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10 More on Signatures and the Public-Key Infrastructure

10.1 Random Oracle Model and Full-Domain-Hash

Very efficient stateless signatures seem to come from the so-called random oracle model, formally introduced
by Bellare and Rogaway [BR93]. The idea is that often people use hash function such as SHA-1 [NIS95] as
something that produces random-looking outputs. What if we really had a truly random function available
to everyone (signer, verifier and adversary alike)?

In the random oracle model, the definition of signature scheme changes as follows: all three algorithms
(Gen,Sig,Ver) are now oracle algorithms (Gen?,Sig?,Ver?); the adversary E? now has access to two oracles
E?,?. The new oracle will be random. Namely, the experiment changes as follows:

exp-forge(k)
0. Let R : {0, 1}∗ → {0, 1} be a function chosen uniformly at random from all possible functions.
1. (PK,SK)← GenR(1k)
2. (m, σ)← ESigR

SK(·),R(1k,PK)
3. If m was not queried by E to its signing oracle and VerRPK(m, σ) = 1, output 1. Else output 0.

The rest of the definition stays the same. Note that the adversary has to be built obliviously to the oracle
R, and work for a random choice of R.

In this model, we could build signature schemes more easily. Specifically, let (n, e) be an RSA public
key, and (n, d) be the corresponding RSA secret key. Let H : {0, 1}∗ → Z

∗
n be a random function (it can

be easily built out of R : {0, 1}∗ → {0, 1}). To sign m, compute h = H(m), and σ = hd mod n. To verify,
compute h = H(m) and check if it equals σe mod n.

More generally, let {fi : Di → Di} be a trapdoor permutation family (such a family comes with the
following probabilistic polynomial-time algorithms: the algorithm GenT to generate i and trapdoor t, an
algorithm to compute fi(x) given i and x ∈ Di, and an algorithm to compute f−1

i (y) given t and y). Let
H : {0, 1}∗ → Di denote the random oracle. Let Full Domain Hash (FDH) be the following signature scheme:

• Gen picks a trapdoor permutation: runs GenT to generate PK = i and SK = t

• Sig(SK, m) computes and outputs s = f−1
i (H(m))

• Ver(PK, m, s) checks if f(s) = H(m)

Theorem 1 ([BR93]). Full Domain Hash is secure in the random oracle model.

Proof. We will show security by reduction to the one-wayness of f . Indeed, suppose F is a forger for FDH.
Then we will build an inverter Inv for f . Given an index i and a random value y ∈ Di, Inv has to find
f−1

i (y). Suppose F asks qhash hash queries a1, . . . , aqhash and qsig signature queries m1, . . . , mqsig , and then
outputs a forgery (m, s). Without loss of generality, assume that before mj is queried to a signing oracle,
it is queried to the hash oracle (if not, Inv can perform the query to the hash oracle itself before it answers
the signing query). Same for the final forgery m: assume that before being output, it is queried to the hash
oracle.

Inv proceeds as follows.

1. Inv chooses a random k between 1 and qhash + qsig + 1.

2. Inv sets PK = i and runs F (PK).

3. Upon receiving a hash query aj , if aj has been queried before, then return the same answer as before. If
not, then if j = k, return y, and store hj . Else return choose a random sj ∈ Di and return hj = f(sj);
store (hj , sj).
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4. Upon receiving a signature query m
, find the hash query on the same message, aj = m
 (we assumed
that such a query exists). If j = k, abort with failure. Else output sj .

5. Upon receiving the forgery (m, s), find the hash query on m, aj = m (again, we assumed such a query
exists). If j = k, output s. Else abort with failure.

Observe that if Inv does not abort with failure, then the view of F is exactly the same as in the real
execution: F sees random values from Di for hash values, and their correct unique inverses under fi as
signatures. Observe also that if Inv is lucky and guessed correctly the value k (i.e., guessed correctly which
hash query the forgery would correspond to), then it will not abort with failure (because F is not allowed
to ask signature queries on its eventual forgery m, so m
 �= m for any �), and, moreover then s will be the
value that Inv needs to output, i.e., s = f−1

i (H(m)) = f−1
i (y). Thus, Inv will succeed with probability at

least ε/(qhash + qsig + 1), where ε is F ’s success probability. Thus, if ε isn’t negligible, then neither is the
inversion probability and hence f is not one-way.

10.2 Problems with Random Oracles

The problem with the random oracle model is that it doesn’t really model real life. In real life, there are no
random functions. There is usually a single fixed hash function that one uses, such as SHA-1. Therefore,
even if the adversary may not work for a random function, it may work for this specific one, if designed with
it in mind.

In fact, even if we think that the adversary was fixed before SHA-1 was designed, we still cannot say
that SHA-1 was chosen at random. A simple counting argument shows this: the number of functions
{0, 1}k → {0, 1} is 22k

, hence a random function takes log2 22
k
= 2k bits to represent. But this is an

exponentially large number of bits, so most functions cannot even be represented.1 The mere fact that
hash functions are polynomial-time computable makes them “special”—it is theoretically possible that the
adversary would fail for a random function, but not for a polynomial-time one.

In fact, Canneti, Goldreich and Halevi [CGH98] constructed an artificial counterexample: one that is
provably secure in the random oracle model but insecure when the random oracle is instantiated in real-life
with any polynomial-time computable function.

The status of the random oracle model, thus, is as follows: it allows us to “prove” a whole lot of practical
signature schemes secure (including, in addition to Full-Domain-Hash, [FS86, Sch89, BR96] and others),
as well as a lot of encryption schemes and other things, but the meaning of these proofs is uncertain (as
opposed to proofs in the model without random oracles, which clearly imply that the scheme cannot be
broken without violating the security assumption). It continues to be used because of its power, but it
would be very nice if someone figured out how to prove these things without random oracles to give us more
assurance that these are really secure. I personally view it as a way to acknowledge our failures: there are a
lot of constructions that seem secure on some intuitive level, but we can’t prove them secure in the standard
model. So (hopefully until we have a real proof of security) we prove the secure in this funny fake model.

10.3 Signature Buzzwords

Here are some more buzzwords that we won’t study in any detail for lack of time.
The most used signature scheme is probably PKCS #1 v. 1.5 [RSA93] (which is essentially the same

as Full-Domain-Hash, except that the hash length is usually 160 bits, where as the length of n tends to
be much larger; the remaining bits are filled-in with 1’s; the result is not proven secure even in the ran-
dom oracle model). It is getting replaced by version 2.1 [RSA02], which contains a Full-Domain-Hash-like

1For those who know a bit of set theory, a similar counting argument is even powerful when you consider functions {0, 1}∗ →
{0, 1}. The number of such functions is uncountable (the same as the number of reals, 2ℵ0), while the number of possible
algorithms, or Turing machines, is countable (the same as the number of integers, ℵ0.)
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scheme of [BR96]. Some of the commonly mentioned schemes are DSA/DSS (“Digital Signature Algo-
rithm/Standard”), standardized in [NIS94] (heuristically, but not provably, based on discrete logarithms);
Fiat-Shamir [FS86] provably based on factoring in the random oracle model; Schnorr [Sch89] provably based
on discrete logarithms in the random oracle model; and Guillou-Quisquater [GQ88] provably based on the
RSA assumption in the random oracle model.

10.4 Use of Signatures and Public-Key Infrastructure

This is merely a short summary of the long discussion in class.
Signature tie messages to public keys, but they don’t tie public-keys to their owners. For example, if you

wish to get an authentic stock quote, it must be signed by the source, you must trust the source, and you
must know the public key of the source.

This is just like a problem in the physical world, where we recognize one another by face or voice or
handwriting instead of by key. We are usually introduced to one another by people we know. This leads
to the idea of “certificate” (proposed by Kohnfelder [Koh78] in an undergraduate thesis), which is nothing
more than a “letter of introduction” signed by someone you know. A certificate is a document signed by
a certifying authority (CA) that says something like “the public key of www.bu.edu is x.” You need to
trust the CA (i.e., the humans who run the CA) to check that indeed someone authorized by “www.bu.edu”
presents the public key for signature (otherwise, you end up with a fake certificate), and you also need to
have the public-key of the CA (but that is usually built into your browser, since you need to trust your
browser to verify signatures, anyway). By the way, there is a serious issue of how do you know your software,
or the compiler with which it was compiled, or the compiler with which the compiler was compiled, etc., is
trustworthy, which is not currently solved; see [Tho84] for an introduction to these issues.

Note that certificates need not be stored with the CA: each user can simply present the certificate together
with a signature. Also note that CA is not trusted with any secrets beyond its own secret key. Nonetheless,
it is trusted to verify identity, and must be able to revoke certificates in case of mistakes. Revocation, in
particular, presents a serious issue, which we did not have time to address in detail; people often use on-line
certificate status protocol (OCSP), which in some sense defeats the purpose of a certificate, because now the
CA must be on-line; people also use certificate revocation lists (CRL), which are lists of revoked certificates
published and signed by the CA. There are much more innovative approaches being proposed and marketed,
based on Merkle trees, hash chains, and other fun things, but we don’t have time to talk about them.

We then talked a bit about why we all use passwords instead of certificates. Partly it’s because of
historical reasons and entrenched mentality, and partly it’s because of business reasons. Businesses don’t
want to trust other to verify identities of their clients. It’s also much easier to explain the need for a password
to a user than the need for a certificate (not mention the procedures needed to create and install a personal
certificate in one’s browser). However, passwords are making us all less secure, particularly because most of
us use the same password on many sites (thus, a single untrustworthy site can pretend to be you and log in
into any other site where you have an account with the same password).

We started asking “but how do we authenticate a user to a bank without a user certificate” and gave the
example of encrypting a string that includes the password and username and instructions to transfer money
to a friend. This doesn’t work, because encryption doesn’t provide authenticity and adversary could change
the instructions to transfer money to his own account without changing the authentication. What you need
here is so-called “non-malleable” encryption, which we haven’t really studied (but FYI, the so-called OAEP
scheme [?], which is now a PKCS #1 [RSA02] is non-malleable in the random oracle model based on the
RSA assumption).

It would be much easier if each user had a certificate. However, banks for various reasons don’t like to
do that. Even here at BU we use a password-based authentication system known as Kerberos (which uses
old symmetric techniques). We gave the example of a university using user certificates, and the advantages
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it gives: one can give a third party for example, a cable TV provider for the dorms, a proof that some
people are university students without revealing the (private) list of all students. This is done as follows:
when students need to sign up for cable service, they contact the cable company and sign their request using
their certificate (i.e., using the secret key whose corresponding public key is certified by the university).
They include the certificate with signature. The cable company only finds out about students who choose
to contact it, and all the university needs to give the cable company is university’s public key with which to
verify certificates. Privacy of the students who are not signing up for cable service is not violated.

It would be nice to have a large-scale system for certifying users (a.k.a. Public-Key Infrastructure, or
PKI), but the lack of unique names presents a serious problem. On a smaller scale, such as bank or a
university, you can use account number or student id numbers, but what do you use on a worldwide scale?
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