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6 General One-Way and Trapdoor Functions

In this section, we will try to generalize what we’ve seen so far. For example, we know how to build a secure
encryption out of RSA, but what exactly is RSA itself? In modern terms, it is a trapdoor permutation
family, which we define below.

6.1 One-Way Functions

Let us first introduce one-way functions. We’ve actually seen concrete examples of them before; this is just
a generalization, so we can talk of a one-way function f independent of its particular implementation.

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is one-way if

1. it is polynomial-time computable;

2. it is hard to invert, i.e., for all probabilistic polynomial-time A there exists a negligible function η such
that, for all k, Pr[f(A(f(x), 1k)) = f(x)] ≤ η(k), where the probability is taken over a random choice
of k-bit string x and coin tosses of A.

Note that it’s important that we are not requiring A to find x; rather, any inverse of f(x) is fine. Of course,
if f is a permutation (i.e., a bijective function), then it would be equivalent to require A to find x, because
x is the only inverse of f(x).

Note also the importance of selecting the input to A: the input is not selected uniformly at random;
rather, x is selected uniformly at random, and the input is f(x). Of course, again, if f is a permutation,
then the two are equivalent.

An example is the following f : split the k-bit input into strings a of length �k/2� and b of length �k/2�,
and output c = ab. The inverter A would have to find two large factors of c, which is believed to be hard.
Note that the input c of A is not a uniformly selected integer; in particular, we know that it has two factors
of (nearly) the same length.

The existence of one-way functions is the minimal assumption necessary (though often not sufficient)
for almost anything interesting in cryptography. Note that the assumption that one-way functions exist is
stronger than the assumption that P	=NP (intuitively, because one-way functions are hard on the average
case, where as it could be that NP-complete problems are hard only very infrequently).

A one-way permutation is a one-way function that is a bijection of {0, 1}k to {0, 1}k for each k.

6.2 One-Way Function Families

The examples we’ve seen in class, such as modular squaring, RSA, and Discrete Logarithm, are not quite
one-way functions by the above definition. Rather, they are one-way function families, as defined below.

Definition 2. Let I be an index set. A collection of functions {fi : Di → Ri}i∈I is called one-way, if:

1. there exists a probabilistic polynomial-time algorithm Gen that, on input 1k, picks i ∈ I;

2. there exists a probabilistic polynomial-time algorithm M that, on input i ∈ I, picks x ∈ Di;

3. given i and x, the value fi(x) is polynomial-time computable;

4. for all probabilistic polynomial-time A there exists a negligible function η such that, for all k, if i is
chosen by Gen(1k) and x is chosen by M(i), Pr[fi(A(fi(x), i, 1k)) = fi(x)] ≤ η(k), where the probability
is taken over coin tosses of Gen, M and A.
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For example, for Discrete Logarithm, the index set I = {(p, g)|p is prime , g is a generator of Z
∗
p}, and for

(p, g) ∈ I, D(p,g) = R(p,g) = Z
∗
p and f(p,g)(x) = gx mod p.

A collection of one-way permutations is a collection of one-way functions with the additional property
that fi is a permutation. The discrete logarithm collection is actually a collection of one-way permutations.

6.3 Trapdoor Permutations

A collection of one-way permutations with the additional property that the (unique) inverse is easy to obtain
with some special information is called a collection of trapdoor permutations.

Definition 3. A collection of one-way permutations {fi : Di → Ri}i∈I is called trapdoor if there exists a
probabilistic polynomial-time algorithm Inv and if Gen, in addition to outputting i∈I, outputs a value t
with the following property: for all x ∈ Di, Inv(t, fi(x)) = x.

For example, RSA is a collection of trapdoor permutations. The index set consists of pairs (n, e); the
trapdoor information t is (n, d); and the domain and the range are Z

∗
n.

6.4 Generalizing Results

To obtain a pseudorandom generator, both the Blum-Micali and the Blum-Blum-Shub generators simply
selected a one-way permutation from a family, and iterated it multiple times on a random initial seed, each
time outputting a bit that’s hard to predict. It is natural to ask whether for any one-way permutation
(family) there is such a bit. The following theorem of Goldreich and Levin answers this question in the
affirmative. We state it somewhat informally, and do not prove it here.

Theorem 1 ([GL89]). Let f be a one-way function (the same also holds for families of one-way functions).
Let r be a random k-bit value. Then, for a random k-bit x, the bit r · x is hard to compute with probability
greater than 1/2, given f(x) and r. (Here r · x = r1x1 ⊕ r2x2 ⊕ . . . rkxk, the inner-product modulo 2 of r
and x.)

Therefore, our constructions of pseudorandom generators extend to any one-way permutation f (and,
similarly, one-way permutation family). We simply take our seed to be (x, r), let x0 = x, xi = f(xi−1), and
output the bits bi = xi · r.

Hence, we get

Theorem 2. If one-way permutations (or families) exist, then so do pseudorandom generators.

However, one-way functions are a weaker assumption, and it would be nice to know if pseudorandom
generators can be based on just one-way functions, not permutations. The following theorem of H̊astad,
Impagliazzo, Levin and Luby shows that one-way functions suffice. It is quite difficult to prove.

Theorem 3 ([HILL99]). Pseudorandom generators exist if and only of one-way functions exist.

Thus, one-way functions suffice for symmetric encryption. However, they do not suffice for public-key
encryption: you really need the trapdoor to be able to go back. Note also that by generalizing our previous
two bit-by-bit constructions, we know that trapdoor permutations suffice.

Finally, I want to mention two constructions of Levin’s [Lev87, Lev03] that address the existence of
one-way functions. In both, he constructs a single function U with the following property: U is one-way if
one-way functions exist. U is known as the universal one-way function. The question of whether one-way
functions exist reduces to the question of whether this specific single function is one-way.
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