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7 Diffie-Hellman, ElGamal, and a Bit of History

7.1 Diffie-Hellman Key Exchange

A great surge of academic interest in modern cryptography started with the work of Diffie, Hellman, and
Merkle, and the publication of “New Directions in Cryptography” by Diffie and Hellman [DH76]. In this
work, Diffie and Hellman proposed the idea of public-key encryption and digital signatures. Although
they didn’t have an implementation of public-key encryption, they did suggest something close, called “key
agreement.”

Here is the idea. Suppose there is a fixed prime p and generator g of Z
∗
p known to everyone. Alice and

Bob want to agree on a secret they can both use for some symmetric encryption scheme. To do so, Alice
selects a random a ∈ Z

∗
p and sends ga mod p to Bob. Bob similarly selects a random b ∈ Z

∗
p and sends

gb mod p to Alice. Now Alice can compute K = gab by raising gb to the power a, and Bob similarly can
compute K by raising ga to the power b. It is believed that gab is hard to compute from just g, ga and gb.
More formally, this is known as the Computational Diffie-Hellman Assumption.

Assumption 1. For any poly-time algorithm A, there exists a negligible function η such that, if you generate
random k-bit prime p and its generator g, and select a random a, b ∈ Z

∗
p, Pr[A(p, g, ga mod p, gb mod p) =

(gab mod p)] ≤ η(k).

Note that if p and g are not known to both parties in advance, Alice can simply send both to Bob together
with ga.

7.2 A Bit More History

In 1977, the RSA cryptosystem [RSA78] appeared in Scientific American, helping generate public interest
in the subject.

Until 1976, research in cryptography was mostly done in classified research labs, such as the National
Security Agency in the United States, for military and intelligence purposes. Documents declassified by the
UK in the late 1990s and now available on the web [Ell87] showed that public-key cryptography in general,
and Diffie-Hellman and RSA specifically, were discovered in the classified community before their discovery in
academia. Specifically, in 1970, James H. Ellis [Ell70] proposed the idea of public-key cryptography, which he
termed “non-secret encryption”; in 1973, Clifford C. Cocks [Coc73] proposed RSA (although Cocks suggested
using specific public exponent n, equal to the modulus, rather than a more general public exponent); and in
1974, Malcolm J. Williamson [Wil74, Wil76] proposed what we know as Diffie-Hellman. It’s worth noting
that the discoveries of RSA and Diffie-Hellman occurred in reverse order in the classified community, and
that neither preceded the academic discoveries by more than a few years. It seems (according to what we
know) that there wasn’t much interest in public-key encryption in the military and intelligence community.
One possible reason is that with rigid command structures such as those in the military, it is easy enough
to establish shared secret keys (public-key ideas are of great help when people who have never seen each
other before want to talk; this doesn’t happen too much in the military). The second commonly cited
reason is that the state of computers in the 1970s did not allow for such expensive operations as modular
exponentiation to be easily carried out “in the field.”

7.3 Man-in-the-middle attack against Diffie-Hellman

Imagine now that an adversary Eli is capable of not only intercepting messages between Alice and Bob,
but also stopping them and substituting his own messages instead. Then Eli can do the following: pick his
own random e ∈ Z

∗
p, and compute ge mod p. Then intercept ga that Alice sends to Bob, and substitute ge

instead. Note that Bob doesn’t notice any difference (because, after all, both ga and ge are random elements
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of Z
∗
p), and dutifully replies with gb. Eli intercepts gb, and sends ge to Alice instead. This way, Alice ends

up thinking that she is sharing K1 = gea with Bob, while Bob ends up thinking that he is sharing K2 = geb

with Alice. Note that, in fact, they are both sharing a key with Eli, who can compute gea and geb. Now
whenever Bob tries to send something to Alice, he’ll presumably encrypt (and/or authenticate) it using K2.
Eli can intercept it, decrypt with K2, reencrypt with K1, and send it on to Alice. So Bob and Alice will
never realize they aren’t sharing a key with each other.

This is known as “man-in-the-middle” attack, and is just one of the reasons why key agreement is a
difficult problem. In fact, satisfactory formal definitions for key agreement took about a decade and a half
longer to appear than definitions for encryption and signature. We will not study key agreement in this
class. We will, however, use Diffie-Hellman below.

7.4 ElGamal Encryption

Taher ElGamal [ElG85] proposed the following way to make Diffie-Hellman into an encryption scheme. Alice
publishes p, g, ga mod p, as a public key, and keeps a as the secret key. To encrypt a message m ∈ Z

∗
p, Bob

picks b ∈ Z
∗
p at random, computes gb mod p, K = gab mod p, and c = mK mod p, and outputs (c, gb mod p).

To decrypt, Alice computes K using gb and a, and recovers m from mK by dividing.
The scheme as described above is not semantically secure, because there exists a distinguisher D with

good probability of success. Here is how D works: it outputs two messages m0 and m1, such that m0 ∈ QRp

and m1 /∈ QRp. Then, upon receiving the ciphertext (c, gb mod p), D checks if c ∈ QRp (by checking
whether c(p−1)/2 mod p is 1 or −1). If so, it outputs 1; else it outputs 0. Note that K ∈ QRp if and only
if ab is even, i.e., with probability 3/4. Therefore, if m ∈ QRp, then mK ∈ QRp with probability 3/4; if
m /∈ QRp, then mK ∈ QRp with probability 1/4 (because a non-square times a non-square is a square, but
a non-square times a square is a non-square). Hence, the difference of the probabilities of D’s output being
1 on encryption of m0 and encryption of m1 is 3/4− 1/4 = 1/2, which is not negligible.

However, ElGamal scheme can be fixed if we restrict our attention not the entire group Z
∗
p, but rather to

the subgroup of squares QRp. If this subgroup is of prime order (i.e., if (p− 1)/2 is a prime), then p is often
called a safe prime (and (p − 1)/2 a Sophie Germain prime). Then the following assumption is believed to
hold.

Assumption 2. For any poly-time algorithm A, there exists a negligible function η such that, if you generate
random k-bit safe prime p = 2q+1 for prime q, and select a random generator g of QRp, and random integers
a, b and c between 1 and q,

|Pr[A(p, g, ga mod p, gb mod p, gab mod p) = 1]−
Pr[A(p, g, ga mod p, gb mod p, gc mod p) = 1]| ≤ η(k).

This is known as the Decision Diffie-Hellman (DDH) assumption, because it states that it’s hard to decide
whether you got gab or gc for a random c. Note that this is a much stronger assumption than Computational
Diffie-Hellman (CDH): CDH states that it’s hard to compute gab, while DDH states that not only is it
hard to compute, it actually looks random. There are many who are uncomfortable with such a strong
assumption.

Let us now reformulate ElGamal encryption to take advantage of DDH. Alice publishes as her public
key p = 2q + 1, where q is prime; g of order q, which is a generator of QRp; and ga mod p, for a random a
between 1 and q. She keeps a as her secret key. To encrypt a message m, 1 ≤ m ≤ q, Bob picks b, 1 ≤ b ≤ q
at random, computes gb mod p, K = gab mod p, and c = m2K mod p and outputs (c, gb mod p). To decrypt,
Alice computes K using gb and a, and recovers m2 from m2K by dividing. She then finds m by taking a
square root (note that there are two square roots, but one is greater than q = (p− 1)/2, so she knows which
one is m).
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Theorem 1. The above cryptosystem is polynomially secure under the DDH assumption.

The proof, which is not presented in full detail here, is by hybrid argument: one proves that encryption of any
message m is indistinguishable from a random pair (gc, gb). This follows easily from the DDH assumption.
Therefore, encryptions of m0 and m1 are indistinguishable.

References

[Coc73] Clifford C. Cocks. A note on non-secret encryption, 1973. Available from
http://www.cesg.gov.uk/publications/index.htm.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[ElG85] Taher ElGamal. A public-key cryptosystem and a signature scheme based on the discrete loga-
rithm. IEEE Transactions of Information Theory, 31(4):469–472, 1985.

[Ell70] James H. Ellis. The possibility of non-secret encryption, 1970. Available from
http://www.cesg.gov.uk/publications/index.htm.

[Ell87] James H. Ellis. The story of non-secret encryption, 1987. Available from
http://www.cesg.gov.uk/publications/index.htm.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[Wil74] Malcolm J. Williamson. Non-secret encryption using a finite field, 1974. Available from
http://www.cesg.gov.uk/publications/index.htm.

[Wil76] Malcolm J. Williamson. Thoughts on cheaper non-secret encryption, 1976. Available from
http://www.cesg.gov.uk/publications/index.htm.


