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5 Public-Key Encryption: Rabin, Blum-Goldwasser, RSA

5.1 Public Key vs. Symmetric Encryption

In the encryption we’ve been doing so far, the sender and the recipient needed to preagree on a key. This is
traditionally called “symmetric” or “secret-key” encryption.

The idea of public key encryption is that I can walk into a room, announce my key, and everybody in
the room can send secret messages to me by simply shouting them out so that everyone can hear them.
In other words, we can communicate secretly by publishing messages for everyone to see, even if we never
pre-agreed on a shared secret value unknown to others. This sounds impossible, but can actually be done.
The idea was first proposed by Diffie and Hellman [DH76].

5.2 Public Key Encryption Using the Squaring Function

First Attempt We know that squaring modulo n = pq is easy, while taking square roots is hard (as hard
as factoring n). On the other hand, taking square roots modulo p and modulo q is easy, and so is recombining
them using the Chinese Remainder Theorem. So this gives us an idea for the public-key encryption scheme.

Let p 6= q be two primes, n = pq, p ≡ q ≡ 3 (mod 4). Let the public key PK be n, and the secret key
SK be (p, q). For m ∈ QRn, define the encryption of m as c = m2 mod n. Note that if you just see c, n, it’s
hard to find m, because it’s hard to find square roots (as we proved last time). However, if you know p and
q, you can take the square root of c modulo p and modulo q (as shown on HW2), and combine them using
Chinese Remainder Theorem to get back m. Note that you have to make sure that you take the square
roots that are themselves squares, in order to get m and not one of the other three roots of c.

This scheme can only encrypt messages in QRn (otherwise you don’t get unique decryption, because
you don’t know which of the four square roots to take). While it is believed to be hard to find out whether
m ∈ QRn without knowing SK, there are various tricks to get around this problem and get unique decryption
for all m. We won’t discuss them here.

The idea of using modular squaring in this way is due to Michael Rabin [Rab79], and the squaring
function modulo n is often called the Rabin function.

Why the First Attempt Isn’t Secure Note that if the adversary knows that m is small (less than√
n), then c is just m2, and m can be found by simply taking the integer square root of c. In addition, this

encryption scheme cannot be used to encrypt the same message twice, because the adversary will be able
to tell that two ciphertexts are the same. Nor can it securely encrypt two messages whose ratio is known.
These examples (one can come with many more quite easily) suggest that we need to do better in order to
achieve secure encryption.

More generally, remember that while we showed that modular squaring is hard to invert, we don’t know
that all bits of m are hard to recover from c. In particular, it is conceivable that much useful information
about m can be computed from c, even if m itself cannot be. All we know from the previous lecture is that
the last bit of m is well-hidden.

Single-Bit Scheme As before, let’s focus on encrypting a single bit for now. We’ll figure out how to
encrypt more later. Since we know the last bit of a modular square root is well-hidden, it suggests the
following idea. Public key is still n, secret key is still (p, q). To encrypt a bit b, take a random r ∈ QRn,
compute s = r2 mod n, let p be the last bit of r, and c = p⊕ b. Output (s, c). Essentially, we are encrypting
b with the one-time pad that is hidden by s, but can be recovered by someone who take square roots modulo
n (i.e., who knows the secret key).

Intuitively, this seems secure: if one could tell apart the encryptions of 0 and 1, then one could, from c
and s, figure out what p is. But it’s hard to tell whether p is 0 or 1, as discussed in the previous lecture.
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However, to formally prove this scheme secure, we first need to define security for public-key encryption.

5.3 Defining and Realizing Secure Encryption

5.3.1 Secure Single-Bit Encryption

Let’s see what we could possibly want from secure public-key encryption by focusing on the single-bit
case. That is, we want to encrypt either a 0 or a 1, and we don’t want the adversary to know. In the
information-theoretic symmetric-key case, we said that secure encryption means that for a fixed ciphertext
c, Pr[Enck(0) = c] = Pr[Enck(1) = c], where the probability is taken over the choice of k and random choices
made by Enc.

We can’t do the same in the public-key case, because once the public key is fixed, a given ciphertext c
cannot be both an encryption of a 0 and a 1 (if some c was an encryption of both, how would you decrypt?!).
The main advantage of symmetric encryption is that the key is hidden from the adversary, and only the
ciphertext is visible—so it makes sense to talk about a randomly chosen k that the adversary cannot see.
You can’t do the same in the public-key case. Hence, we need a different definition, one that makes sense
even after the adversary sees PK.

Well, since we can’t say that encryption of 0 and encryption of 1 are identically distributed, we’ll try for
something that’s almost as good from a computational point of view: we’ll say they are indistinguishable.

Before we can define security, however, we need to formalize the notion of public-key cryptosystem.

Definition 1. A public-key cryptosystem is a triple of polynomial-time algorithms (Gen,Enc,Dec). Gen(1k)
is a (randomized) key-generation algorithm that outputs a key pair (PK, SK) when given a security parameter
k as input. Enc is a (randomized) encryption algorithm that, on input PK and message m, outputs ciphertext
c. Dec is a (usually deterministic) decryption algorithm, that, on input SK and c, outputs m. For public
key PK, a cryptosystem has to specify a set of allowed messages MPK (ultimately the goal will be to have
M be all binary strings regardless of PK; however, we have to allow for less general encryption schemes at
first). We require that the following holds: if (PK, SK) is produced by Gen(1k), then for all m ∈ MPK,
m = DecSK(EncPK(m)) (this requirement can be relaxed to say “with probability 1− η(k)”).

Now we can say what security means for 1-bit crypsosystems. Let (Gen,Enc,Dec) be a public-key
cryptosystem, with MPK = {0, 1} for all PK. Let D be a polynomial-time algorithm that attempts to
distinguish an encryption of 0 from an encryption of 1, and outputs either 0 or 1. Consider the following
two experiments:

exp0(k)
1. (PK, SK)← Gen(1k)
2. c← EncPK(0)
3. Output D(1k,PK, c)

exp1(k)
1. (PK, SK)← Gen(1k)
2. c← EncPK(1)
3. Output D(1k,PK, c)

Note that the two experiments differ only in the second line.

Definition 2 ([GM84]). A public-key cryptosystem for 1-bit messages is polynomially-secure if for all poly-
nomial time D there exists a negligible function η(k) such that

|Pr[exp0(k) outputs 1]− Pr[exp1(k) outputs 1]| ≤ η(k).
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This definition is often called GM-security or indistinguishability-security.
This definition, first proposed by Goldwasser and Micali in [GM84]1, is extremely strong. As mentioned

above, c and PK together contain enough information to tell whether 0 or 1 was encrypted. What the
definition requires is that even though the information is there, one can’t get to it in polynomial time!

Now that we have such a strong definition, can we achieve it? Recall the following claim from Lecture 8:

Claim 1 ([ACGS88, AGS03]). Assume that factoring Blum integers is hard. Then, given the pair (n, r2 mod
n) for n a Blum integer and r ∈ QRn, the least significant bit of r (i.e., r mod 2) is unpredictable. More
formally, for every polynomial-time algorithm P there exists a negligible function η(k) such that for all k,

Pr[P (n, r2 mod n) = (r mod 2)] ≤ 1/2 + η(k),

where the probability is taken over the random generation of n as a product of two k-bit primes that are 3
modulo 4, a random choice of r ∈ QRn, and random choices (if any) made by P .

So now, consider the above cryptosystem for one-bit messages. Gen just generates a random Blum
integer n. EncPK(m) is as follows: select a random r ∈ QRn, let p = r mod 2 be its least significant bit.
Compute (s = r2 mod n, c = m ⊕ p). DecSK((s, c)) finds r from s by taking a square root, takes its least
significant bit p and outputs m = p⊕ c. We will call it bit-by-bit Rabin.

Theorem 1. Bit-by-bit Rabin is GM-secure under the assumption that factoring Blum integers is hard.

Proof. Suppose not. Then let D be a distinguisher for it, such that

|Pr[exp0(k) outputs 1]− Pr[exp1(k) outputs 1]| ≥ ε(k).

for not negligible function ε(k).
First, note that we can get rid of absolute value one way or the other for infinitely many k, so we can

assume that either
Pr[exp0(k) outputs 1]− Pr[exp1(k) outputs 1] ≥ ε′(k).

or
Pr[exp1(k) outputs 1]− Pr[exp0(k) outputs 1] ≥ ε′(k).

for not negligible function ε′(k). Let’s stick with the second one without loss of generality.
Then build a predictor to violate Claim 1 as follows: P on input (n2, s) chooses a random bit c, runs

D(1k, n, (s, c)) (where k is the length of n) to get a bit b and outputs b⊕c. Then probability that P is correct
is as follows: in half the cases, namely when (r mod 2)⊕ c = 0, P will be correct with the same probability
as Pr[exp0(k) outputs 0] = 1 − Pr[exp0(k) outputs 1]. In the other half, namely when (r mod 2) ⊕ c = 1,
P will be correct with the same probability as Pr[exp1(k) outputs 1] = 1. Thus, in total, P will be correct
with probability

1

2
(Pr[exp0(k) outputs 0] + Pr[exp1(k) outputs 1]) =

1

2
(1− Pr[exp0(k) outputs 1] + Pr[exp1(k) outputs 1]) ≥ 1/2 + ε′(k)/2,

which is not negligible.

1An early version of the paper appears in the ACM Symposium on the Theory of Computing (STOC), 1982
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5.3.2 Secure Multi-Bit Encryption

Of course, we often want to send more than one bit. We need to define what we mean by security in that
case, and construct an encryption scheme.

To define security for a multi-bit case, note, first of all, that as messages get longer, ciphertexts must
necessarily get longer. Hence, encryption cannot hide message length. We will require it to hide everything
else, though. Namely, we will allow the adversary (distinguisher) to choose any two messages, m0 and m1

after seeing the public key, then encrypt either one of them, and let the distinguisher guess which one. More
precisely, D now runs in two stages. In the first stage, on input PK, D outputs (m0,m1). In the second
stage, on input c, which is an encryption of either m0 or m1, D tries to guess which one it is by outputting
either 0 or 1. D is allowed to keep state between stages (so you need not give it PK the second time, or give
it back m0 and m1). The experiments are now as follows:

exp-m0(k)
1. (PK, SK)← Gen(1k)
2. (m0,m1)← D(1k,PK); if |m0| 6= |m1|, abort
3. c← EncPK(m0)
4. Output D(c)

exp-m1(k)
1. (PK, SK)← Gen(1k)
2. (m0,m1)← D(1k,PK); if |m0| 6= |m1|, abort
3. c← EncPK(m1)
4. Output D(c)

Note that the experiments differ only in the third line. The definition is still the same:

Definition 3 ([GM84]). A public-key cryptosystem is polynomially-secure if for all polynomial time D there
exists a negligible function η(k) such that

|Pr[exp-m0(k) outputs 1]− Pr[exp-m1(k) outputs 1]| ≤ η(k).

Advanced Comment: The experiments require D to output m0 and m1. Because D is polynomial-time and
gets only PK as input, m0 and m1 can only be things that are computable from PK as input. In particular,
therefore, this definition says nothing about encrypting SK or anything derived from it. Not that it should
matter, because people who encrypt shouldn’t know SK, anyway.

How do we build such a public-key cryptosystem? Intuitively, the public-key case is quite different here
from the information-theoretically secure encryption we considered earlier. In that case, if you encrypt two
bits with the same one-bit key, you clearly give some more information to the adversary (in particular, if
the adversary knows the second bit, he deduce the key and hence the first bit). This is not the case in
public-key encryption, because the adversary knows the encryption key, and hence can himself encrypt as
many bits as he wants. If this helps him to decrypt the first bit, then the one-bit encryption of the first bit
must insecure. Therefore, it seems that simply repeating the encryption bit-by-bit with the same key will
work in the public-key case.

Indeed, let (Gen,Enc,Dec) be a single-bit cryptosystem. Then let (Gen′,Enc′,Dec′) be
the following: Gen′ = Gen; for an l-bit message m = m1m2m3 . . .ml, Enc′PK(m) =(
EncPK(m1),EncPK(m2), . . . ,EncPK(ml)

)
; and for ciphertext c = (c1, c2, . . . , cl), Dec′SK(c) = DecSK(c1) ◦

DecSK(c2) ◦ . . . ◦DecSK(cl), where ◦ denotes concatenation.

Theorem 2. If (Gen,Enc,Dec) is polynomially-secure, then (Gen′,Enc′,Dec′) is also polynomially secure.
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Proof. Let D be a distinguisher for (Gen′,Enc′,Dec′) and ε be some function such that

|Pr[exp-m0(k) outputs 1]− Pr[exp-m1(k) outputs 1]| ≥ ε(k).

The proof is by hybrid argument. Let expi be the same as exp-m0 and exp-m1 for steps 1, 2 and 4, but
different in step 3 as follows: encrypt neither m0 nor m1, but a message consisting of the first i bits of m0

followed by the last l − i bits of m1. Let

Di(k) =
∣∣Pr[expi−1(k) outputs 1]− Pr[expi(k) outputs 1]

∣∣ .
Then, by the usual triangle inequality,

∑l
i=1Di(k) ≥ ε(k).

Now consider yet another family of experiments. Let expi0 be the same as expi, except the i-th bit of
the plaintext is replaced by 0 before encryption. Let expi1 be the same as expi, except the i-th bit of the
plaintext is replaced by 1 before encryption. Let

D′i =
∣∣Pr[expi0(k) outputs 1]− Pr[expi1(k) outputs 1]

∣∣ .
Note that D′i ≥ Di, because in D′i the i-th bit is guaranteed to differ, but in Di it merely may differ (only if
m0 and m1 differ in the i-th bit)2.

Now, finally, we build the following distinguisher D̃ for the original 1-bit encryption scheme. On input
c̃, which is a ciphertext of either 0 or 1, run D on (1k,PK) to get m0,m1, pick i at random between 1 and
l, and construct c by encrypting the first i − 1 bits of m0, followed by the input ciphertext c̃, followed by
encryptions of l− i bits of m1. Run D(c) and output whatever it does. Now if plug in this D̃ into exp0 and
exp1, we get

|Pr[exp0(k) outputs 1]− Pr[exp1(k) outputs 1]| = 1

l

l∑
i=1

D′i ≥
1

l

l∑
i=1

Di ≥ ε(k)/l.

Hence, if ε is not negligible, the original one-bit encryption scheme (Gen,Enc,Dec) is insecure, which is a
contradiction.

Thus, we have a way to encrypt arbitrary messages. However, it’s not very efficient in terms of time,
because each bit needs to be encrypted and decrypted separately (in the case of Rabin, this means one
modular squaring per bit to encrypt, and essentially one modular exponentiation per bit to decrypt). In
addition, it’s very inefficient in terms of space, because each bit must get expanded in the ciphertext (because
the one-bit encryption scheme cannot be deterministic if it is to be secure). Thus, for example, if we are
using Rabin with 1024-bit keys, bit-by-bit encryption will expand the message by a multiplicative factor of
1024. We’d like to improve this.

5.4 Blum-Goldwasser Encryption

Recall the Blum-Blum-Shub pseudorandom generator. Let n = pq be a product of two primes, each 3 modulo
4, and let x ∈ QRn be a square modulo n. Let x0 = x, x1 = x20 mod n, x2 = x21 mod n . . . , xl = x2l−1 mod n.
From each xi, take the least significant bit bi to get a pseudorandom string.

If you go through the proof of pseudorandomness we did for the Blum-Micali generator and a similar
one for Blum-Blum-Shub, you’ll notice that one can prove that each bi−1 is unpredictable given not only

2To prove this formally, write Pr[expi(k) outputs 1] =
∑

PK Pr[Gen(1k) → PK]
∑

(m0,m1)
Pr[D(1k,PK) →

(m0,m1)] Pr[D(EncPK(m
1
0m

2
0 . . .m

i
0m

i+1
1 mi+2

1 . . .ml
1)) → 1]. Similarly for Pr[expi−1(k) outputs 1]. Subtract the two and split

the sum into four cases, depending on the i-th bits of m0 and m1. Two of the cases (00 and 11) will add nothing to the sum,
and other two will get upperbounded by D′i.
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bi, bi+1, . . . , bl, but, in fact, given xi, xi+1, . . . , xl. Moreover, it’s not hard to show from there that the pair
(b0b1 . . . bl−1, xl) is indistinguishable from the pair (r0r1 . . . rl−1, xl), where ri are completely random bits.

Thus, the idea of Blum-Goldwasser [BG84] encryption is as follows. The public key is n, as above. The
secret key is (p, q). To encrypt m of length l, choose a random x ∈ QRn (by choosing a random element

in Z∗n and squaring it), generate b0b1 . . . bl−1 and xl = x2
l

as above, and use b0b1 . . . bl−1 as a one-time pad
to exclusive-or with m to get c. Output (c, xl) as the ciphertext. To decrypt, use p and q and Chinese
Remainder Theorem to compute l square roots of xl to get back x0; reproduce the pad b0b1 . . . bl−1; and
exclusive-or it with c to get m.

Why is this secure? We won’t do a full proof, but the intuition is that encryption of any message m is
indistinguishable from simply (r0r1 . . . rl−1, xl), where ri are random bits. Therefore, encryption of m0 and
encryption of m1 are indistinguishable, by triangle inequality with (r0r1 . . . rl−1, xl) as the midpoint. Notice
that security is under the factoring assumption (rather than the stronger RSA assumption).

Efficiency A opposed to bit-by-bit RSA encryption, the ciphertext is longer than the message by only
an additive amount, the length k of n. This is much better than the multiplicative expansion of bit-by-bit
encryption, of course. If we are using a 1024-bit modulus, for example, then no matter how long the plaintext
is, the ciphertext will be longer by only 128 bytes.

Encryption takes one modular squaring per bit encrypted, or O(lk2) operations (because a modular
squaring or multiplication takes O(k2)). Decryption is trickier to figure out: it calls for taking square roots
l times. On HW 4 you figured out how to take the root of degree 2l in time O(k3 + k2 log l) (the k3 comes
from the cost of exponentiation and the k2 log l comes from the cost of computing the exponent itself). Once
you do this to get x0, you can just re-run the Blum-Blum-Shub generator to get the one-time pad back in
time O(k2l), for total decryption running time O(k3 + k2l).

Thus, in terms of time, this is as efficient for l < k as “plain” (insecure) RSA that is often used in practice
(described below). It beats plain RSA for l > k, because plain RSA cannot encrypt messages length greater
than k.

5.5 RSA

5.5.1 The RSA function

RSA encryption [RSA78] is essentially the same thing as the Rabin function, but replaces squaring with
raising to another power. Let’s consider first raising to the power e modulo a prime p. Suppose d =
e−1 mod (p− 1). Let a ∈ Zp. Since ed ≡ 1 (mod p − 1), by HW2 (where we proved exponents work
modulo p− 1), aed ≡ a1 ≡ a (mod p).

Now doing this modulo n, suppose ed ≡ 1 (mod p−1) and ed ≡ 1 (mod q−1). Then if we let a ∈ Zn,
aed is a both modulo p and modulo q, and hence is a modulo n, by Chinese Remainder Theorem.

So pick two primes p 6= q (not necessarily 3 modulo 4 anymore), let n = pq, and let e, d be such that
ed ≡ 1 (mod p− 1) and (mod q− 1). Note that because e has an inverse modulo p− 1 and q− 1, it must
be relatively prime with p− 1 and q − 1; in particular, e must be odd.

Let (n, e) be the public key and (n, d) be the corresponding secret key. To “encrypt” m ∈ Zn, compute
c = me mod n, and to decrypt c, compute cd mod n = (me)d mod n = med mod n = m. We put “encrypt”
in quotes because we haven’t yet said anything about its security.

Common notation: φ(n) = |Z∗n| = (p − 1)(q − 1) (φ(n) is known as the φ function). λ(n) is the least
common multiple of p − 1 and q − 1. Most textbooks describe d as e−1 mod φ(n); however, e−1 mod λ(n)
suffices (and is slightly smaller since λ(n)|φ(n) and hence λ(n) < φ(n)).

RSA can be used on any message in Zn, not just in QRp as the Rabin function. However, we give up
the equivalence to factoring: it is not known whether taking e-th roots modulo n is as hard as factoring for
odd e. To be precise, we know that if taking e-th roots is hard, then factoring is hard (because if factoring
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were easy, then we could take e-th roots by taking them modulo p and q and combining them using CRT).
The other direction is not known. We do know, however, that finding d from e is as hard as factoring (no
proof in these notes). So, if there is a way to find e-th roots without factoring, it must not find d.

5.5.2 RSA Assumption

We haven’t addressed the problem of generating RSA keys. That depends on whether you want a fixed e or
a random e. People often use fixed small e (such as 3, 17, or 216 + 1 = 65537), because exponentiation is
particularly fast. (There have been some questions raised, however, about the security of this approach—it
may be possible that roots of small degree are easier to take than roots of a random degree. No one knows.)
The fixed e case is as follows:

Generate-Fixed-Exponent-RSA
1. On input k in unary and e, generate random k/2-bit prime p repeatedly until

gcd(p− 1, e) = 1; similarly for q.
2. Let l = lcm(p− 1, q − 1)
3. Let d = e−1 mod l (this can be done using Euclid’s extended GCD algorithm).
4. Output PK = (n, e) and SK = (n, d)

The random e case is a follows:

Generate-Random-Exponent-RSA
1. On input k in unary, generate random k/2-bit primes p and q.
2. Let l = lcm(p− 1, q − 1).
3. Select a random e between 1 and l repeatedly until gcd(e, l) = 1.
4. Let d = e−1 mod l (this can be done using Euclid’s extended GCD algorithm).
5. Output PK = (n, e) and SK = (n, d).

Depending on which key generation procedure you use, you get a different security assumption.

Assumption 1. (Fixed-Exponent RSA for exponent e.) For any poly-time algorithm F , there exists a
negligible function η such that, if you generate RSA public key (n, e) according to the procedure Generate-
Fixed-Exponent-RSA, then pick a random m ∈ Z∗n, Pr[F (n, e,me mod n) = m] ≤ η(k).

Assumption 2. (Random-Exponent RSA.) For any poly-time algorithm F , there exists a negligible func-
tion η such that, if you generate RSA public key (n, e) according to the procedure Generate-Random-
Exponent-RSA, then pick a random m ∈ Z∗n, Pr[F (n, e,me mod n) = m] ≤ η(k).

5.5.3 Secure RSA Encryption

We need the following claim (notice that we already saw a similar claim for modular squaring).

Claim 2 ([ACGS88, AGS03]). If the assumption Random-Exponent-RSA above holds, then given the triple
(n, e, xe mod n), the least significant bit of x (i.e., x mod 2) is unpredictable. I.e., for every polynomial-time
algorithm P there exists a negligible function η(k) such that for all k,

Pr[P (n, e, xe mod n) = (x mod 2)] ≤ 1/2 + η(k),

where the probability is taken over the random generation of (n, e) by the algorithm Generate-Random-
Exponent-RSA above on input k, a random choice of x ∈ Z∗n, and random choices (if any) made by
P .
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We do not prove the claim here. Note that the same claim also holds if we replace random exponent
RSA by fixed exponent RSA (and the discussion below does as well).

So now, consider the following cryptosystem for one-bit messages. Gen is just Generate-Random-
Exponent-RSA. EncPK(m) is as follows: select a random x ∈ Zn with last bit equal to m, and compute
c = xe mod n. DecSK(c) simply outputs (cd mod n) mod 2. We will call it bit-by-bit RSA.

Theorem 3. Bit-by-bit RSA is GM-secure under the Random-Exponent-RSA assumption.

The proof is essentially the same as for bit-by-bit Rabin, and we do not repeat it here.

5.5.4 RSA Encryption in Practice

You can view the bit-by-bit RSA as follows. To encrypt a one-bit plaintext m, pad m with k − 1 random
bits to get x ∈ Zn. Then apply the RSA function.

When RSA was invented in 1978, the modern notions of secure encryption did not exist. However, people
understood the dangers of deterministic encryption that we already described. Hence, they suggested using
random padding. Of course, the idea of encrypting just one bit per modular exponentiation is not practical.
The actual RSA encryption scheme used in practice has a lot more plaintext bits and a lot less padding.

In fact, the most common way to use RSA until recently has been a standard known as PKCS #1 version
1.5 [RSA93]. To encrypt a message m, it specifies that one should pad it to the length of the modulus by
prepending a zero byte, byte of value 2, at least eight (and as many as needed) random non-zero bytes,
followed by another zero byte to separate the pad from the message itself. The resulting bit string gets
exponentiated to the public exponent e modulo n.

There is little one can prove about this scheme, although recently Jonsson and Kaliski [JK02] proved
its security in certain applications under a relatively strong assumption. At some point it was believed to
be not only polynomially secure, but, in fact, secure even against chosen-ciphertext attacks (attacks where
adversary gets to see decryptions of a few ciphertexts, which we will discuss in more detail later). However,
Bleichenbacher [Ble98] found a reasonably practical chosen-ciphertext attack against it. At that time, version
2.0 of PKCS #1 was in the works; currently the most recent version is 2.1. Both 2.0 and 2.1 can be proven
not only semantically secure, but also secure against chosen-ciphertext attacks, in a special (unrealistic)
model known as “random oracle model.” Whether a proof in such a model is actually meaningful is a
matter of some debate; we’ll consider this subject later in the course.
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