
Leo Reyzin. Notes for BU CAS CS 538. 1

3 Pseudorandom Generators: Indistinguishability

3.1 Definition

We have seen how to build generators whose next bit is unpredictable from the previous bits. This clearly
has applications: e.g., if you want to run a lottery or build a gambling machine, this is exactly what you
are looking for, so that next day’s winning numbers cannot be predicted from the past. However, it is not
clear that this is the right notion to apply when, for example, you want to use pseudorandom strings instead
of random ones in one-time-pad encryption. For instance, if you always begin your letters with “Dear”
and end them with “Sincerely,” then the adversary can figure out the first few and the last few bits of the
one-time pad. In that case, you want the middle bits (which protect the actual contents of your letter) to be
unpredictable to the adversary who is given some of the beginning and some of the end of the pseudorandom
string. This is merely one example to illustrate that next-bit unpredictability is not necessarily the right
notion for many applications. We will now consider a different notion of pseudorandomness.

A popular way to test strings for pseudorandomness before the advent of cryptography was to run
“statistical tests” on them: e.g., counting the number of 0’s and 1’s, seeing if the longest run of consecutive
0’s is what you’d expect it to be in a random string, etc. As cryptographers, we want our random strings
to be secure not just against some statistical tests, but against any statistical test that the adversary can
devise. We therefore consider any polynomial-time algorithm that outputs 0 or 1 to be a statistical test.

So, let T be a statistical test. Then consider two experiments: experiment-pr and experiment-r. The
first is as follows:

1. Select random x of length k

2. Compute y = G(x)

3. Run T (y) and output whatever it does

The second is as follows:

1. Select random y of length l(k)

2. Run T (y) and output whatever it does

Definition 1 ([Yao82]). G passes all statistical tests if for all T , there exists a negligible function η(k)
such that for all k,

|Pr[experiment-pr(k) → 1] − Pr[experiment-r(k) → 1]| ≤ η(k) .

(Here and below, for ease of notation, we will often use → instead of “outputs.”)

Note that the definition above means that a pseudorandom string can be used in place of a random one in
any polynomial-time computation without any noticeable effect. Thus, this definition of pseudorandomness is
useful also outside cryptography, for any randomized computation (e.g., Monte-Carlo simulations, primality
testing, etc.).

3.2 Equivalence to Unpredictability

Theorem 1 ([Yao82]1). An algorithm G is a pseudorandom generator if and only if it passes all statistical
tests.

1This theorem was attributed in [BM84] to [Yao82]. However, it did not appear in [Yao82], and moreover, it is clear that at
the time of writing, Yao was not aware of it: in Section 2.3(b) of his paper, he questioned whether the Blum-Micali generator,
which he knew satisfied the unpredictability definition, would pass all statistical tests. For those wondering about timing, note
that conference version of [BM84] appeared in the same conference as [Yao82]. From what I understand, Yao found a proof of
this theorem after his paper was published, and never published the proof. A good exposition of the proof is in [Gol01].

Leo Reyzin. Notes for BU CAS CS 538. 2

Proof. Suppose G is not a pseudorandom generator. Then let A be the predictor for G. Consider the
following statistical test T : run A, get its guess for some bit, check if the guess was correct. If yes, output
1 and otherwise output 0. If A predicts with probability 1/2 + ε(k), then Pr[experiment-pr(k) → 1] =
1/2 + ε(k). Of course, there is no way to predict a truly random string, so Pr[experiment-r(k) → 1] = 1/2.
So the difference is ε(k), which is not negligible by assumption on A, so G fails the statistical test T .

The converse is a bit harder to prove. Suppose T is a statistical test that G fails. We need to build a
bit-predictor A. Consider the following l(k) + 1 experiments, labeled exp0, . . . , expl(k). Experiment expi is
as follows:

1. Select random x of length k

2. Compute y = G(x)

3. Select a random r of length l(k)

4. Let z be an l(k)-bit string consisting of the first i bits of y and last l(k) − i bits of r

5. Run T (z) and output whatever it does

Note that exp0 is exactly experiment-r, and expl(k) is exactly experiment-pr. The rest are called
“hybrids.”

Suppose
|Pr[experiment-r(k) → 1] − Pr[experiment-pr(k) → 1]| ≥ ε(k).

Consider the l(k) differences

εi(k)
def
=

∣∣Pr[expi(k) → 1] − Pr[expi+1(k) → 1]
∣∣ .

By triangle inequality (which states that |a−b|+|b−c| ≥ |a−c|), at least one must be greater than ε(k)/l(k).
Indeed, suppose not. Then

∑l(k)−1
i=0 εi(k) < ε(k). At the same time,

l(k)−1∑

i=0

εi(k) =
l(k)−1∑

i=0

∣∣Pr[expi(k) → 1] − Pr[expi+1(k) → 1]
∣∣ ≥

∣∣∣Pr[exp0 → 1] − Pr[expl(k) → 1]
∣∣∣ =

= |Pr[experiment-pr(k) → 1] − Pr[experiment-r(k) → 1]| ≥ ε(k)

by triangle inequality, which is a contradiction).
Thus, there is at least one hybrid, say hybrid number j, for which

∣∣Pr[expj(k) → 1] − Pr[expj+1(k) → 1]
∣∣ ≥ ε(k)/l(k).

This allows us to build a bit predictor A for the bit j + 1.
First of all, assume that Pr[expj+1(k) → 1] − Pr[expj(k) → 1] ≥ ε(k)/l(k), thus removing the absolute

value (note that it could be the other way, with Pr[expj(k) → 1]−Pr[expj+1(k) → 1] ≥ ε(k)/l(k), in which
case our bit predictor would have to be appropriately modified; the important thing is that one of these two
holds). Then A(1k) will run as follows:

1. Request the first j bits of the pseudorandom string y

2. Select a random bit g

3. Select a random r of length l(k) − j − 1

Leo Reyzin. Notes for BU CAS CS 538. 3

4. Let z be an l(k)-bit string consisting of the first j bits of y followed by g followed by r

5. Run T (z)

6. If T (z) outputs 1, output b = g; else output b = 1 − g

We have to compute the probability that b is correct. Let yj+1 denote the bit that A is supposed to
guess (the j + 1-th bit of y). Then

Pr[b = yj+1] = Pr[T (z) = 1 ∧ yj+1 = g] + Pr[T (z) = 0 ∧ yj+1 = 1 − g].

Now let z1 be an l(k)-bit string consisting of the first j bits of y followed by yj+1 followed by r, and z2 be
and l(k)-bit string consisting of the first j bits of y followed by 1 − yj+1 followed by r. Note that z1 and
z2 differ only the the bit j + 1; moreover, z = z1 if yj+1 = g and z = z2 if yj+1 = 1 − g. Then the above
probability is

Pr[b = yj+1] = Pr[T (z1) = 1 ∧ yj+1 = g] + Pr[T (z2) = 0 ∧ yj+1 = 1 − g].

Note that the events in both terms of the sum are independent now (because z1 and z2 don’t depend on g).
Note also that Pr[yj+1 = g] = Pr[yj+1 = 1−g] = 1/2, because g is a random bit. So the probability becomes

Pr[b = yj+1] =
1
2

(Pr[T (z1) = 1] + Pr[T (z2) = 0])

=
1
2

(Pr[T (z1) = 1] + 1 − Pr[T (z2) = 1])

=
1
2

+
Pr[T (z1) = 1] − Pr[T (z2) = 1]

2
.

Now consider Pr[expj(k) → 1]. Note that the j + 1-th bit is truly random, so there are two cases: the bit
could by yj+1 or not. So

Pr[expj(k) → 1] =
1
2

(Pr[T (z1) = 1] + Pr[T (z2) = 1]) .

At the same time, in experiment j + 1, T gets exactly z1. So

Pr[expj+1(k) → 1] = Pr[T (z1) = 1].

Subtracting the two, we get

1
2
(Pr[T (z1) = 1] − Pr[T (z2) = 1]) = Pr[expj+1(k) → 1] − Pr[expj(k) → 1] ≥ ε(k)/l(k),

so
Pr[b = yj+1] ≥ 1

2
+ ε(k)/l(k).

Thus, if ε(k) is not negligible, then A can predict the (j + 1)-th bit with advantage that’s not negligible.
We’re almost done with the proof, except that there are two good questions to ask: how does A know

which bit to predict, and how does A know how to get rid of the absolute value (i.e., whether T is more
likely to say 1 on experiment j or j + 1)2. For the second question, the answer is that for infinitely many
values of k, at least one of the two ways of getting rid of the absolute value will work. Use that one, and
then your predictor, even though incorrect for some k, will still predict with advantage that is not negligible
for infinitely many k. For the first question, it turns out that simply picking i at random works, and doesn’t
even change the resulting success probability. For details see [Gol01].

2If we don’t answer these questions, then we have to “hardwire” this knowledge into A, for each value of k. Then we don’t
quite get an algorithm, but rather an infinite family of algorithms, one for each value of k. This is called “a non-uniform
algorithm” or a “circuit family.” But our definition of unpredictability required an algorithm, not a circuit family.

Leo Reyzin. Notes for BU CAS CS 538. 4

3.3 Implications

Order Doesn’t Matter What we just showed is the equivalence of next-bit-unpredictability and indis-
tinguishability. This implies, as we prove below, that next-bit unpredictability is as good as previous-bit
unpredictability.

Recall that originally the Blum-Micali generator output bits backwards. Now we know that we don’t have
to do that: we can run the Blum-Micali generator in the other direction, and still maintain unpredictability.
This is much nicer, because we don’t have to know in advance how many pseudorandom bits we will need;
moreover, we need not store them all before we output them, and can do it in real time. We simply need
to keep three values p, g and xi at any given time, and we can use a single seed for as long as we want (for
any polynomial number of output bits).

We now formally prove that order doesn’t matter.

Theorem 2. Let G be a pseudorandom generator. Let G̃ be the algorithm that runs G and outputs its bits
in reverse order. Then G̃ is also a pseudorandom generator.

Proof. We’ll do this one in excruciating detail, as the first example.
Let T be a distinguisher for G̃. Consider now the following two experiments, experiment-prG̃ and

experiment-rG̃: The first is as follows:

1. Select random x of length k

2. Compute y = G̃(x)

3. Run T (y) and output whatever it does

The second is as follows:

1. Select random y of length l(k)

2. Run T (y) and output whatever it does

We need to prove that |Pr[experiment-prG̃(k) → 1] − Pr[experiment-rG̃(k) → 1| is negligible.
Define T̃ to be the following algorithm: on input z, let z̃ be z with order of bits reversed; run T (z̃) and

output whatever it does. Now consider the following two experiments, experiment-prG and experiment-rG.
The first is as follows:

1. Select random x of length k

2. Compute y = G(x)

3. Run T̃ (y) and output whatever it does

The second is as follows:

1. Select random y of length l(k)

2. Run T̃ (y) and output whatever it does

We know (because G is pseudorandom) that |Pr[experiment-prG(k) → 1]−Pr[experiment-rG(k) → 1|
is negligible. Also note that experiment-prG = T̃ (G(x)) = T (G̃(x)) = experiment-prG̃ and so
Pr[experiment-prG(k) → 1] = Pr[experiment-prG̃(k) → 1]. And Pr[experiment-rG(k) → 1] =
Pr[experiment-rG̃(k) → 1], because both run T on a uniformly distributed random string. Hence,
|Pr[experiment-prG̃(k) → 1] − Pr[experiment-rG̃(k) → 1] = |Pr[experiment-prG(k) → 1] −
Pr[experiment-rG(k) → 1| and is negligible.

Leo Reyzin. Notes for BU CAS CS 538. 5

Pseudorandom is as Good as Random The notion of indistinguishability is extremely strong and
has applications outside cryptography. It says that a pseudorandom string cannot be distinguished from
random by any polynomial-time computation. Therefore, pseudorandom strings can be used in place of
random ones in any feasible computation without noticeably affecting the outcome. Thus, if you have
any randomized algorithm (Monte-Carlo simulation, primality test, etc.) that requires a lot of random
bits, you can choose a sufficiently long seed and generate pseudorandom bits instead, provided you use a
cryptographically strong pseudorandom generator as we defined it (instead of, say, the rand function in your
software library, which usually doesn’t satisfy our strong definitions, and is distinguishable by at least some
polynomial-time machines).

References

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits.
SIAM Journal on Computing, 13(4):850–863, November 1984.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on Foundations
of Computer Science, pages 80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

