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Abstract

In PODC 2003, Park, Chong, Siegel and Ray [22] proposed an optimistic protocol for fair
exchange, based on RSA signatures. We show that their protocol is totally breakable already in the
registration phase: the honest-but-curious arbitrator can easily determine the signer’s secret key.

On a positive note, the authors of [22] informally introduced a connection between fair exchange
and “sequential two-party multisignature schemes” (which we call two-signatures), but used an in-
secure two-signature scheme in their actual construction. Nonetheless, we show that this connection
can be properly formalized to imply provably secure fair exchange protocols. By utilizing the state-
of-the-art non-interactive two-signature of Boldyreva [6], we obtain an efficient and provably secure
(in the random oracle model) fair exchange protocol, which is based on GDH signatures [9].

Of independent interest, we introduce a unified model for non-interactive fair exchange protocols,
which results in a new primitive we call verifiably committed signatures. Verifiably committed
signatures generalize (non-interactive) verifiably encrypted signatures [8] and two-signatures, both
of which are sufficient for fair exchange.

1 Optimistic Fair Exchange

The problem of fair exchange is one of the fundamental problems in secure electronic transactions
and digital rights management. Intuitively, it allows two parties to exchange items in a fair way, so
that either each party gets the other’s item, or neither party does. In the digital world, a natural
instance of this problem is roughly the following. Alice is willing to sign some statement (e.g.,
e-cash payment, certified mail receipt, etc.), but only if Bob fulfills some obligation (delivers some
good, discloses some information, etc.). On the other hand, Bob is not willing to fulfill this obligation
unless he is sure that he gets the signature from Alice. A modern way to overcome this circularity is to
introduces a semi-trusted arbitrator Charlie to the model. Alice will first register her key with Charlie.
This registration is performed only once, and, as a result, Charlie may possibly learn some part of
Alice’s secret. Upon the completion of the one-time registration process, Alice can perform many fair
exchanges with different merchants. In any such exchange, Alice first issues some verifiable “partial
signature” σ′ to Bob. Bob verifies the validity of this partial signature and fulfills his obligation by
sending Alice the required information I, after which Alice sends her “full signature” σ to complete the
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transaction. Thus, if no problem occurs, Charlie does not participate in the protocol (such protocols
are called optimistic). However, if Alice refuses to send her full signature σ at the end, Bob will send
σ′ to Charlie (and a proof of fulfilling his obligation, including the information I that should be sent
to Alice), and Charlie will convert σ′ into σ, sending σ to Bob and I to Alice. Informally, we wish to
achieve the following security guarantees:

• Alice should not be able to produce a valid partial signature σ′ which Charlie cannot convert
into a full signature σ.

• Bob should not be able to produce a valid partial (full) signature σ′ (σ) which he did not get
from Alice (Alice/Charlie provided Bob possesses σ′).

• Charlie should not be able to produce a valid full signature σ without seeing a valid partial
signature σ′ computed by Alice.

While the first two properties are clearly important to prevent parties from cheating, the last property
is equally crucial: we do not want the arbitrator Charlie to make signatures without Alice’s consent.
Indeed, otherwise Charlie would have to be completely trusted. Moreover, if one is willing to have a
completely trusted arbitrator, then the problem becomes technically trivial, and no elaborate protocols
(such as the protocol in [22] that we break) are needed at all: Alice may use any signature scheme
and simply give Charlie her entire secret key during registration.

1.1 Previous Work

The problem of fair exchange has a rich history due to its fundamental importance. In the following,
we only briefly mention the body of research most relevant to our results, and refer the reader to
[2, 22] for further references.

Asokan et al. [1, 2] were the first to formally study the problem of optimistic fair exchange. They
present several provably secure, but highly interactive solutions, based on the concept of verifiably
encrypted signatures (VE-signatures). In such schemes, Alice encrypts her signature under Charlie’s
encryption key, and proves to Bob that she indeed encrypted her valid signature. After receiving her
item from Bob, she proceeds to open the encryption. This approach of [1, 2] was later generalized
by [10], but all these schemes involve expensive and highly interactive zero-knowledge proofs in the
exchange phase. Other less formal works on interactive VE-signatures include [4, 3] (e.g., the paper of
[4] was broken by [3]).

The first and only non-interactive VE-signature scheme was recently constructed by Boneh et al. [8].
While very elegant and provably secure (in the random oracle model), the scheme requires special
elliptic curve groups with a bilinear map and relies on a form of the computational Diffie-Hellman
assumption for such groups.1

A different paradigm for building non-interactive fair exchange protocols was very recently proposed
by Park et al. [22]. Essentially, Alice commits by sending her “partial signature” σ′ to Bob, and Bob
is guaranteed that Charlie can convert it into Alice’s full signature using the piece of Alice’s secret

1As presented in [8], the scheme appears to also require a new and seemingly strong “aggregate extraction” security
assumption; however, [13] shows that “aggregate extraction” assumption is equivalent to computational Diffie-Hellman.
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that Charlie learned during Alice’s registration.2 The authors of [22] suggest that this approach
may result in the design of simpler fair exchange protocols, and under more established security
assumptions. To illustrate this point, they introduce a very efficient fair exchange protocol based on
regular RSA signatures, and also informally sketch a deeper connection between their framework and
“sequential two-party multisignature schemes” (which we call two-signatures). However, the authors
of [22] provided no formal definitions for their framework, nor any proofs or even security arguments
that their proposed protocol is secure.

1.2 Our Results

Unfortunately, we show that the fair exchange protocol presented by [22] at PODC 2003 (based on
RSA signatures) is completely insecure. Specifically, we show that an honest-but-curious arbitrator
Charlie can easily determine Alice’s entire secret key after the end of Alice’s registration. In other
words, even though it might not seem at first that Alice leaks her entire key during registration, she
effectively does so, thus trivializing the proposed scheme.

On a positive note, we show that the informal connection between non-interactive fair exchange and
secure two-signature schemes can be formalized and result in provably secure fair exchange protocols,
as long as one uses secure two-signature schemes (unlike the RSA-based scheme used by [22], which
we show is completely insecure). In particular, by utilizing the state-of-the-art non-interactive two-
signature of Boldyreva [6], we obtain a very efficient and provably secure (in the random oracle model)
non-interactive fair exchange protocol, which is based on GDH signatures [9]. As compared to the
non-interactive VE-signature of [8], the resulting fair exchange is equally efficient, but is based on a
weaker “Gap Diffie-Hellman (GDH)” assumption and does not require a bilinear map.

We also stress that we provide formal definitions and security proofs for all our constructs. In
particular, and of independent interest, we introduce a simple unified model for non-interactive fair
exchange protocols: we model non-interactive fair exchange by a new primitive we call verifiably com-
mitted signatures. Verifiably committed signatures generalize (non-interactive) verifiably encrypted
signatures [8] and two-signatures, both of which are sufficient for fair exchange.

2 Formal Model For Non-Interactive Fair Exchange

We introduce the concept of verifiably committed signatures,3 which directly model non-interactive
fair exchange.

Definition 1 A verifiably committed signature (equivalently, non-interactive fair exchange) involves
the signer Alice, the verifier Bob and the arbitrator Charlie, and is given by the following efficient

2At first glance, it may seem that this approach has a major drawback in that Charlie would have to store a secret
(learned during the user’s registration) for each user Alice in the system (unlike the VE-signature approach, where Charlie
has to store a single encryption key, independent of each user’s information.) However, as mentioned in [22, Remark
5], Charlie can encrypt the secret share learned from each user via any secure symmetric encryption, thus replacing
secret storage with public storage. Furthermore, Charlie can “delegate” the responsibility for storing this encrypted
secret information back to the user, by including it as part of Alice’s certificate, which Alice must anyway receive during
registration and send with her partial signatures.

3Our notion is very different from “signatures on committed values” (see [11]). There, one tries to hide the message
signed, but interactively prove that the message satisfies some property. It is also different from designated-confirmer
signatures [12], because the trusted party completes the signature to be verifiable by anyone, rather than confirming it
in a zero-knowledge protocol.
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procedures:

• Setup. This is an interactive protocol between Alice and Charlie, by the end of which either (1)
one of the parties aborts, or (2) Alice learns her secret signing key SK, Charlie learns his secret
arbitration key ASK, and both parties agree on Alice’s public verification key PK, and partial
verification key APK.

• Sig and Ver. These are conventional signing and verification algorithms of an ordinary signature
scheme. Sig(m,SK) — run by Alice — outputs a signature σ on m, while Ver(m,σ,PK) — run
by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

• PSig and PVer. These are partial signing and verification algorithms, which are just like ordinary
signing and verification algorithms, except they can depend on the public arbitration key APK.
PSig(m,SK,APK) — run by Alice — outputs a partial signature σ′, while PVer(m,σ′,PK,APK)
— run by Bob (or any verifier) — outputs 1 (accept) or 0 (reject).

• Res. This a resolution algorithm run by Charlie in case Alice refuses to open her signature σ
to Bob, who in turn possesses a valid partial signature σ′ on m (and a proof that he fulfilled his
obligation to Alice). In this case, Res(m,σ′,ASK,PK) should output a legal signature σ of m.

Correctness states that Ver(m,Sig(m,SK),PK) = 1, PVer(m,PSig(m,SK,APK),PK,APK) = 1 and
Ver(m,Res(PSig(m,SK,APK),ASK,PK),PK) = 1. Moreover, we strengthen the last equation and re-
quire that the distribution of any “resolved signature” Res(PSig(m,SK,APK),ASK,PK) is identical to
(or at least computationally indistinguishable from) the “actual signature” Sig(m,SK).

A few remarks are in order. The key PK is Alice’s long-term public key; therefore, in a typical
application, it will be certified by some certificate authority as belonging to Alice and Alice will be
held responsible for signatures under PK. On the other hand, APK should carry no legal meaning
outside of the arbitration process. In particular, σ′ should not be viewed as Alice’s signature, even
though it can be publicly verified using PK and APK, because it does not mean that Bob has fulfilled
his obligations to Alice.

The definition above assumes that Bob, when verifying the partial signatures, has the authentic
copies of PK and APK produced during the Setup procedure. He cannot, in general, simply trust Alice
to give him correct PK and APK, because a cheating Alice may modify the keys produced during setup
and attempt to use public keys for which the Res procedure does not work. Bob needs to make sure
that Charlie agrees to these keys. This can be done in a variety of ways, the most convenient of which
depends on the application and the scheme. For example, Charlie could have his own public key with
which he can certify PK and APK at the end of Setup. Alternatively, Charlie can provide APK to Bob
directly (this is most convenient when there is a single APK for all users, as in the case of verifiably
encrypted signatures below).

In a meaningful application Charlie should run Res to produce a full signature σ from σ′ only
upon ensuring that Bob’s obligation to Alice has been fulfilled. Our definition does not deal with the
application-specific question of how Bob can prove to Charlie that he fulfilled his obligations to Alice.
For example, such proof could be Bob’s digital signature on some contract, in which case Charlie will
also forward this signature to Alice before giving Alice’s signature to Bob. We also observe that our
framework does not address the subtle issue of timely termination addressed by [1, 2]. We remark,
however, that the technique of [1, 2] can be easily added to our solution to resolve this problem.
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Finally, the fact the resolved signatures look identical to the real signatures implies that outside
parties are not able to tell whether or not the resolution process took place, which is typically very
desirable. In particular, this rules out some trivial solutions where the verifier can either accept a real
signature by Alice, or a separate signature by Charlie (in conjunction with Alice’s verifiably committed
signature).

We now comment on the known paradigms for implementing verifiably committed signatures.

2.1 Verifiably Encrypted Signatures

In a setup that requires the least interaction, Charlie generates (ASK,APK) by himself, while Alice
generates (SK,PK) by herself (possibly depending on APK). This way Charlie can support many users
with a single arbitration key ASK, and Alice does not need to contact Charlie at all when she produces
her keys (she even does not need her keys to be certified by Charlie).

A natural approach to implementing this is to have (APK,ASK) be Charlie’s encryption/decryption
keys. Then Alice generates the partial signature σ′ by encrypting her actual signature σ using APK.
If needed, Charlie resolves this by simply decrypting the “verifiably encrypted signature” σ′. We will
refer to such special case of verifiably committed signature as (non-interactive) verifiably encrypted
signature (or VE-signature).

The challenge of this approach is to make σ′ non-interactively verifiable. Indeed, until very re-
cently [8], all VE-signatures were highly interactive (between Alice and Bob). The only non-interactive
VE-signature of [8] explicitly requires a special group with a bilinear map, and is based (in the random
oracle model) on a variant of the Diffie-Hellman assumption in such a group [13].

2.2 Two-Signatures

An alternative paradigm was explicitly suggested by Park et al. [22]. In this case, all four keys
SK,PK,ASK,APK are generated by Alice. Then, Alice sends PK,ASK,APK to Charlie (over a properly
secured channel, so as not to reveal ASK to untrusted parties), who checks if the keys were “properly
generated”. Ideally, this check should be non-interactive (which will be the case in our later solution),
but Park et al. also allow Alice to interactively prove the correctness of PK,ASK,APK (e.g., prove her
knowledge of SK). Charlie will then certify Alice’s key APK, and Bob will accept partial signatures
from Alice only if they are made using certified APK.

Charlie can store ASK for each user Alice, but this obviously requires a lot of secret storage that
the previous approach does not. However, this is not necessary, as shown in [22]. To avoid this large
secret storage, Charlie can generate a secret keyK for any semantically secure symmetric cryptosystem
(E,D), and store EK(ASK) for each user, thus converting secret storage to public storage. Moreover,
Charlie can then include EK(ASK) into the certificate he issues for APK, thus avoiding the need for
public storage entirely (because the certificate for APK must be included in every partial signature σ,
anyway).

As for building the actual verifiably committed signature scheme using this approach, Park et al.
suggest to use “sequential two-party multisignatures” (from now on, referred to as two-signatures).
In such signatures, two parties P1 and P2 have two pairs of keys (pk1, sk1) and (pk2, sk2). They
can then jointly sign a message m by first having P1 sign m using sk1 (producing σ1), and then P2

transform σ1 into a “joint” signature σ which the verifier can check was signed by both P1 and P2.
For that, the verifier uses the “combined” public key pk = pk1 � pk2, where � is some public operation
(concatenation always works, but one usually wants to have pk of the same length as pk1 and pk2).
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Moreover, it is often the case that the secret keys sk1 and sk2 can also be “combined” into a joint
secret key sk = sk1⊗ sk2 which can be used to generate σ “directly”. In this case, one can use such a
two-signature as a verifiably committed signature by setting SK = (sk, sk1), PK = pk, ASK = sk2 and
APK = pk1 (notice, nobody needs to know pk2), Sig to be the direct signing using sk, PSig to be the
partial signing by P1 using sk1 (so that σ′ = σ1), and Res to be the signature completion performed
by P2 using sk2.4

As compared to VE-signatures, the obvious disadvantage of this approach is the need for interaction
between Alice and Charlie, where Charlie needs to certify Alice’s APK. However, this interaction is
performed only once for each user Alice. An advantage of the approach is that it can lead to simpler
solutions under weaker assumptions.

For instance, a trivial (but secure!) example of this paradigm will be to have two arbitrary signature
schemes with keys (pk1, sk1), (pk2, sk2), and let PK = (pk1, pk2), SK = (sk1, sk2) and σ = (σ1, σ2). In
other words, Alice’s regular signature consists of two independent signatures σ1 and σ2, while Charlie
knows how to produce σ2 only. Then Alice commits to her signature by sending σ1 to Bob, who
will then ask Charlie to produce σ2 if Alice refuses to do so later. Of course, such two-signatures /
fair exchange protocols are uninteresting and inefficient. First, all the computation and key/signature
lengths have to be doubled, and, more importantly, the final signature σ is not consistent with some
existing “natural” signature scheme. In particular, for the uses outside of the fair exchange framework,
Alice has to suffer with an inefficient and non-standard signature scheme. Thus, for the purposes of
efficiency and compatibility (but not security!), the goal is to design two-signature schemes which
are consistent with some natural, “atomic” signature schemes. Still, the trivial solution above should
satisfy the security properties of verifiably committed signatures, and thus serve as an inspiration for
our formal definition of verifiably committed signatures below.

2.3 Security of Verifiably Committed Signatures

The security of verifiably committed signatures consists of ensuring three aspects: security against
signer Alice, security against verifier Bob, and security against arbitrator Charlie. In the following,
we denote by P an oracle simulating the partial signing procedure PSig, and by R — the oracle
simulating the resolution procedure Res. Also, k denotes the security parameter, and PPT stands for
“probabilistic polynomial time” (in the security parameter).

Security against Alice. We require that any PPT adversary A succeeds with at most negligible
probability in the following experiment.

Setup∗(1k) → (SK∗,PK,ASK,APK)
(m,σ′) ← AR(SK∗,PK,APK)

σ ← Res(m,σ′,ASK,PK)

success of A = [PVer(m,σ′,PK,APK) ?= 1 ∧ Ver(m,σ,PK) ?= 0]

where Setup∗ denotes the run of Setup with dishonest Alice (run by A) and SK∗ is A’s state after this
run. In other words, Alice should not be able to produce partial signature σ′ which looks good to Bob,

4Note that in this application of multisignatures, P1 generates both keys, and hence there is no danger of “active insider
attacks” (where some dishonest party generates its key maliciously so as to be able to forge signatures on behalf of the
rest of the group). In particular, two-signatures needed here are weaker than the accountable-subgroup multisignatures
of [21].
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but which cannot be transformed into Alice’s full signature by honest Charlie. As mentioned above,
this assumes that Bob has authentic copies of PK and APK produced during setup.

Security against Bob. We require that any PPT adversary B succeeds with at most negligible
probability in the following experiment.

Setup(1k) → (SK,PK,ASK,APK)
(m,σ) ← BP,R(PK,APK)

success of B = [Ver(m,σ,PK) ?= 1 ∧ (m, . . .) �∈ Query(B,R)]

where Query(B,R) is the set of valid queries B asked to the resolution oracle R (i.e., (m,σ′) such that
PVer(m,σ′) = 1). In other words, Bob should not be able to complete any of the partial signatures
σ′ that he got from Alice into a complete signature σ, without explicitly asking Charlie to do that
(in which case he must have been completed his obligation, since otherwise we assumed that Charlie
would not cooperate).

Notice also that there is no need to provide B with an oracle access to the signing oracle Sig, since
it could be simulated by P and R. Finally, we remark that we also want Bob to be unable to generate
a valid σ′ which was not produced by Alice (via a query to P = PSig). However, this guarantee will
always follow from an even stronger security against Charlie, which we define below. Indeed, we will
ensure that even Charlie — who knows more than Bob (i.e., ASK) — cannot succeed in this attack.

Security against Charlie. We require that any PPT adversary C succeeds with at most negli-
gible probability in the following experiment.

Setup∗(1k) → (SK,PK,ASK∗,APK)
(m,σ) ← CP (ASK∗,PK,APK)

success of C = [Ver(m,σ,PK) ?= 1 ∧ m �∈ Query(C,P )]

where Setup∗ denotes the run of Setup with dishonest Charlie (run by C), ASK∗ is C’s state after this
run, and where Query(C,P ) is the set of queries C asked to the partial signing oracle P . In other
words, Charlie should not be able to produce a valid signature on m of Alice without explicitly asking
Alice to produce a partial signature on m (which he can complete into a full signature by himself using
ASK).

We remark that this property is crucial. Even though Charlie is semi-trusted, Alice does not want
Charlie to produce valid signatures which she did not intend on producing (otherwise, fair exchange
would become trivial: Alice could just give Charlie her secret key). As we will see in Section 3, the
verifiably committed signature of Park et al. [22] fails to achieve this property: in fact, an honest-
but-curious Charlie can completely determine Alice’s entire secret key SK, without any queries to the
partial signing oracle!

Finally, we remark that since Bob’s information is subsumed by either Alice’s or Charlie’s informa-
tion, there is no need to consider a coalition of Alice (Charlie) and Bob attacking Charlie (Alice). On
the other hand, Bob is certainly not protected if Alice and Charlie collude, as Charlie can refuse to
resolve the signature. Thus, our definition is the most general one can hope to achieve.

Novelty of Our Security Model. We believe that our precise and formal definition of verifiably
committed signatures is of independent interest. While previous work (such as [1, 2]) gave elaborate
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formal definitions of interactive fair exchange, ours is the first clean and simple definition of non-
interactive fair exchange. In particular, our definition is not just a “trivial extension” (to a more
general Setup procedure) of the definition of non-interactive VE-signatures from Boneh et al. [8].
Indeed, the former paper gave a nice and formal definition of VE-signatures, but did not explicitly
consider security against Alice and Charlie (instead, it considered only two forms of security against
Bob). Even though we believe that the scheme in [8] satisfies our more general definition — and the
proofs should easily follow from the ones given in [8] for their weaker definition — our definition is a
noticeable strengthening over the one given in [8]. Additionally, our definition unifies the framework of
VE-signatures and that of two-signatures informally presented by [22] (the latter work had no formal
definitions at all).

3 Breaking the Fair Exchange Scheme from PODC 2003

As we mentioned, Park et al. [22] suggested a fair exchange scheme based on the two-signature
paradigm described in Section 2. Specifically, they attempted to build a two-signature scheme based
on regular RSA full domain hash signature scheme [5]. Recall, in this scheme one chooses the modulus
n = pq to be a product of two (safe) k-bit primes, chooses a random public key e ∈ Z

∗
ϕ(n) (where

ϕ(n) = (p− 1)(q− 1)), and sets the secret key d ≡ e−1 mod ϕ(n). To sign a message m, one computes
σ ≡ H(m)d mod n, where H is a secure hash function (modeled as a random oracle). To verify, one
checks that σe ≡ H(m) mod n.

Based on this RSA signature, Park et al. attempted to build the following two-signature scheme.
Randomly split d ≡ d1 + d2 mod ϕ(n) (where d1 ∈ Z

∗
ϕ(n)), let e1 ≡ d−1

1 mod ϕ(n) and, following the
notation of Section 2, set pk = e (we omit n, which is implicitly given), pk1 = e1, sk1 = d1, sk2 = d2.
Notice, we indeed have

σ ≡ H(m)d ≡ H(m)d1 ·H(m)d2 ≡ σ1 · σ2 mod n

so that Alice can commit to σ by sending σ1, and Charlie can complete it into the full signature σ —
if necessary — by knowing d2 and computing σ2 ≡ H(m)d2 mod n.

Notice, however, that in this scheme Charlie knows n, e, e1 and d2. Had Charlie also known pk2 =
e2 ≡ d−1

2 mod ϕ(n), then the scheme would be obviously insecure since the integer (e2d2−1) would be
a non-zero multiple of ϕ(n), and it is well known that knowing such multiple of ϕ(n) is equivalent to
factoring n (e.g., page 94 of [19]). “Luckily”, the authors of [22] observed that there is no need to give
e2 to Charlie, so the system “is still secure”. Unfortunately, we show that this claim is false. Even
without knowing e2, an honest-but-curious Charlie can still determine a non-zero multiple of ϕ(n),
and thus factor n. We now summarize our break into the following abstract problem.

Problem: Pick two random k-bit primes p, q and set n = pq. Pick two random RSA key pairs (d, e)
and (d1, e1): namely, choose random e, e1 ∈ Z

∗
ϕ(n), and set d ≡ e−1 mod ϕ(n), d1 ≡ e−1

1 mod ϕ(n).
Let d2 ≡ d− d1 mod ϕ(n). The problem is to factor n given n, e, e1, d2.

Theorem 1 The problem above can be solved in probabilistic polynomial time. Thus, an honest-but-
curious arbitrator Charlie can easily determine Alice’s secret key at the end of the setup procedure.

Proof: Since ed ≡ 1 mod ϕ(n) and d ≡ d1 + d2 mod ϕ(n), we have ed1 ≡ (1 − ed2) mod ϕ(n).
Multiplying by e1 and using e1d1 ≡ 1 mod ϕ(n), we have

e ≡ (1− ed2)e1 mod ϕ(n) (1)
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Notice, all the quantities e, e1 and d2 are given to us in the problem statement. Moreover, they are
given to us as positive integers. Thus, e > 0 and (1− ed2)e1 ≤ 0. This means that Equation (1) above
cannot hold over the integers, which in turn means that the integer

I
def= e− (1− ed2)e1

is a non-zero multiple of ϕ(n). However, we already mentioned that a knowledge of a non-zero multiple
of ϕ(n) is sufficient to factor n, which completes the proof.

Multiplicative sharing. Interestingly, the authors of [22] noticed that their scheme would be
insecure if d is split multiplicatively, even though their argument was somewhat incomplete. For
thoroughness, we give the full argument, since it is very short anyway. Notice, in this case d2 ≡
dd−1

1 mod ϕ(n), which is equivalent to d2e ≡ e1 mod ϕ(n). Thus, the integer J
def= (d2e − e1) is a

multiple of ϕ(n). However, to factor n we still have to show that J �= 0, which the authors of [22] did
not do. But this argument is simple as well. Indeed, since e and e1 were chosen randomly, with all
but negligible probability we have d2 > 2k, e > 2k, while clearly e1 < n < 22k. But this means that
with all but negligible probability J > 0, so J is a non-zero multiple of ϕ(n) indeed.

4 Secure Fair Exchange based on GDH Signatures

The break on the scheme from PODC 2003 was due to the fact that the authors utilized an insecure
two-signature scheme in their construction. In this section we show that one can build secure verifiably
committed signatures provided one uses secure two-signatures. One way to approach this claim would
be to give a formal definition of secure two-signatures (i.e., “sequential two-party multisignatures”).
However, the resulting definition would be essentially the same as the definition of verifiably committed
signatures we are trying to satisfy (except it will use a particular form of the Setup procedure), and
the whole implication will anyway essentially be a tautology. Moreover, there currently anyway exists
only one fully non-interactive multisignature scheme of [6], where the underlying signature is consistent
with an existing “atomic” signature scheme of [9]. Thus, there does not seem to be a justifiable reason
to give a complicated ad hoc definition of a new primitive, which is not much easier to satisfy than
that of verifiably committed signatures, and of which we anyway currently have only one example.

Therefore, we choose to give a more meaningful direct adaptation of the multisignature scheme of
Boldyreva [6] into a verifiably committed signature scheme, and then prove that the resulting scheme
satisfies our formal definitions from Section 2.3. We remark that our proof is quite simple, but does
not immediately follow from the one given by [6], since our model and security notion are new and
different.5 First we introduce “gap Diffie-Hellman (GDH) Groups” [18, 17] and the corresponding
GDH signature scheme [9].

GDH Groups. Assume G is a multiplicative group of prime order p. Consider the following two
problems in G.
Computational Diffie-Hellman (CDH) Problem: given three elements g, h, u ∈ G, compute

v = ulogg h.

5As we stated earlier, one probably could make our result “generically follow” from the multisignature security of [6],
but it is much easier to prove it directly.
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Decisional Diffie-Hellman (DDH) Problem: given four elements g, h, u, v ∈ G, determine
whether or not they satisfy the relation logg h = logu v (in case they do, the tuple (g, h, u, v) is called
the DDH-tuple).

We can now define the GDH groups. Basically, in these groups the DDH problem is easy, but the
CDH problem is assumed to be hard. Below, we assume that there exists a family of the corresponding
groups G parameterized by some security parameter k, and efficiency is measured in terms of the binary
length of the group order p (which is polynomial in k).

Definition 2 A prime order group G (with efficient group operation and its inverse) is called a GDH
group if there exists an efficient polynomial time algorithm VDDH which solves the DDH problem, but
no PPT algorithm can solve the CDH problem with non-negligible probability, when the inputs g, h, u
are chosen at random.

We remark that GDH groups have found many applications recently (e.g., [7, 9, 16, 20, 8, 6, 15]).

GDH Signatures. The GDH signature scheme in a GDH group G is defined as follows. The key
generation algorithm picks a GDH group G of order p, and random g ∈ G, x ∈ Zp. It computes
h = gx, and sets the public key to be (g, h) (G and p are assumed to be public parameters too), and
the secret key to be x. To sign a message m, one computes σ = H(m)x, where H is a random oracle.
To verify σ, one outputs VDDH(g, h,H(m), σ), i.e., tests if (g, h,H(m), σ) form a DDH-tuple. This
scheme can also be viewed as a slight generalization of the full domain hash paradigm [5].

Theorem 2 ([9]) If G is a GDH group, then the GDH signature above is existentially unforgeable
under adaptive chosen message attack in the random oracle model.

As observed by [9], the GDH signatures not only give yet another simple and efficient signature
scheme under a new assumption, but also have the advantage of being very short in the currently
proposed GDH groups.

4.1 Verifiably Committed Signature Based on GDH Signatures

We now extend the above signature into a verifiably committed signature, following [6].

• Setup. Alice chooses random g ∈ G, x, x1 ∈ Zp, computes x2 = x− x1 mod p, h = gx, h1 = gx1 ,
and sets PK = (g, h), SK = (x, x1), APK = h1, ASK = x2. She then sends PK,APK,ASK to
Charlie, who checks that h = h1g

x2 (and rejects if this is not the case).

• Sig and Ver algorithms are identical to the GDH signature: Sig(m) = H(m)x, Ver(m,σ) =
VDDH(g, h,H(m), σ).

• PSig and PVer are also identical to the GDH signature, but with public key h1: PSig(m) =
H(m)x1 , PVer(m,σ′) = VDDH(g, h1, H(m), σ′).

• Res(m,σ′) first checks that PVer(m,σ′) = 1, and then outputs σ = σ′H(m)x2 .

The correctness property of the above verifiably committed signature is obvious. We now analyze its
security.

10



Theorem 3 The GDH verifiably committed signature presented above is as secure as the regular GDH
signature. In particular, it is secure in GDH groups in the random oracle model.

Proof: We prove the security against Alice, Bob and Charlie.
Security against Alice follows unconditionally. Indeed, if Charlie accepted the values (g, h, h1, x2)

in the registration, it means that x
def= logg h and x1

def= logg h1 satisfy x1 + x2 = x mod p. Also, any
valid partial signature σ′ satisfies x1 = logg h1 = logH(m) σ

′, and therefore the resolved full signature
σ = σ′H(m)x2 satisfies logH(m) σ = x1 + x2 = x = logg h, and thus must pass the usual verification
algorithm.

To show security against Bob, we convert any attacker B that attacks our verifiably committed
signature into a forger F for the regular GDH signature. Recall, F gets (g, h) as an input, and has
oracle access to the signing oracle Sig. On the other hand, B expects (g, h, h1) and oracle access to
both PSig and Res, and wins if it forges a signature σ of some message m without asking Res a valid
query (m,σ′). Since there is only one valid σ′ for a given m and B can test the validity himself, we
can assume that B simply did not ask Res any queries involving the forged message m.

So here is how F simulates the run of B. It picks a random x1 ∈ Zp, sets h1 = gx1 and gives
(g, h, h1) to B. F can respond to PSig queries of B by himself, since he knows x1. To simulate a valid
resolution query (mi, σ

′
i) to Res, F simply asks its own signing oracle on message m, and returns the

answer to B. When B outputs the forgery (m,σ), F also outputs the same forgery. We see that the
simulation is perfect, and F succeeds in producing a new forgery if and only if B succeeds.

Finally, we show security against Charlie. Again, we convert any verifiably committed signature
attacker C into a forger F for the regular GDH signature. As before, F gets (g, h) as an input, and has
oracle access to the signing oracle Sig. On the other hand, C expects (g, h, h1, x2) and oracle access
to PSig, and wins if it forges a signature σ of some message m without asking PSig(m).

So here is how F simulates the run of C. It picks a random x2 ∈ Zp, sets h1 = hg−x2 and gives
(g, h, h1, x2) to C. F can respond to PSig queries mi of C by first getting a signature σi = H(mi)x

from its own signing oracle, and then returning σ′
i = σiH(mi)−x2 . When C outputs the forgery (m,σ),

F also outputs the same forgery. We see that the simulation is perfect, and F succeeds in producing
a new forgery if and only if C succeeds.

Remark 1 It is instructive to see where the above proof of security against Charlie fails for seemingly
very similar RSA signatures of [22]. The step that fails involves computing the public arbitration key
e1 = (e−1 − d2)−1 mod ϕ(n) from the global public key e and a random d2 which the simulator F
chooses. Indeed, a natural way for doing so involves computing the inverse of e and then of e−1 − d2

modulo ϕ(n), which is as hard as factoring n. Of course, one might attempt to use some other way to
find any e1 and d2 satisfying e1(e−1 − d2) ≡ 1 (mod ϕ(n)). However our break shows that there is
no way to do this, unless factoring is easy. Indeed, multiplying the previous equation by e, we get that
e1(1− ed2) ≡ 1, which is exactly our Equation (1) that led to the break.
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