provers.

3. The total number of steps of V∗ in both stages is at most t(n).

Following [GO94], such a verifier is auxiliary-input if it has one additional input,
z ∈ {0, 1}∗, of arbitrary length (note that, because it is limited to t(n) steps, it may
be unable to read all of z during its execution).

— A (non-black-box) simulator MV∗ for an (s, t)-resetting malicious verifier V∗ be a
machine that is given s(n) values x1, . . . , xs(n) ∈ L of length n each as input, and
runs in time polynomial in n. If V∗ is auxiliary-input, then MV∗ is also given and
additional input, z ∈ {0, 1}∗.
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— A black-box simulator M be a polynomial-time machine that is given oracle access to
an (s, t)-resetting V∗. By this I mean that it can run V∗ multiple times, each time
picking V∗’s inputs, random tape and (because V∗ makes oracle queries itself) the
answers to all of V∗’s queries. M is also given s(n) values x1, . . . , xs(n) ∈ L as input.

Now I formally define three variations on the resettable-zero-knowledgeness property.

Definition 6 (P,V) is resettable zero-knowledge for an NP-language L if for every pair of
positive polynomials (s, t), for every (s, t)-resetting verifier V∗, there exists a simulator MV∗

such that for every x1, . . . , xs(n) ∈ L and their corresponding NP-witnesses y1, . . . , ys(n), the
following probability distributions are indistinguishable (in time polynomial in n):

1. The output of V∗ obtained from the experiment of choosing ω1, . . . ,ωs(n) uniformly
at random, running the first stage of V∗ to obtain F , and then letting V∗ interact
in its second stage with the following s(n)3 instances of P: P(xi, yi, F, idk,ωj) for
1 ≤ i, j, k ≤ s(n).

2. The output of MV ∗ with input x1, . . . , xs(n).

(P,V) is, additionally, auxiliary-input resettable zero-knowledge for an NP-language L,
if the above holds for every auxiliary-input V∗ and for every string z that is given as input
to both V∗ and MV ∗ .

Finally, (P,V) is black-box resettable zero-knowledge for an NP-language L, if the above
holds for a single black-box simulator M that is simply allowed to interact with V∗.

Note that Goldreich and Oren prove in [GO94] that any black-box ZK protocol is also
auxiliary-input ZK. The same holds for the definition of RZK, above. Thus, the three
notions are in order of non-decreasing strength.

Also note that all known RZK protocols (including the ones in this paper) are black-
box and, therefore, auxiliary input. Indeed, it is difficult to imagine how one could prove
zero-knowledgeness without using a black-box simulator (the one exception to this is a non-
resettable ZK protocol of Hada and Tanaka [HT98], which explicitly makes a non-black-box
assumption in order to construct a non-black-box simulator).

The lower bounds proven in this work will hold for auxiliary-input RZK or black-box
RZK (in fact, they will hold for non-resettable ZK as well). All the upper bounds in this
paper are black-box RZK.

2.2 Resettable ZK in the Upperbounded Public-Key Model

To define the UPK model, I need to make a few changes to the above definitions. First of
all, I change the verifier. Let

— A U -bounded (honest) verifier V, for a positive polynomial U , be an interactive
polynomial-time TM that runs in two stages. In stage one (the key-generation stage),
on input a security parameter 1n and random tape r, V outputs a public key PK and
the corresponding secret key SK . In stage two (the verification stage), on input SK ,
and n-bit string x, a counter value c and a random string ρ, V performs an interactive
protocol with a prover, and outputs “accept x,” “reject x,” or “counter too large.”
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The definition of completeness changes as follows: it has to hold only if V is given a value
c as input and c < U(n).

The definitions of one-time and sequential soundness require the following changes to
the sequential malicious prover and the procedure Sequential-Attack: every odd stage of
the malicious prover outputs not only the common input xi, but also a value ci to be input
to V. The ci values have to be in strictly increasing order. The definition of concurrent
soundness changes similarly: whenever a concurrent malicious prover outputs “start xi,”
it also has to output ci, which is input to V in the procedure Concurrent-Attack. The ci

values have to be in strictly increasing order.
I do not define resettable soundness in the UPK model, because a resetting prover should

be able to reset the counter value as well, and therefore the counter becomes meaningless.
The definitions of resettable zero-knowledgeness do not change.

2.3 Separating the Four Notions of Soundness in the BPK
Model

In this section, I prove Theorems 1, 2 and 3: namely, that the four soundness notions are
distinct (the first two separations are conditioned on the existence of one-way functions).

The Common Idea

Given a protocol (P,V) that satisfies the i-th soundness notion (for i = 1, 2, or 3), I
deliberately weaken the verifier to come up with a protocol (P �

,V �) that does not satisfy
the (i+1)-th soundness notion, but still satisfies the i-th. In each case, I add rounds at the
beginning of (P,V) (and sometimes information to the keys) that have nothing to do with
the language or the theorem being proven. At the end of these rounds, either V � accepts, or
(P �

,V �) proceed with the protocol (P,V). In each case, it will be easy for a malicious prover
for the (i + 1)-th notion of soundness to get V � to accept at the end of these additional
rounds.

To prove that the resulting protocol (P �
,V �) still satisfies the i-th notion of soundness,

it will suffice to show that if a malicious prover P �∗ for (P �
,V �) exists, then it can be used

to construct a malicious prover P∗ for (P,V). In each case, this is easily done: P∗ simply
simulates the additional rounds to P �∗ (one also has to argue that V � interacting with P �∗

is unlikely to accept during these additional rounds).
Finally, to ensure that zero-knowledgeness of (P,V) is not affected, during the additional

rounds the honest P � will simply send some fixed values to V � and disregard the values sent
by V �.

Each of the subsections below described the specific additional information in the keys
and the additional rounds. I do not provide the details of proofs, as they can be easily
derived from the discussion above.

Proof of Theorem 1

Let F be a pseudorandom function [GGM86]; I denote by Fs(x) the output of F with seed
s on input x. Note that such functions exist assuming one-way functions exist [HILL99].
Let x denote the theorem that the prover is trying to prove to the verifier.

Additional Key Gen. Step: Generate random n-bit seed s; add s to the secret key SK .
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Additional Prover Step: Set β = 0; send β to the verifier.
Additional Verifier Step: If β = Fs(x), accept and stop. Else send Fs(x) to the prover.

Note that a sequential malicious prover can easily get V � to accept: it finds out the value
of Fs(x) in the first interaction, and sets β = Fs(x) for the second. If, on the other hand,
the malicious prover is not allowed to use the same x twice, then it cannot predict Fs(x)
before sending β, and thus cannot get V � to accept.

Proof of Theorem 2

Let (SigKeyGen,Sign,Ver) be a signature scheme secure against adaptive chosen message
attacks [GMR88]. Note that such a scheme exists assuming one-way functions exist [Rom90].

Additional Key Generation Step: Generate a key pair (SigPK ,SigSK ) for the signature
scheme; add SigPK to the public key PK and SigSK
to the secret key SK .

First Additional Prover Step: Set M = 0, and send M to the verifier.
First Additional Verifier Step: 1. Send a signature s of M to the prover.

2. Let M
� be random n-bit string; send M

� to prover.

Second Additional Prover Step: Set s
� = 0. Send s

� to the verifier.
Second Additional Verifier Step: If s

� is a valid signature of M
�, then accept and stop.

Note that a concurrent malicious prover can easily get V � to accept. It starts a protocol
with V �, sends M = 0, receives M

� from V, and then pauses the protocol. During the pause,
it starts a second protocol, and sends M = M

� to V � to obtain a signature s of M
� in first

message from V �. It then resumes the first protocol, and sends s
� = s to V � as its second

message, which V � accepts.
Also note that a sequential malicious prover will most likely not be able to come up

with a valid signature of M
�, because of the signature scheme’s security against adaptive

chosen message attacks.

Proof of Theorem 3

Additional Prover Step: Set β be the string of n zeroes; send β to the verifier.
Additional Verifier Step: Set α be a random string.

If β = α, accept and stop. Else send α to the prover.

Note that a resetting malicious prover can easily get V � to accept: it finds out the value
of α in the first interaction, then resets V � with the same random tape and sets β = α for
the second interaction. A concurrent malicious prover, on the other hand, knows nothing
about α when it determines β, and thus cannot get V � to accept.

Note that this separation holds in the standard model as well—I never used the BPK
model in this proof.
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Chapter 3

Upper Bounds on
Round-Complexity of RZK in the
BPK Model

This chapter is concerned with constructing protocols that satisfy one-time or sequential
soundness in the BPK model, in as few rounds as possible.

3.1 One-Time Sound RZK

Recall Theorem 4:

Theorem 4 Assuming the security of RSA with large prime exponents against adversaries
that are subexponentially strong, for any L ∈ NP, there exists a 3-round black-box RZK
protocol in the BPK model that possesses one-time, but not sequential, soundness.

Proof The proof of the theorem is constructive: I demonstrate such a protocol (P,V).

Basic Tools. The protocol (P,V) relies on three techniques: a pseudorandom function
PRF [GGM86], a verifiable random functions VRF [MRV99], and a non-interactive zero-
knowledge (NIZK) proof system (NIP,NIV) [BFM88, BDMP91] (these notions are recalled
and defined in Appendix A). Note that both PRFs and NIZKs can be constructed using
general assumptions [HILL99, FLS99], and it is only for VRFs that I need the specific RSA
assumption (which is formally stated in Section A.4).

Let me briefly introduce the notation used for VRFs and NIZKs:

• The keys VRFPK ,VRFSK for VRF are produced by VRFGen. The evaluation is
performed by VRFEval, and the proof is computed by VRFProve. The verification is
performed by VRFVer.

• The NIZK proof with security parameter n requires a shared random string σ of length
NIσLen(n). The proof is computed by NIP and verified by NIV. The shared string
and the proof together can by simulated by NIS.

The construction works for any language L for which an NIZK proof system exists, and,
therefore, for all of NP.

This construction also uses “complexity leveraging” [CGGM00], although in a somewhat
unusual way. Namely, let α be the pseudorandomness constant for VRF (that is, the output
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of the VRFEval is indistinguishable from random for circuits of size 2kα , where k is VRF the
security parameter). Let γ1 be the following constant: for all sufficiently large n, the length
of the NIZK proof Π for a theorem x ∈ L, where x is of length n, is upper bounded by n

γ1 .
Let γ2 be the following constant: for all sufficiently large n, the length of the NP-witness
y for an n-bit x ∈ L is upper bounded by n

γ2 . I then set γ = max(γ1, γ2), and � > γ/α.
The protocol will use NIZK with security parameter n and VRF with a (larger) security
parameter k = n

�. This ensures that one can enumerate all potential NIZK proofs Π, or all
potential NP-witnesses y, in time 2nγ , which is less than the time it would take to break
the residual pseudorandomness of VRF (because 2nγ

< 2kα).

The Protocol. For a security parameter n, V generates a key pair for the VRF with
output length NIσLen(n) and security parameter k = n

�. VRFSK is V’s secret key, and
VRFPK is V’s public key.

Protocol (P,V)

Public File: A collection F of records (id ,VRFPK id ), where VRFPK id is allegedly
the output of VRFGen(1k)

Common Input: An element x ∈ L

P Private Input: The NP-witness y for x ∈ L; V’s id and the file F ; a random string ω

V Private Input: A secret key SK

P Step One: 1. Using the random string ω as a seed for PRF, generate a string σP

of length NIσLen(n) from the inputs x, y and id .
2. Send σP to V.

V Step One: 1. Compute a string σV of length NIσLen(n) as
σV = VRFEval(VRFSK , x), and the VRF proof
pf = VRFProve(VRFSK , x).

2. Send σP and pf to P.

P Step Two: 1. Verify that σV is correct by invoking VRFVer(VRFPK , x, τ, pf ).
If not, abort.

2. Let σ = σV⊕σP . Using NIP(σ, x, y), compute and send to V the
proof Π of the statement “x ∈ L.”

V Step Two: 1. Let σ = σV⊕σP . Using NIV(σ, x,Π), verify if Π is valid.
If so, accept. Else reject.

As far as I know, the above protocol is the first application of VRFs. The very strong
properties of this new tool yield surprisingly simple proofs of one-time soundness and black-
box resettable zero-knowledgeness, presented below (completeness, as if often the case, is
trivially verified).

Soundness. First of all, note that soundness of the above protocol is provably not se-
quential, because σV depends only on the input x, and hence will repeat if V is run with
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the same x twice. Thus, once a sequential malicious prover P∗ knows σV , it can run the
NIZK simulator NIS(x) to obtain (σ�,Π�), restart with the same x, and use σ

�
P = σ

�⊕σV as
its first message and Π� as its second message.

To show one-time soundness, first assume (for simplicity) that P∗ interacts with V only
once (I will deal with the general case later). Then I will construct a machine T = (TJ , TE) to
break the residual pseudorandomness of the VRF (see the definition of VRF in Section A.4).
Namely, given the public key VRFPK of a VRF with security parameter k, TJ runs the
first stage of P∗ on input VRFPK to receive a string x. It then checks if x ∈ L by simply
enumerating all potential NP witnesses y in time 2nγ2 . If it is, then TJ outputs (x, state),
where state = 0. Otherwise, it runs the second stage of P∗ to receive σP , and outputs
(x, state), where state = (x,σP).

Now, TE receives v, and TE ’s job is to find out whether v is a random string or
VRFEval(VRFSK , x). If state = 0, then TE simply guesses at random. Otherwise,
state = (x,σP). Let σ = σP⊕v. If v is a random string, then σ is also random, so
most likely there is no NIZK proof Π of the statement “x ∈ L” with respect to σ (by sound-
ness of the NIZK proof system). Otherwise, v = σV , so, if P∗ has a better than negligible
probability of success, then there is a better than negligible probability that Π exists with
respect to σ. Thus, TE simply searches whether a proof Π exists (in time 2nγ1 ) to determine
whether v is random or the output of VRFEval.

Note that complexity leveraging is crucial here: I am using the fact that the VRF is
“stronger” than the non-interactive proof system. Otherwise, the output of VRFProve
(which the prover gets, but T does not) could help a malicious prover find Π. By using a
stronger VRF, I am ensuring that such Π will most likely not even exist.

Now I address the general case, when P∗ is allowed multiple interactions with V. Sup-
pose P∗ is an s-sequential malicious prover. Then P∗ initiates at most s(n) sequential
conversations and wins if V accepts at least one of them (say, the i-th one) for xi /∈ L.
Moreover, because I am only proving one-time soundness, P∗ is not allowed to attempt
proving xi ∈ L in any previous protocol. Then TJ simply guesses, at random, the conversa-
tion number i for which P∗ will succeed, and simulates conversations before the i-th one by
querying VRFEval and VRFProve on xj for j < i (it is allowed to do so, as long as xj �= xi).
Because the guessed i may be incorrect, this reduces T ’s advantage by a polynomial factor
of s(n).

Resettable Zero-Knowledgeness. The RZK property can be shown in a way similar
to (and simpler than) the RZK property is shown for the public-key protocol of [CGGM00].
One simply builds an RZK simulator who finds out VRFEval(VRFSK , x) for every pair
(VRFPK , x) that V∗ is likely to input to P, and then rewinds and uses the NIZK simulator
NIS(x) just like the sequential malicious prover described above.

3.2 Sequentially-Sound RZK

The CGGM Upper Bound

Although [CGGM00] did not provide formal definitions of soundness in the BPK model,
their soundness proof essentially shows that their BPK model protocol is sequentially sound.
Also, a careful interleaving of rounds allows for their protocol to be 5-round. Thus, they
prove that, assuming subexponential hardness of discrete logarithms, 5-round sequentially
sounds RZK protocols in the BPK model exist for all of NP.
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Let me now explain why it will probably not be possible to prove their protocol con-
currently sound. The CGGM protocol begins with V proving to P knowledge of the secret
key by means of parallel repetitions of a three-round proof of knowledge subprotocol. The
subprotocol is as follows: in the first round, V sends to P a commitment; in the second
round, P sends to V a one-bit challenge; in the third round, V sends to P a response. This
is repeated k times in parallel in order to reduce the probability of V cheating to roughly
2−k.

In order to prove soundness against a malicious prover P∗, these parallel repetitions of
the subprotocol need to be simulated to P∗ (by a simulator that does not know the secret
key). The best known simulation techniques for this general type of proof of knowledge run
in time roughly 2k. This exponential in k simulation time is not a concern, because of their
use of “complexity leveraging” in the proof of soundness. Essentially, the soundness of their
protocol relies on an underlying much harder problem: for instance, one that is assumed
to take more than 23k time to solve. Thus, the soundness of the CGGM protocol is proved
by contradiction: by constructing a machine from P∗ that runs in time 2k

< 23k and yet
solves the underlying harder problem.

A concurrent malicious prover P∗, however, may choose to run L parallel copies of V.
Thus, to prove soundness against such a P∗, the proof-of-knowledge subprotocol would have
to be simulated Lk times in parallel, and this simulation would take roughly 2Lk time. If
L > 3, then one will not be able to solve the underlying hard problem in time less than 23k,
and thus will not be able to derive any contradiction.

Thus, barring the emergence of a polynomial-time simulation for parallel repetitions of
3-round proofs of knowledge (or a dramatically new proof technique for soundness), the
CGGM protocol is not provably concurrently sound.

A New Upper Bound

Recall Theorem 5:

Theorem 5 Assuming there exist certified trapdoor permutation families1 secure against
subexponentially-strong adversaries, for any L ∈ NP, there exists a 4-round black-box RZK
argument in the BPK model that possesses sequential soundness.

Proof The proof is, again, constructive. The construction is a modification of the CGGM
protocol (which has 8 rounds, and can easily be modified to have 5 by combining the first
three rounds with later rounds). The high-level description is as follows.

Main Ideas. The CGGM protocol starts with a three-round proof of knowledge subpro-
tocol in which V proves to P knowledge of the secret key. After that, P proves to V that a
graph is three-colorable using a five-round protocol.

The main idea is to replace the five-round protocol with a single round using non-
interactive zero-knowledge (see Appendix A for the definition). The first three rounds are
then used both for the proof of knowledge and for agreeing on a shared random auxiliary
string σ needed for the NIZK proof. To agree on σ, V sends to P an encryption of a random
string σV , P sends to V its own random string σP , and then V reveals σV (and the coins
used to encrypt it). The string σ is computed as σP⊕σV . Thus, V’s key pair is simply a key
pair for an encryption scheme. The protocol is RZK essentially for the same reasons that

1A trapdoor permutation family is certified if it is easy to verify that a given function belongs to the
family.
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the CGGM protocol is RZK: because the simulator can extract the decryption key from the
proof of knowledge and thus find out σV before needing to submit σP . This will allow it to
select σ as it wishes and thus use the NIZK simulator.

The protocol is sequentially sound because if the theorem is false, then with respect to
only a negligible portion of the possible strings σ does a NIZK proof of the theorem exist.
Thus, if a malicious prover P∗, after seeing only an encryption of σV , is able to come up
with σP such that the NIZK proof exists with respect to the resulting string σ = σP⊕σV ,
then one can use P∗ to break the security of the encryption scheme.

The computational assumption for this protocol follows from the fact that trapdoor
permutations are sufficient for encryption [GM84, Yao82, GL89], certified trapdoor permu-
tations are sufficient for NIZKs [FLS99], one-way permutations are sufficient for the proof
of knowledge [Blu86] (which is the same as in the CGGM protocol) and one-way functions
are sufficient for PRFs [HILL99].

Details of The Construction. This construction, like the previous one, works for any
languages L for which an NIZK proof system exists. Hence it works for all L ∈ NP .

The protocol relies on parallel executions of three-round proofs of knowledge, which are
performed in exactly the same way as in [CGGM00]. It also uses “complexity leveraging,”
in a way similar to the above three-round one-time-sound construction. Namely, let α be
the indistinguishability constant for the encryption scheme (that is, the encryptions of two
different strings are indistinguishable from each other for circuits of size 2kα , where k is
the security parameter). Let γ1 be the following constant: for all sufficiently large n, the
length of the NIZK proof Π for x of length n is upper bounded by n

γ1 . Let γ2 be following
constant: n parallel repetitions of the proof-of-knowledge subprotocol can be simulated in
time less that 2nγ2 . Then set γ = max(γ1, γ2), and � > γ/α. The protocol uses NIZK
with security parameter n and performs n parallel repetitions of the proof-of-knowledge
subprotocol, while the encryption scheme has a (larger) security parameter k = n

�. This
ensures that one can enumerate all potential NIZK proofs Π and simulate the proof of
knowledge subprotocol in time 2nγ , which is less than the time it would take to break the
indistinguishability of the encryption scheme (because 2nγ

< 2kα).
To generate its key pair for security parameter n, V generates a pair (EncPK ,EncSK )

of keys for the encryption scheme with security parameter k = n
�. EncSK is V’s secret key,

and EncPK is V’s public key.

Protocol (P,V)

Public File: A collection F of records (id ,EncPK id ), where EncPK id is allegedly
the output of V’s key generation

Common Inputs: An element x ∈ L

P Private Input: The NP-witness y for x ∈ L; V’s id and the file F ; a random string ω

V Private Input: A secret key EncSK ; a random string ρ

V Step One: 1. Generate a random string σV of length NIσLen(n).
2. Encrypt σV , using a portion ρE of the input random string ρ,

to get a ciphertext c. Send c to P.
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3. Generate and send to P the first message of the n parallel
repetitions of the proof of knowledge of EncSK .

P Step One: 1. Using the input random string ω as a seed for PRF, generate a
sufficiently long “random” string from the input to be used in the
remaining computation by P.

2. Generate and send to V a random string σP of length NIσLen(n).
3. Generate and send to V the second message of the n parallel

repetitions of the proof of knowledge of EncSK .

V Step Two: 1. Send σV and the coins ρE used to encrypt it to P.
2. Generate and send the third message of the n parallel repetitions

of the proof of knowledge of EncSK .

P Step Two: 1. Verify that σV encrypted with coins ρE produces ciphertext c.
2. Verify the n parallel repetitions proof of knowledge of EncSK .
3. If both verifications hold, let σ = σV⊕σP . Using the NIZK prover

NIP(σ, x, y), compute and send to V the proof Π of the statement
“x ∈ L.”

V Step Three: 1. Let σ = σV⊕σP . Using the NIZK verifier NIV(σ, x,Π), verify if Π is
valid. If so, accept. Else reject.

The proofs of soundness and black-box resettable zero-knowledgeness are presented be-
low (completeness, again, is easy to verify).

Soundness. Sequential soundness can be shown as follows. Suppose P∗ is a malicious
prover that can make V accept a false theorem with probability p(n) (where the probability
is taken over the coin tosses of the V and P∗). First, assume (for simplicity) that P∗

interacts with V only once (I will deal with the general case of a sequential malicious prover
later).

I will use P∗ to construct an algorithm A that breaks the encryption scheme. A is given,
as input, the public key EncPK for the encryption scheme. Its job is to pick two strings τ0

and τ1, receive an encryption of τb for a random bit b and tell whether b = 0 or b = 1. It
picks τ0 and τ1 simply as random strings of length NIσLen(n). Let c be the encryption of
τb. Then A publishes EncPK as its public key, runs the first stage of P∗ to receive x, and
initiates a protocol with the second stage of P∗.

In the first message, A sends c for the encryption of σV (for the proof-of-knowledge
subprotocol, A uses the simulator, which runs in time 2nγ2 ). It then receives σP from P∗,
computes σi = σP⊕τi and determines (by exhaustive search, which takes time 2nγ1 ) if there
exists an NIZK proof Πi for the statement x ∈ L with respect to σi (for i = 0, 1). If Πi

exists and Π1−i does not, then A outputs b = i. If neither Π0 nor Π1 exists, or if both exist,
then A outputs a random guess for b.

I now need to compute the probability that A correctly guessed b. Of course, by con-
struction,
Pr[A outputs b] = Pr[∃Πb and �Π1−b] + Pr[∃Πb and ∃Π1−b]/2 + Pr[�Πb and �Π1−b]/2 .

Note that
Pr[∃Πb and ∃Π1−b] + Pr[�Πb and �Π1−b] = 1− (Pr[∃Πb and �Π1−b] + Pr[�Πb and ∃Π1−b]).
Therefore, Pr[A outputs b] = 1/2− Pr[�Πb and ∃Π1−b]/2 + Pr[∃Πb and �Π1−b]/2 .
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Note that the either of the events �Πb and �Π1−b can occur only if x /∈ L, by completeness
of the NIZK system. Therefore,

Pr[A outputs b] = 1/2− Pr[�Πb and ∃Π1−b and x /∈ L]/2
+Pr[∃Πb and �Π1−b and x /∈ L]/2

= 1/2− Pr[�Πb and ∃Π1−b and x /∈ L]/2
+Pr[∃Πb and x /∈ L]/2− Pr[∃Πb and ∃Π1−b and x /∈ L]/2

≥ 1/2 + p(n)/2− Pr[∃Π1−b and x /∈ L] .

However, τ1−b is picked uniformly at random and P∗ receives no information about it, so
the string σ1−b = σP⊕τ1−b is distributed uniformly at random, so, by soundness of NIZK,
Pr[∃Π1−b and x /∈ L] is negligible in n. Thus, A’s advantage is only negligibly less than
p(n)/2.

Now I address the case of sequential malicious provers. Suppose P∗ is an s-sequential
malicious prover. Then P∗ initiates at most s(n) sequential conversations and wins if V
accepts at least one of them for x /∈ L. Then A simply guesses, at random, the conversation
for which P∗ will succeed, and simulates the other conversations by using the simulator
for the proof of knowledge and honestly encrypting random strings. Only for that one
conversation does it use the procedure described above. This reduces A’s advantage by a
polynomial factor of at most s(n).

Resettable Zero-Knowledgeness. The proof of resettable zero-knowledgeness is very
similar to that of [CGGM00]: once the simulator recovers SK from the proof of knowledge,
it can find out σV before having to send σP , and thus can run the NIZK simulator to get
(σ,Π) and set σP = σ⊕σV .
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Chapter 4

Lower Bounds on
Round-Complexity of ZK in the
BPK Model

This chapter is concerned with proving lowerbounds for the number of rounds necessary
for a ZK (and, therefore, RZK) protocol in the BPK model. Note that the lowerbounds
work both for proofs (which have unconditional soundness) and arguments (which have only
computational soundness).

4.1 Auxiliary-Input ZK with Any Soundness

Recall Theorem 6:

Theorem 6 Any (resettable or not) auxiliary-input ZK protocol (satisfying one-time or
stronger soundness) in the BPK model for a language outside of BPP requires at least three
rounds.

Proof The theorem follows immediately from the following lower bound by Goldreich
and Oren [GO94]: any auxiliary-input ZK protocol (in the standard model) for a language
outside of BPP requires at least 3 rounds.

More precisely, if a 2-round protocol (P,V) in the BPK model existed, one could con-
struct from it a 2-round protocol (P �

,V �) in the standard model by simply sending the
verifier’s public key to the prover in the first round (note that this does not add an extra
round, because V goes first in a 2-round protocol). The resulting protocol would still be
(trivially) complete. It would be sound, as well, because if it weren’t, one could construct a
cheating prover P∗ who breaks one-time soundness of (P,V) from a cheating prover P �∗ for
(P �

,V �) (because P �∗, working in the standard model, is allowed only one interaction with V �,
the resulting P∗ would only need one-time access to V). Finally, it would be auxiliary-input
ZK: one can simply view a malicious standard-model verifier V �∗ as a malicious BPK-model
verifier V∗, who “publishes” the public key, instead of sending it in the first message. Be-
cause the (P,V) is ZK, for V∗ there is a simulator MV∗ . This same simulator would work
for V �∗, as well, because the views of V∗ and V �∗ are the same.

The existence of (P �
,V �) would contradict the [GO94] lower bound.
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4.2 Black-Box ZK with Concurrent Soundness

Recall Theorem 7:

Theorem 7 Any (resettable or not) black-box ZK protocol satisfying concurrent soundness
in the BPK model for a language outside of BPP requires at least four rounds.

Proof This theorem follows from a careful examination of the proof of the following
theorem by Goldreich and Krawczyk [GK96]: in the standard model, any black-box ZK
protocol for a language outside of BPP requires at least four rounds. Familiarity with that
(very well-written) proof is helpful for understanding this one, because I do not repeat the
parts of the proof that are identical, and only highlight the crucial differences.

Note that, in the standard model, one-time, sequential and concurrent soundness co-
incide. Thus, the above theorem essentially says that, although the [GK96] proof can be
easily extended to verifiers that have public and secret keys, this extension fails to apply to
some types of soundness (as already clear from the three-round one-time sound black-box
RZK protocol of Section 3.1). The reasons for this are explained below.

The [GK96] proof proceeds by contradiction. Assuming the existence of a black-box zero-
knowledge simulator M , it constructs a BPP machine M̄ for L. Recall that M interacts
with a verifier in order to output the verifier’s view. On input x, M̄ works essentially as
follows: it simply runs M on input x, simulating a verifier to it. For this simulation, M̄

uses the algorithm of the honest verifier V and the messages supplied by M , but ignores
the random strings supplied by M and uses its own random strings (if the same message is
given twice by M , then M̄ uses the same random string—thus making the verifier appear
deterministic to M). If the view that M outputs at the end is accepting, then M̄ concludes
that x ∈ L. Otherwise, it concludes that x /∈ L.

To show that M̄ is a BPP machine for L, Goldreich and Krawczyk demonstrate two
statements: that if x ∈ L, M is likely to output an accepting conversation, and that if
x /∈ L, M is unlikely to output an accepting conversation. The first statement follows
because, by zero-knowledgeness, M ’s output is indistinguishable from the view generated
by the true prover and the true verifier on input x, and, by completeness, this view is
accepting. The second statement follows from soundness: if M can output an accepting
conversation for x /∈ L, then one can construct a malicious prover P∗ that can convince V
of the false statement “x ∈ L.” Such a P∗ needs in essence to “execute M” and simply let
it interact with V.

Having P∗ execute M requires some care. At first glance, because simulator M is
capable of resetting the verifier, it would seem that, in order to execute M , also P∗ should
have this capability. However, for 3-round protocols only, [GK96] show that

(∗) P∗ can execute M without resetting V, so long as it has one-time access to V.

Notice that by the term “one-time access” I make retroactive use of the current terminology:
[GK96] make no mention of one-time provers, because they work in the standard model.
However, this terminology allows me to separate their proof of (∗) into two distinct steps:

(∗�) P∗ can execute M so long as it has concurrent access to V; and

(∗��) losing only a polynomial amount of efficiency, concurrent access to V is equivalent to
one-time access.
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Tedious but straightforward analysis shows that (∗�) and the rest of their proof—except for
(∗��)—carries through in the BPK model (where the 3-round protocol is modified to include
verifier key generation, and public and secret verifier keys are then involved). Step (∗��),
however, only holds in the standard model (where, as pointed out, one-time, sequential and
concurrent soundness coincide).

In sum, therefore, once verifier keys are introduced, one is left with a concurrent prover.

4.3 Black-Box ZK with Resettable Soundness

Recall Theorem 8:

Theorem 8 There is no (resettable or not) black-box ZK protocol satisfying resettable
soundness in the BPK model for a language outside of BPP.

Proof This proof, like the proof of Theorem 7, is similar to the Goldreich’s and Krawczyk’s
[GK96] proof that no 3-round black-box ZK protocols exist for languages outside of BPP. I
will provide more details here than in the proof of Theorem 7. However, I will only sketch
some of the parts that are very similar to those of the [GK96] proof.

Suppose a protocol (P,V) for a language L is resettably sound and black-box ZK. Let
M be the black-box ZK simulator. I will construct a BPP machine M̄ for L, using M as a
subroutine. Note that M expects to interact with an oracle for the (malicious) verifier, so
M̄ will have to answers M ’s oracle queries.

Denote the prover messages in the protocol by α1,α2, . . . ,αR, and the verifier messages
by β1,β2,βR (note that R is not necessarily a constant). Assume, without loss of generality,
that the first message β1 is sent by the verifier, and the last message αR is sent by the
prover. For simplicity of notation, let βR+1 be the output of the V after the interaction
(“accept x” or “reject x”).

Denote the honest verifier’s random tape for key generation by r, and for the protocol it-
self by ρ. Denote the first (key-generation) stage of the honest verifier by V1, and the second
(interaction) stage by V2. Then (PK ,SK ) = V1(1n

, r), and βi = V2(SK , x, ρ, α1, . . . ,αi−1).
Let V∗ be a non-resetting malicious verifier. Denote its random tape by s. For x ∈ L

and its NP witness y, V∗ on input (s, x) outputs a single-record public file F = {(id ,PK id )},
and then expects to interact with P who is given inputs x, y, id , F . Including (id ,PK id )
into the first verifier message β1, one can view V∗ simply as a deterministic oracle: βi =
V∗(s, x,α1, . . . ,αi−1).

The black-box simulator M receives x as an input and V∗ as an oracle, has to simulate
the view of V∗ when conversing with P on common input x (the view of V∗ consists of its
input random string and the messages it receives from P).

The BPP machine M̄ , on the other hand, receives x as input, and has to decide whether
x ∈ L. M̄ simply runs M on input x and answers M ’s oracle queries just like the honest
verifier V, except that M̄ substitutes its own random strings for those given by M . Note
that no V∗ is present in this interaction: rather, M̄ simulates V∗ for M using V. More
specifically,

• M̄ maintains a table of triples of strings: (s1, r1, ρ1), (s2, r2, ρ2), . . . This table records
the substitutions of random strings that M̄ will make in the inputs to the verifier.
The table is initially empty.
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• If M queries V∗ on (s, x�,α1, . . . ,αi−1) (where x
� may or may not equal x), then then M̄

looks up a triple (s, r, ρ) in its table, if one exists. If one doesn’t exist, then M̄ generates
a random r and ρ and adds (s, r, ρ) to its table. M̄ then runs the key generation stage
of the honest verifier with random string r: (PK ,SK ) = V1(1n

, r); and the interaction
stage of the honest verifier with random string ρ: βi = V

2(SK , x
�
, ρ, α1, . . . ,αi−1).

Then M̄ returns βi as the response to M ’s query (if i = 1, then M̄ also selects an id
and adds (id ,PK ) to the β1).

At the end, M outputs some “view”: (s,α1, . . . ,αR). Assume, without loss of generality,
that M already queried V∗ on the string s, so that the corresponding r and ρ are in the table
(if M did not make such a query, M̄ can make the query on its own after seeing M ’s output).
Then M̄ gets SK from running V1(1|x|, r) and βR+1 from running V2(SK , x, ρ, α1, . . . ,αR).
If βR+1 =“accept x,” then M̄ outputs “accept”. Else, M̄ outputs “reject.”

I now have to prove two lemmas.

Lemma 1 If x /∈ L, then M̄ outputs “accept” with negligible probability.

Proof I will construct a resetting malicious prover P∗ out of M . Recall that P∗ receives
as input a public key PK , and gets to interact with oracles for V (without knowing their
random strings r and ρ and the secret key SK ). In fact, in this construction P∗ will need
to interact with only one such oracle. The job of P∗ is get the oracle to output “accept x.”

Suppose that M will use no more that q distinct random strings s1, . . . , sq in its queries
(q is polynomial in n, because the running time of M is polynomial). P

∗ will first guess
a random j between 1 and q. Then, P∗ will run M just like M̄ , simulating V∗’s answers,
with one exception: the first time that P∗ sees the j-th distinct random string sj in a
query from M , and every time thereafter that a query from M uses sj , P

∗ will pass M ’s
query to the honest verifier V whom P∗ is trying to cheat. That is, if P∗ receives a query
(sj , x

�
,α1, . . . ,αi−1), it gives (x�,α1, . . . ,αi−1) as input to its oracle for V, and returns V’s

output βi to M (if i = 1, then P∗ also selects an id and adds (id ,PK ) to β1).
At the end, M will output (s,α1, . . . ,αR). Because j was chosen at random, with

probability 1/q, s = sj . If this is the case, then P∗ gives (x,α1, . . . ,αR) as input to its
oracle for V . P∗ succeeds if βR+1 received from V is “accept x.”

Note that P∗’s behavior is the same as M̄ ’s, except that P∗ does not know rj and ρj , and
therefore has to go to the oracle for V whenever M uses sj . Therefore, the probability that
the output of M is an “accepting” conversation does not change. Thus, the probability
that P∗ succeeds is simply q times less than the probability that M̄ outputs “accept.”
Because the protocol is assumed to be resettably sound, this quantity is negligible; hence
the probability that M̄ outputs “accept” is also negligible.

Lemma 2 If x ∈ L, then M̄ outputs “accept” with high probability.

Proof Assume, again, that M will use no more that q distinct random strings s1, . . . , sq

in its queries (where q is polynomial in n).
Let H be a family of q-wise independent hash functions [Jof74, WC81, CG89] Consider

a family of (malicious) verifiers indexed by H. For h ∈ H, V∗h is the verifier that, on
input random string s, generates (r, ρ) = h(s) and then behaves like the honest verifier
V on random strings r and ρ. By completeness of (P,V) and because V∗h looks to the
honest prover P just like the honest verifier V, when P interacts with V∗h, the resulting
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view (s,α1, . . . ,αR) of V∗h will be “accepting” (that is, V2(SK , x, ρ, α1, . . . ,αR) =“accept
x,” where SK = V1(1|x|, r) and (r, ρ) = h(s)).

Thus, by zero-knowledgeness, when M interacts with V∗h, it should also producing an
“accepting” view with high probability. On the other hand, an interaction with M̄ looks
to M just like an interaction with V∗h for a random h (in fact, M̄ simply constructs a
portion of h on the fly). Therefore, M should output an “accepting” conversation with high
probability.

Note that in the proofs of the above two lemmas, I assumed that M ’s running time is
a priori bounded by a polynomial. However, the lemmas extend to simulators that run in
expected polynomial time, as well. This is done by the same techniques as used in [GK96]
(see remark 6.1 therein): one simply truncates the execution of M after a certain number
of steps, chosen in such a way that M still has a good chance of faithfully simulating the
conversation.
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Chapter 5

Three-Round Concurrently Sound
RZK Protocol for NP in the UPK
Model

Theorem 7 precludes the existence of three-round concurrently sound black-box RZK pro-
tocols in the BPK model. Surprisingly, only a slight strengthening of the model (namely,
endowing V with an upper bound and a counter) allows for such protocols to exist for all
of NP. Recall Theorem 9:

Theorem 9 In the UPK model there exist 3-round concurrently sound black-box RZK argu-
ments for any language in NP, assuming collision-resistant hashing and the subexponential
hardness of discrete logarithm and integer factorization.1

Proof This proof is constructive. The constructed protocol is rather lengthy and technical.
It is therefore helpful to first present a high-level overview of the construction.

Why the Obvious Solution Does Not Work. Before I begin, let me demonstrate
that my goal cannot be more easily achieved by the following simpler construction.

Let cmax = U(n) be the upperbound on the number of uses of the verifier’s public
key (i.e., the max value for the verifier’s counter). Take a four-round ZK protocol (e.g.,
the one of [FS89]), and have the verifier simply post cmax independently generated first-
round messages in its public key. Then execution number c simply uses first-round message
number c appearing in the public key, and then performs the remaining three rounds of the
protocol as before.

The above construction does not work, because the prover does not know the real value
c of the verifier’s counter. This enables a malicious verifier to choose the value of c after
it sees the prover’s first message. Thus, if such a verifier resets the prover while varying c,
it will typically gain knowledge. (Typically, in a 4-round ZK protocol, the verifier commits
to a question without revealing it, the prover sends a first message, the verifier asks the
question, and the prover answers it. However, if the prover were to answer two different
questions relative to the same first message, then zero-knowledgeness disappears. Now, in
the above construction, varying c enables the verifier to ask different questions.)

1One can replace the integer factorization assumption with the more general assumption that subexponen-
tially secure dense public-key cryptosystems [DDP00] and subexponentially secure certified trapdoor permuta-
tions [FLS99] exist. Or one can replace both the DL and the factorization assumptions with the assumption
that decision Diffie-Hellman is subexponentially hard.
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High-Level Description. I therefore have to present an entirely new construction.
There are, however, many similarities to the protocol of [CGGM00]. Like the CGGM pro-
tocol, this protocol uses the NP-complete language of graph 3-colorability and the parallel
repetition of the protocol of [GMW91] as the starting point. Thus, in the first round, P
commits to a number of random recolorings of a graph G, in the second round V requests
to reveal the colors of one edge for each committed recoloring, and in the third round P
opens the relevant commitments.

To allow the RZK simulator to work, the protocol also uses trapdoor commitment
schemes (see Appendix A for a definition), as in many prior ZK protocols (e.g., the RZK
one of [CGGM00], the CZK one of [DNS98], and the ZK one of [FS89]). That is, V’s public
key contains a key for a trapdoor commitment scheme, and P’s first-round commitments
are with respect to that public key. If the simulator knows the trapdoor, then it can open
the commitments any way it needs in the third round.

To ensure that the simulator knows the trapdoor, the CGGM protocol uses a three-
round proof-of-knowledge subprotocol, with V proving to P knowledge of the trapdoor.
This requires V to send two messages to P. Because I want to have a total of only three
rounds, I cannot use such a subprotocol—in three rounds V only sends one message to P.
I therefore use non-interactive ZK proofs of knowledge (NIZKPKs; see Appendix A for a
definition). This, of course, requires P and V to agree on a shared random string σ.

It is because of the string σ that one cannot use the BPK model directly, and has to
strengthen it with a counter. Let cmax = U(n) be the bound on the number of times public
key is used. During key generation, V generates cmax random strings σ1, . . . ,σcmax , and
commits to each one of them using non-interactive hash-based commitments, also recalled in
Appendix A (to make the public key length independent of cmax , the resulting commitments
are then put into a Merkle tree). In its first message, P sends a fresh random string σP ,
and in its message V decommits σc (where c is the current counter value) and provides the
NIZKPK proof with respect to σ = σP⊕σc .

The RZK simulator, after seeing the value of σc , can rewind the verifier and choose σP
so that σ = σP⊕σc allows it to extract the trapdoor from the NIZKPK. Of course, there
is nothing to prevent a malicious verifier V∗ from choosing a value of c after seeing σP ;
but because the number of choices for V∗ is only polynomial, the simulator has an inverse
polynomial probability of guessing c correctly.

One question still remains unresolved: how to ensure that a malicious verifier V∗ does
not ask P multiple different queries for the same recoloring of the graph? If V∗ resets P,
then it will get the same committed recolorings in the first round; if it can then ask a
different set of queries, then it will gain a lot of information about the coloring of the graph
(eventually even recovering the entire coloring). To prevent this, the CGGM protocol
makes the verifier commit to its queries before it receives any information from P. The
current protocol, however, cannot afford to do that, because it only has three rounds.
Instead, during key generation the verifier commits (using hash-based commitments) to a
seed PRFKey for a pseudorandom function PRF, and adds the commitment to the public
key. The verifier’s queries are then computed using PRF(PRFKey , ·) applied to the relevant
information received from P in the first round and the counter value c. To prove to P that
they are indeed computed correctly, the verifier has to include, in its NIZKPK, proofs of
knowledge of PRFKey that leads to such queries and knowledge of the decommitment to
PRFKey .

A Few More Technical Details. All the techniques used in this protocol are recalled
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in Appendix A. Here, let me briefly recall the notation used:

• The NIZKPK with security parameter n requires a shared random string σ of length
NIσLen(n). The proof is computed by NIP and verified by NIV. The shared string
and the proof together can by simulated by NIS.

• The non-interactive hash-based commitment scheme HC uses algorithms HCCom for
commitment and HCVer for verification. The commitment is only computationally
binding, and can be opened arbitrarily by an exponential-time algorithm HCFake.

• The trapdoor commitment scheme TC consists of the key generation algorithm TCGen
(which generates keys TCSK and TCPK ), the key verification algorithm TCKeyVer
(which, looking at TCPK , can check whether there really does exist a trapdoor), the
commitment algorithm TCCom and the verification algorithm TCVer. The commit-
ments are only computationally binding; moreover, using the trapdoor, any commit-
ment can be opened to any value, using a polynomial-time algorithm TCFake.

• The pseudorandom function PRF uses the seed PRFKey .

In the current protocol, just like in the CGGM protocol, all probabilistic choices of the
prover are generated as a pseudorandom function of the input. (This is indeed the first
step towards resettability, as it reduces the advantages of resetting the prover with the
same random tape.) Because the prover makes no probabilistic choices in its second step,
verifier’s message need not be included in the input to the pseudorandom function.

To ensure soundness and avoid problems with malleability of V’s commitments, I use
complexity leveraging in a way similar to the CGGM protocol. That is, there will be two
polynomially-related security parameters: n for all the components except the hash-based
commitment scheme HC, and k = n

� for HC.
This will ensure that any algorithm that is endowed with a subroutine for breaking

HC commitments, but is polynomial-time otherwise, is still unable (simply by virtue of its
running time) of breaking any other of the components. This property will be used in the
proof of soundness.

The constant � is chosen in the following way. If the protocol uses a trapdoor com-
mitment scheme TC with soundness constant α1, an NIZKPK system (NIP,NIV) with
zero-knowledgeness constant α2, and a pseudorandom function PRF with pseudorandom-
ness constant α3, the set � < min(α1,α2,α3).

The Full Description. The complete details of P and V are given below.

Key Generation Algorithm for U -bounded Verifier V

System Parameter:
A polynomial U

Security Parameter:
1n

Procedure:
1. Let cmax = U(n).
2. Generate random strings σ1, . . . ,σcmax of length NIσLen(n) each.

(Note: to save secret key length, the strings σc can be generated using a
pseudorandom function of c, whose short seed can be made part of the secret key).
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3. Let k = n
�.

4. Commit to each σc using (σComc ,σDecomc)
R← HCCom(1k

,σc).
5. Combine the values σComc into a single Merkle tree with root R.

(Note: If the values σc ’s are generated via a PRF to save on secret key length,
then also the values σComc , the resulting Merkle tree, etc. can be computed
efficiently in space logarithmic in cmax .)

6. Generate a random string PRFKey of length n.
7. Commit to the PRFKey using

(PRFKeyCom,PRFKeyDecom) R← HCCom(1n
,PRFKey).

8. Generate keys for trapdoor commitment scheme: (TCPK ,TCSK ) R← TCGen(1n).
Output:

PK = (R, PRFKeyCom,TCPK )
SK = ({(σc ,σDecomc)}cmax

c=1 , (PRFKey ,PRFKeyDecom),TCSK ).

Protocol (P,V)

Public File:
A collection F of records (id , PKid ), where PKid is allegedly the output of the
Key Generation Algorithm above

Common Inputs:
A graph G = (V,E), and a security parameter 1n

P Private Input:
A valid coloring of G, col : V → {0, 1, 2}; V’s id and the file F ; a random string ω

V Private Input:
A secret key SK , a counter value c, and a bound cmax .

P Step One :
1. Using the random string ω as a seed for PRF, generate a sufficiently long

“random” string from the input to be used in the remaining computation.
2. Find PK id in F ; let PK id = (R, PRFKeyCom,TCPK )

(if more than one PK id exist in F , use the alphabetically first one).
3. Verify TCPK by invoking TCKeyVer(1n

,TCPK ).
4. Let σP be a random string of length NIσLen(n).
5. Commit to random recolorings of the graph G as follows.

Let π1, . . . ,πn be random permutations on {0, 1, 2}.
For all i (1 ≤ i ≤ n) and v ∈ V , commit to πi(col(v)) by computing
(cComi,v, cDecomi,v)

R← TCCom(TCPK ,πi(col(v))).
6. If all the verifications hold, send σP and {cComi,v}1≤i≤n,v∈V to V.

V Step One:
1. Increment c and check that it is no greater than cmax .
2. For each j (1 ≤ j ≤ n), compute a challenge edge ej ∈ E by applying PRF to the

counter value c, j and the commitments received from P:
ej = PRF(PRFKey , c ◦ j ◦ {cComi,v}1≤i≤n,v∈V )

3. Let σ = σP⊕σc . Compute a NIZKPK proof Π using NIP on σ and the following
statement:
“∃ key K for PRF that generated the challenge edges {ej}1≤j≤n;
∃ decommitment D s. t. HCVer(1n

,PRFKeyCom,K,D) = YES;
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∃ secret key S corresponding to the public key TCPK .”
(Note: this can computed efficiently because V knows witnesses
PRFKey for K, PRFKeyDecom for D, and TCSK for S).

4. Send c, σc , σComc together with its authenticating path in the Merkle tree,
σDecomc , Π and {ej}1≤j≤n to P.

P Step Two:
1. Verify the authenticating path of σComc in the Merkle tree
2. Verify that HCVer(1k

,σc ,σComc ,σDecomc) = YES.
3. Let σ = σP⊕σc . Verify Π using NIV.
4. If all the verifications hold, for each ej = (v0

j , v
1
j ) and b ∈ {0, 1},

send c
b
j = πj(col(vb

j)) and cDecomj,vb
j

to V.
V Step Two:

1. Verify that, for all j (1 ≤ j ≤ n), and for all b ∈ {0, 1}
TCVer(TCPK , cComj,vb

j
, c

b
j , cDecomj,vb

j
) = YES.

2. Verify that for all j (1 ≤ j ≤ n), c
0
j �= c

1
j .

3. If all the verifications hold, accept. Else reject.

As usual, completeness is easily verified. Concurrent soundness and black-box resettable
zero-knowledgeness are shown below.

Soundness. First, I consider the case of a malicious prover P∗ who interacts with V only
once. The case of a concurrent malicious prover is considered afterwards.

Suppose G is a graph that is not 3-colorable, and P∗ is a circuit of size t < 2k that can
make V accept G with probability p > 1/2k. Then, I shall construct a small circuit A that
receives TCPK as input, and, using P∗, will output two trapdoor decommitments for the
same TC commitment. The size of A will be poly(n) · t · 2k

/poly(p). Thus, A will violate
the soundness of TC, because its size is less (for a sufficiently large n) than 2nα1 allowed by
the soundness property of TC (recall in fact that k = n

� and � < α1).
A is constructed as follows. It receives as input a public key TCPK for TC generated

by TCGen(1n). A then generates PK as if it were the public key of the specified honest
verifier V, using the V’s key generation procedure with the exception of step 8, for which it
simply uses TCPK . Note that A knows all the components of corresponding secret key of
V, with the exception of TCSK . A selects an identity id and creates a file F to contain the
single record (id ,PK ) (or embeds it into a larger such file containing other identities and
public keys, but honestly generated).

A will now run P∗ multiple times with inputs F and id (G is already known to P∗),
each time with the same random tape. Thus, each time, P∗ will send the same set of
strings σP and {cComi,v}1≤i≤n,v∈V . The goal, each time, is to allow A to respond with
a different random set of challenges {e�j}1≤j≤n. Then, after an expected number of tries
that is inversely polynomial in p, there will exist a recoloring i and a node v such that
cComi,v has been opened by P∗ in two different ways. That is, there will be a “break” of
the commitment scheme TC.

Therefore, all there remains to be shown is how A can ask a different random set of
challenges, despite the fact that it has committed to V’s PRFKey in PK . Recall that honest
V executes the protocol at most cmax time, and that the current value of V’s counter will
be known to P

∗. If P
∗ has such an overall success probability p of proving G 3-colorable,

then there exists a value of V’s counter for which the success probability of P∗ is at least
p. Let c be such a value. Because of A’s non-uniformity, I can assume A “knows” c.
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To issue a set of (different) random challenges in response to the same first message
of P∗, A uses the NIZKPK simulator NIS as follows. First, A selects a set of random
challenges {e�j}1≤j≤n. Second, it invokes NIS to obtain a “good looking proof” σ

� and Π�

for the following statement Σ:

Σ =“∃ key K for PRF that generated the challenge edges {e�j}1≤j≤n;
∃ decommitment D s. t. HCVer(1n

,PRFKeyCom,K,D) = YES;
∃ secret key S corresponding to the public key TCPK .”

(Note that Σ is potentially false, because it may be the case that no such K exists at all; I
address this below.) Third, A sets τ = σ

�⊕σP . Fourth, A comes up with a decommitment
τDecom that decommits σComc (the commitment to the c-th shared string computed
during key generation) to τ rather than the originally committed σc . This can be done
by implementing HCFake by means of a (sub)circuit of size poly(k)2k. Fifth, A sends
τ,σComc together with its authenticating path in the Merkle tree (A knows that path from
key generation), τDecom, Π� and {e�j}1≤j≤n to P∗.

Thus, all that’s left to show is that P∗ will behave the same way as it would for the true
verifier V, even though it received random, rather than pseudorandom, challenges, together
with a faked decommitment and a simulated proof of a potentially false statement Σ. This
is done by a properly constructed hybrid argument that relies on the zero-knowledgeness of
(NIP,NIV), the pseudorandomness of PRF and the statistical secrecy and breakability of
HC.

First, note that random {e�j}1≤j≤n cannot be distinguished from pseudorandomly gener-
ated {e�j}1≤j≤n (without knowledge of PRFKey): otherwise, the pseudorandomness of PRF
would be violated. Moreover, this holds even in the presence of PRFKeyCom, because
PRFKeyCom is statistically secret, and thus reveals a negligible amount of information
about PRFKey . Thus, the tuple (PRFKeyCom, {e�j}1≤j≤n,σ

�
,Π�) is indistinguishable from

the tuple (PRFKeyCom, {ej}1≤j≤n,σ
��
,Π��), where the challenge edges {ej}1≤j≤n are pro-

duced by the true PRF with the true committed-to PRFKey , and σ
��
,Π�� are produced

by NIS. This, in turn, by zero-knowledgeness is indistinguishable from (PRFKeyCom,

{ej}1≤j≤n,σ, Π), with the pseudorandomly generated {ej}1≤j≤n, a truly random σ and Π
honestly generated by NIP. By a hybrid argument, therefore, the tuple (PRFKeyCom,

{ej}1≤j≤n,σ, Π) is indistinguishable from the tuple (PRFKeyCom, {e�j}1≤j≤n, τ, Π�). Of
course, if one replaces σ by the pair (σP , τ = σ⊕σP) and σ

� by the pair (σP ,σc = σ⊕σP),
the statement still holds. Moreover, it holds in the presence of σComc , because the commit-
ment to σc is statistically secret (and thus is almost equally as likely to be a commitment
to τ). The authenticating path of σComc in the Merkle tree is just a (randomized) function
of σComc and root R of the tree, and thus does not affect indistinguishability. Finally,
note that this indistinguishability holds with respect to any distinguishing circuit of size
2kpoly(n), because the zero-knowledgeness and pseudorandomness constants α2 and α3 are
greater than �. Therefore, indistinguishability holds even in the presence of the decommit-
ment τDecom or σDecomc , because this decommitment can be computed by such a circuit
from σComc using HCFake.

Now let me consider the case of an s-concurrent malicious prover P∗. A now has
to simulate to P∗ multiple interactions with V. This is no harder than simulating one
interaction, because A never needs to rewind P∗ in order to perform a simulation that is
indistinguishable from interacting with true V. (Note the crucial difference between this
protocol and the protocols of [CGGM00] and Section 3.2: in the latter case, the simulator
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needs to rewind P∗ in order to simulate the proof of knowledge of the secret key, and hence
only sequential simulation is possible).

A does need to rewind P, however, in order to be able to ask it multiple challenges on the
same commitment. To that end, A guesses a random j between 1 and s(n), hoping that P∗

will cheat in the j-th protocol with non-negligible probability. It then runs P∗ multiple times
with the same random tape, always answering all of its questions the same way until it’s
time to send the challenges for the j-th protocol, which it varies by the technique described
above (of course, because the challenges in the j-th protocol vary, P∗’s messages after this
point can also vary; however, before this point P∗’s messages are guaranteed to be the
same). If j and other random guesses of A were “lucky,” then P∗ will cheat in j-th protocol
multiple times, and A will be able to break the binding property of TC. The probability
of A’s being “lucky” is non-negligible, because j is chosen from among polynomially many
(namely, s(n)) possibilities.

Resettable Zero-Knowledgeness. Let V∗ be an (s, t)-resetting verifier. I will show
how to construct the black-box simulator M as required by Definition 6.

As already proven in [CGGM00], resettability is such a strong capability of a malicious
verifier, that it has nothing else to gain by interleaving its executions with the honest prover.
Thus, assume that V∗ executes with P only sequentially.

Recall that V∗ runs in two stages. Then M operates as follows. First, M runs the first
stage of V∗ to obtain a public file F . Then, for every record (id ,PK id ) in F , M remembers
some information (whose meaning will be explained later on):

1. M remembers whether PK id is “broken” or not

2. If PK id is broken, M also remembers the value of TCSK

3. If PK id is not broken, M also remembers a list of tuples (c,σc ,σComc)

Initially, every PK id in F is marked as not broken, and the list of pairs for each record is
empty.

Whenever V∗ starts a new session for an id that is not broken and whose list of pairs
is empty, M computes the “first prover message” as follows: it commits to arbitrary color
values for graph G, and then selects σP at random. (Of course, if V∗ dictates that M ’s
random tape and inputs be equal to those in a prior interaction, M has no choice but to use
the same first message as in that interaction.) When V∗ responds with the verifier message,
M takes (c,σc ,σComc) from this message and adds it to the list of tuples maintained for
PK id . M then rewinds V∗ to the beginning of V∗’s second stage.

Whenever V∗ starts a new session for an id that is not broken but whose list of pairs is
non-empty, M randomly chooses a tuple (c�,σc� ,σComc�) from the list of tuples for PK id .
M then uses the extractor of the non-interactive ZK proof of knowledge, NIExt1, to obtain
a shared string σ, and sets σP = σ⊕σc� . M then commits to arbitrary color values for
graph G and sends the commitment and σP as the “first prover message” to V∗. When
V∗ responds with the verifier message, M compares the counter value c included in this
response to the value c� from the pair chosen above.

1. If c = c�, then it must be the case that σc = σc� . (Otherwise, if the commitment
σComc� previously stored by M is equal to the commitment σComc included in V∗’s
response, σc and σc� have been easily found, so as to violate the soundness of HC;
and if the σComc �= σCom �

c , then a collision has been easily found in the Merkle
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tree). Thus, the string Π, also included in the response of V
∗, is an NIZK proof

of knowledge with respect to the string σ output by NIExt1. Therefore, M can use
NIExt2 to extract a witness TCSK for the secret key of the commitment scheme. In
this case, PK id is marked as broken and M remembers TCSK .

2. If c �= c�, then M has learned a potentially new tuple (c,σc ,σComc), which it re-
members in its list of pairs for PK id .

M then rewinds V∗ to the beginning of V∗’s second stage.
Whenever V∗ starts a new session for an id that is broken, M can always simulate P’s

behavior because M knows the trapdoor to the commitment scheme. Thus, it can commit
to arbitrary color values in its first message, and then decommit in its second message so
that they look like a valid response to V∗’s challenge edges.

The expected running time of M is polynomial, because the expected number of rewinds
before M breaks a given PK id is polynomial in cmax and inverse polynomial in the frequency
with which V∗ uses id .

It remains to show that V∗ cannot ask for two different sets of challenge edges for the
same first message of M (if it could, then, unless M knows the correct 3-coloring of the
graph, it may be unable to faithfully simulate the decommitments). However, if V∗ has a
non-negligible probability of doing so, then one can build a machine ADV to violate the
soundness of HC in polynomial time with non-negligible probability, as follows.

ADV guesses, at random, for what instance of P the machine V∗ will first give two
different sets of challenges on the same first message. A also guesses, at random, the
counter values c1 and c2 that V∗ will use in these two cases. A then attempts to find out
σc1 and σc2 by using the same technique as M . A then runs the second stage of V∗ two
more times: once to extract a witness K for PRFKey and its decommitment D in the first
case, and the other to extract a witness K

� for PRFKey and its decommitment D
� in the

second case (this witness extraction is done the same way as M). K �= K
� and D and D

�

are valid decommitments, which violates soundness of HC.
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Appendix A

Tools

In this chapter, I recall the notation, the definitions and the constructions that are used
throughout this work.

A.1 Probabilistic Notation

(The following is taken verbatim from [BDMP91] and [GMR88].) If A(·) is an algorithm,
then for any input x, the notation “A(x)” refers to the probability space that assigns to the
string σ the probability that A, on input x, outputs σ. The set of strings having a positive
probability in A(x) will be denoted by “{A(x)}”. If S is a probability space, then “x

R← S”
denotes the algorithm which assigns to x an element randomly selected according to S. If
F is a finite set, then the notation “x

R← F” denotes the algorithm that chooses x uniformly
from F .

If p is a predicate, the notation PROB[x R← S; y R← T ; · · · : p(x, y, · · ·)] denotes the
probability that p(x, y, · · ·) will be true after the ordered execution of the algorithms x

R←
S; y

R← T ; · · ·. The notation [x R← S; y R← T ; · · · : (x, y, · · ·)] denotes the probability space
over {(x, y, · · ·)} generated by the ordered execution of the algorithms x

R← S, y
R← T, · · ·.

A.2 Pseudorandom Functions

A pseudorandom function family, introduced by Goldreich, Goldwasser and Micali [GGM86]
is a keyed family of efficiently computable functions, such that a function picked at random
from the family is indistinguishable (via oracle access) from a truly random function with
the same domain and range. More formally, let PRF(·, ·) : {0, 1}n × {0, 1}∗ → {0, 1}n be
an efficiently computable function. The definition below is quite standard, except that it
requires security against subexponentially strong adversaries.

Definition 7 A function PRF is a pseudorandom function if ∃ α > 0 such that for all
sufficiently large n and all 2nα-gate adversaries ADV, the following difference is negligible
in n:

PROB[PRFKey R← {0, 1}n : ADVPRF(PRFKey,·) = 1]−
PROB[F R← ({0, 1}n){0,1}n×{0,1}∗ : ADVF (·) = 1]

The value α is the pseudorandomness constant.
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Pseudorandom functions can be constructed based on a variety of assumption. The reader
is referred to [GGM86, NR97] (and references therein) for details.

A.3 Non-Interactive Zero-Knowledge Proofs

NIZK Proofs of Membership

Non-interactive zero-knowledge (NIZK) proofs for any language L ∈ NP were put forward
and exemplified in [BFM88, BDMP91]. Ordinary ZK proofs rely on interaction. NIZK
proofs replace interaction with a random shared string, σ, that enters the view of the
verifier that a simulator must reproduce. Whenever the security parameter is 1n, σ’s length
is NIσLen(n), where NIσLen is a fixed, positive polynomial.

Let me quickly recall their definition, adapted for polynomial-time provers.

Definition 8 Let NIP (for non-interactive prover) and NIV (for non-interactive verifier)
be two probabilistic polynomial-time algorithms, and let NIσLen be a positive polynomial.
A pair (NIP,NIV) is a NIZK argument system for an NP-language L if

1. Completeness. ∀ x ∈ L of length n, σ of length NIσLen(n), and NP-witness y for x,

PROB[Π R← NIP(σ, x, y) : NIV(σ, x,Π) = YES] = 1.

2. Soundness. ∀ x ∈ L of length n,

PROB[σ R← {0, 1}NIσLen(n) : ∃ Π s. t. NIV(σ, x,Π) = YES]

is negligible in n.

3. Zero-Knowledgeness. There exists a probabilistic polynomial-time simulator NIS such
that, ∀ sufficiently large n, ∀ x of length n and NP-witness y for x, the following two
distributions are indistinguishable by any polynomial-time adversary:

[(σ�,Π�) R← NIS(x) : (σ�,Π�)] and [σ R← {0, 1}NIσLen(n) ; Π R← NIP(σ, x, y) : (σ,Π)]

The authors of [BDMP91] show that non-interactive zero-knowledge proofs exist for all NP
languages under the quadratic residuosity assumption. The authors of [FLS99] show the
same under a general assumptions: namely, that certified trapdoor permutations exist (a
family of trapdoor permutations is certified if it is easy to tell that a given function belongs
to the family). The reader is referred to these papers for details.

NIZK Proofs of Knowledge

In [DP92], De Santis and Persiano propose to add a proof of knowledge property to NIZK.
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial-time relation (i.e., given a pair of strings (x, y),
it is possible to check in time polynomial in |x| whether (x, y) ∈ R). L be the NP language
corresponding to R (L = {x : ∃ y s.t. (x, y) ∈ R}). Let (NIP,NIV) be a NIZK proof system
for L. An extractor is a probabilistic polynomial-time TM that runs in two stages: in stage
one, on input 1n, it outputs a string σ of length NIσLen(n) (and saves any information it
wants to use in stage two); in stage two, on input x of length n and a proof Π for x relative
to shared string σ, it tries to find a witness y for x.
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Definition 9 An NIZK argument (NIP,NIV) is a NIZKPK if there exists an extractor
NIExt = (NIExt1,NIExt2) such that, for all probabilistic polynomial-time malicious provers
NIP∗, for all constants a > 0, for all sufficiently large n and for all x,

PROB[(σ, state) = NIExt1(1n) ; Π = NIP∗(σ, x) ; y = NIExt2(state, x,Π) :
(x, y) ∈ R] ≥ pn,x(1− n

−a),

where pn,x = PROB[σ R← {0, 1}n;Π = NIP∗(σ, x) : NIV(σ, x,Π) = 1].

For the application in this paper, I need NIZKPKs that are zero-knowledge even against
subexponential-time distinguishers. That is, I strengthen the zero-knowledgeness property
as follows: the distributions generated by the true prover and the simulator are indistin-
guishable by any 2nα-gate adversary, where α is the zero-knowledgeness constant.

The authors of [DP92] show that NIZKPKs exist for all polynomial-time relations under
the RSA assumption. Furthermore, the results of [DDP00] (combined with those of [FLS99])
show the same under more general assumptions: that dense public-key cryptosystems and
certified trapdoor permutations exist. They also present constructions secure under the
specific assumptions of factoring Blum integers or decision Diffie-Hellman. Because I need
NIZKPKs to be secure against subexponentially strong adversaries, I need subexponentially
strong versions of these assumptions. The reader is referred to these papers for details.

A.4 Verifiable Random Functions

A family of verifiable random functions (VRFs), as proposed in [MRV99], is essentially
a pseudorandom function family with the additional property that the correct value of a
function on an input can not only be computed by the owner of the seed, but also proven
to be the unique correct value. The proof can be verified by anyone who knows the public
key corresponding to the seed.

More precisely, a VRF is a quadruple of efficiently computable functions. The func-
tion VRFGen generates a key pair (VRFSK ,VRFPK ). The function VRFEval(VRFSK , x)
computes the pseudorandom output v; the function VRFProve(VRFSK , x) computes pf x,
the proof that v is correct. This proof can be verified by anyone who knows the VRFPK
by using VRFVer(VRFPK , x, v, pf x); moreover, no matter how maliciously VRFPK is con-
structed, for each x, there exists at most one v for which a valid proof pf x exists. The
pseudorandomness requirement states that, for all the points for which no proof has been
provided, the function VRFEval(VRFSK , ·) remains indistinguishable from random. The
following formal definition is almost verbatim from [MRV99], adapted for subexponentially-
strong distinguishers.

Definition 10 Let VRFGen,VRFEval,VRFProve, and VRFVer be polynomial-time al-
gorithms (the first and last are probabilistic, and the middle two are deterministic). Let
a: N → N ∪ {∗} and b: N → N be any two functions that are computable in time poly(n)
and bounded by a polynomial in n (except when a takes on the value ∗).

A quadruple (VRFGen,VRFEval,VRFProve,VRFVer) is a verifiable pseudorandom
function (VRF) with input length a(n),1 and output length b(n) if the following proper-
ties hold:

1
When a(n) takes the value ∗, it means that the VRF is defined for inputs of all lengths. Specifically, if

a(n) = ∗, then {0, 1}a(n)
is to be interpreted as the set of all binary strings, as usual.

49



1. The following conditions hold with probability 1− 2−Ω(n) over (VRFPK ,VRFSK ) R←
VRFGen(1n):

(a) (Domain-Range Correctness): for all x ∈ {0, 1}a(n), VRFEval(VRFSK , x) ∈
{0, 1}b(n).

(b) (Complete Provability): for all x ∈ {0, 1}a(k), if v = VRFEval(VRFSK , x) and
pf = VRFProve(VRFSK , x), then

PROB[(VRFVer(VRFPK , x, v, pf ) = YES] > 1− 2−Ω(k)

(this probability is over the coin tosses of VRFVer).

2. (Unique Provability): For every VRFPK , x, v1, v2, pf 1, and pf 2 such that v1 �= v2,
the following holds for either i = 1 or i = 2:

PROB[VRFVer(VRFPK , x, vi, pf i) = YES] < 2−Ω(k)

(this probability is also over the coin tosses of VRFVer).

3. (Residual Pseudorandomness): Let α > 0 be a constant. Let T = (TE , TJ) be any
pair of algorithms such that TE(·, ·) and TJ(·, ·, ·) run for a total of at most 2nα steps
when their first input is 1n. Then the probability that T succeeds in the following
experiment is at most 1/2 + 1/2nα :

(a) Run VRFGen(1n) to obtain (VRFPK ,VRFSK ).

(b) Run T
VRFEval(VRFSK ,·),VRFProve(VRFSK ,·)
E (1n

,VRFPK ) to obtain (x, state).

(c) Choose r
R← {0, 1}.

i. if r = 0, let v = VRFEval(VRFSK , x).
ii. if r = 1, choose v

R← {0, 1}b(n).

(d) Run T
VRFEval(VRFSK ,·),VRFProve(VRFSK ,·)
J (1n

, v, state) to obtain guess.

(e) T = (TE , TJ) succeeds if x ∈ {0, 1}a(n), guess = r, and x was not asked by either
TE or TJ as a query to VRFEval(VRFSK , ·) or VRFProve(VRFSK , ·).

The value α is the pseudorandomness constant.

The authors of [MRV99] show how to construct VRFs based on the following variant of the
RSA assumption. (The reader is referred to that paper for details of the construction.) Let
PRIMESn be the set of the n-bit primes, and RSAn be the set of composite integers that
are the product of two primes of length �(n− 1)/2�.

The RSA’ Subexponential Hardness Assumption: There exists a constant α such
that, if A is any probabilistic algorithm which runs in time 2nα when its first input is 1n,
then,

PROB[m R← RSAn ; x
R← Z∗m ; p

R← PRIMESn+1 ; y
R← A(1n

,m, x, p) :
y

p = x (mod m)] < 1/2nα
.
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A.5 Trapdoor Commitment Schemes

In this section I present trapdoor commitment schemes that are secure against subexpo-
nentially strong adversaries (satisfying an additional key-verification property).2

Informally, a trapdoor commitment scheme consists of a quintuple of algorithms. Algo-
rithm TCGen generates a pair of matching public and secret keys. Algorithm TCCom takes
two inputs, a value v to be committed to and a public key, and outputs a pair, (c, d), of
commitment and decommitment values. Algorithm TCVer takes the public key and c, v, d

and checks whether c was indeed a commitment to v.
What makes the commitment computationally binding is that without knowledge of the

secret key, it is computationally hard to come up with a single commitment c and two
different decommitments d1 and d2 for two different values v1 and v2 such that TCVer
would accept both c, v1, d1 and c, v2, d2. What makes it perfectly secret is that the value c

yields no information about the value v. Moreover, this has to hold even if the public key is
chosen adversarially. Thus, there has to be an algorithm TCKeyVer that takes a public key
as input and verifies whether the resulting commitment scheme is indeed perfectly secret.
(More generally, TCKeyVer can be an interactive protocol between the committer and the
key generator, rather than an algorithm; however, for this paper, the more restricted view
suffices.)

Perfect secrecy ensures that, information-theoretically, any commitment c can be de-
committed arbitrarily: for any given commitment c to a value v1, and any value v2, there
exists d2 such that TCVer accepts c, v2, d2 and the public key (indeed, if for some v2 such
d2 did not exist, then c would leak information about the actual committed value v1). The
trapdoor property makes this assurance computational: knowing the secret key enables one
to decommit arbitrarily through the use of the TCFake algorithm.

Definition 11 A Trapdoor Commitment Scheme (TC) is a quintuple of probabilistic
polynomial-time algorithms TCGen,TCCom,TCVer,TCKeyVer and TCFake, such that

1. Completeness. ∀n, ∀v,

PROB[(TCPK ,TCSK ) R← TCGen(1n) ; (c, d) R← TCCom(TCPK , v) :
TCKeyVer(TCPK , 1n) = TCVer(TCPK , c, v, d) = YES] = 1

2. Computational Soundness. ∃ α > 0 such that for all sufficiently large n and for all
2nα-gate adversaries ADV

PROB[ (TCPK ,TCSK ) R← TCGen(1n) ;
(c, v1, v2, d1, d2)

R← ADV(1n
,TCPK ) :

TCVer(TCPK , c, v1, d1) = YES and
TCVer(TCPK , c, v2, d2) = YES and v1 �= v2] < 2−nα

The value α is the soundness constant.

3. Perfect Secrecy. ∀ TCPK such that TCKeyVer(TCPK , 1n) = YES and ∀v1, v2 of
equal length, the following two probability distributions are identical:

[(c1, d1)
R← TCCom(TCPK , v1) : c1] and

2
I follow a similar discussion in [CGGM00] almost verbatim.
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[(c2, d2)
R← TCCom(TCPK , v2) : c2]

4. Trapdoorness. ∀ (TCPK ,TCSK ) ∈ {TCGen(1n)}, ∀v1, v2 of equal length the follow-
ing two probability distributions are identical:

[ (c, d1)
R← TCCom(TCPK , v1) ;

d
�
2

R← TCFake(TCPK ,TCSK , c, v1, d1, v2) : (c, d�2) ] and
[ (c, d2)

R← TCCom(TCPK , v2) : (c, d2) ]

(In particular, the above states that faked commitments are correct: indeed, d
�
2

R←
TCFake(TCPK ,TCSK , c, v1, d1, v2) implies that TCVer(TCPK , c, v2, d

�
2) = YES)

In this paper, I will also require that the relation (TCPK ,TCSK ) be polynomial-time;
this is easy to satisfy by simply including the random string used in key generation into the
secret key.

Such commitment schemes can be constructed, in particular, based on a subexponentially
strong variant of the Discrete Logarithm assumption. The reader is referred to [BCC88]
(where, in Section 6.1.2, it is called a DL-based “chameleon blob”) for the construction.

A.6 Hash-Based Commitment Schemes

In addition to trapdoor commitment schemes, I also use non-trapdoor, non-interactive,
computationally-binding commitment schemes (which, unlike trapdoor commitments, need
not be secure against subexponentially strong adversaries). Because of the absence of
the trapdoor requirement, these simpler commitment schemes can be implemented more
efficiently if one replaces perfect secrecy by the essentially equally powerful property of
statistical secrecy (i.e., even with infinite time one can get only a statistically negligible
advantage in distinguishing the commitments of any two different values). In particular
[DPP97, HM96] show how to commit to any value by just one evaluation of a collision-free
hash function H : {0, 1}∗ → {0, 1}k. To differentiate trapdoor commitments from these
simpler ones, I shall call them hash-based commitments.

Though the trapdoor property does not hold, I still insist that, given any commitment
and any value, it is possible in time 2k to decommit to that value.

Definition 12 A Hash-Based Commitment Scheme (HC) is a pair of probabilistic
polynomial-time algorithms HCCom,HCVer, along with the algorithm HCFake that runs
in time 2kpoly when its first input is 1k and poly is some polynomial in the size of its input,
such that

1. Completeness. ∀k, ∀v,

PROB[(c, d) R← HCCom(1k
, v) : HCVer(1k

, c, v, d) = YES] = 1

2. Computational Soundness. For all probabilistic polynomial-time machines ADV, and
all sufficiently large k,

PROB[(c, v1, v2, d1, d2)
R← ADV(1k) :

v1 �= v2 and HCVer(1k
, c, v1, d1) = YES = HCVer(1k

, c, v2, d2)]
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is negligible in k.

3. Statistical Secrecy. ∀v1, v2 of equal length, the statistical difference between the fol-
lowing two probability distribution is negligible in k:

[(c1, d1)
R← HCCom(1k

, v1) : c1] and [(c2, d2)
R← HCCom(1k

, v2) : c2]

4. Breakability. ∀v1, v2 of equal length, the statistical difference between the following
two probability distribution is negligible in k:

[(c, d1)
R← HCCom(1k

, v1) ; d
�
2

R← HCFake(1k
, c, v1, d1, v2) : (c, d�2)] and

[(c, d2)
R← HCCom(1k

, v2) : (c, d2)]

The reader is referred to [DPP97, HM96] for the constructions of such schemes, which are
based on the assumption that collisions-resistant hash functions exist.

A.7 Merkle Trees

The description below is almost verbatim from [Mic00].
Recall that a binary tree is a tree in which every node has at most two children, hereafter

called the 0-child and the 1-child. A Merkle tree [Mer89] with security parameter n is a
binary tree whose nodes store values, some of which are computed by means of a collision-
free hash function H : {0, 1}∗ → {0, 1}n in a special manner. A leaf node can store any value,
but each internal node should store a value that is the one-way hash of the concatenation
of the values in its children. That is, if an internal node has a 0-child storing the value u

and a 1-child storing a value v, then it stores the value H(u◦v). Thus, because H produces
n-bit outputs, each internal node of a Merkle tree, including the root, stores an n-bit value.
Except for the root value, each value stored in a node of a Merkle tree is said to be a 0-value,
if it is stored in a node that is the 0-child of its parent, a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one succeeds in finding a collision
for H, it is computationally hard to change any value in the tree (and, in particular, a value
stored in a leaf node) without also changing the root value. This property allows a party
A to commit to L values, v1, . . . , vL (for simplicity assume that L is a power of 2 and let
d = log L), by means of a single n-bit value. That is, A stores value vi in the i-th leaf of
a full binary tree of depth d, and uses a collision-free hash function H to build a Merkle
tree, thereby obtaining an n-bit value, R, stored in the root. This root value R “implicitly
defines” what the L original values were. Assume in fact that, as some point in time, A

gives R, but not the original values, to another party B. Then, whenever, at a later point
in time, A wants to “prove” to B what the value of, say, vi was, A may just reveal all L

original values to B, so that B can recompute the Merkle tree and the verify that the newly
computed root-value indeed equals R. More interestingly, A may “prove” what vi was by
revealing just d + 1 (that is, just 1 + log L) values: vi together with its authenticating path,
that is, the values stored in the siblings of the nodes along the path from leaf i (included)
to the root (excluded), w1, . . . , wd. Party B verifies the received alleged leaf-value vi and
the received alleged authenticating path w1, . . . , wd as follows. She sets u1 = vi and, letting
i1, . . . , id be the binary expansion of i, computes the values u2, . . . , ud as follows: if ij = 0,
she sets uj+1 = H(wj ◦ uj); else, she sets uj+1 = H(uj ◦wj). Finally, B checks whether the
computed n-bit value ud equals R.
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