
Leo Reyzin. BU CAS CS 538. Fall 2003. 1

Notes for Lectures 19–20

1 Random Oracle Model and Full-Domain-Hash

Very efficient stateless signatures seem to come from the so-called random oracle model, formally
introduced by Bellare and Rogaway [BR93]. The idea is that often people use hash function such
as MD5 or SHA-1 [Riv92, NIS95] as something that produces random-looking outputs. What if we
really had a truly random function available to everyone (signer, verifier and adversary alike)?

In the random oracle model, the definition of signature scheme changes as follows: all three
algorithms (Gen,Sig,Ver) are now oracle algorithms (Gen?,Sig?,Ver?); the adversary E? now has
access to two oracles E?,?. The new oracle will be random. Namely, the experiment changes as
follows:

exp-forge(k)
0. Let R : {0, 1}∗ → {0, 1} be a function chosen uniformly at random from all possible functions.
1. (PK,SK)← GenR(1k)
2. (m, σ)← ESigR

SK(·),R(1k,PK)
3. If m was not queried by E to its signing oracle and VerRPK(m, σ) = 1, output 1. Else output 0.

The rest of the definition stays the same. Note that the adversary has to be built obliviously to
the oracle R, and work for a random choice of R.

In this model, we could build signature schemes more easily. Specifically, let (n, e) be an RSA
public key, and (n, d) be the corresponding RSA secret key. Let H : {0, 1}∗ → Z∗

n be a random
function (it can be easily built out of R : {0, 1}∗ → {0, 1}). To sign m, compute h = H(m), and
σ = hd mod n. To verify, compute h = H(m) and check if it equals σe mod n.

More generally, let {fi : Di → Di} be a trapdoor permutation family (such a family comes
with the following probabilistic polynomial-time algorithms: the algorithm GenT to generate i and
trapdoor t, an algorithm to compute fi(x) given i and x ∈ Di, and an algorhtm to compute f−1

i (y)
given t and y). Let H : {0, 1}∗ → Di denote the random oracle. Let Full Domain Hash (FDH) be
the following signature scheme:

• Gen picks a trapdoor permutation: runs GenT to generate PK = i and SK = t

• Sig(SK, m) computes and outputs s = f−1
i (H(m))

• Ver(PK, m, s) checks if f(s) = H(m)

Theorem 1 ([BR93]). Full Domain Hash is secure in the random oracle model.

Proof. We will show security by reduction to the one-wayness of f . Indeed, suppose F is a forger
for FDH. Then we will build an inverter Inv for f . Given an index i and a random value y ∈ Di,
Inv has to find f−1

i (y). Suppose F asks qhash hash queries a1, . . . , aqhash and qsig signature queries
m1, . . . , mqsig , and then ouputs a forgery (m, s). Without loss of generality, assume that before mj

is queried to a signing oracle, it is queried to the hash oracle (if not, Inv can perform the query to
the hash oracle itself before it answers the signing query). Same for the final forgery m: assume
that before being output, it is queried to the hash oracle.
Inv proceeds as follows.



Leo Reyzin. BU CAS CS 538. Fall 2003. 2

1. Inv chooses a random k between 1 and qhash + qsig + 1.

2. Inv sets PK = i and runs F (PK).

3. Upon receiving a hash query aj , if aj has been queried before, then return the same answer
as before. If not, then if j = k, return y, and store hj . Else return choose a random sj ∈ Di

and return hj = f(sj); store (hj , sj).

4. Upon receiving a signature query m
, find the hash query on the same message, aj = m
 (we
assumed that such a query exists). If j = k, abort with failure. Else output sj .

5. Upon receiving the forgery (m, s), find the hash query on m, aj = m (again, we assumed such
a query exists). If j = k, output s. Else abort with failure.

Observe that if Inv does not abort with failure, then the view of F is exactly the same as
in the real execution: F sees random values from Di for hash values, and their correct unqiue
inverses under fi as signatures. Observe also that if Inv is lucky and guessed correctly the value
k (i.e., guessed correctly which hash query the forgery would correspond to), then it will not
abort with failure (because F is not allowed to ask signature queries on its eventual forgery m,
so m
 �= m for any �), and, moreover then s will be the value that Inv needs to output, i.e.,
s = f−1

i (H(m)) = f−1
i (y). Thus, Inv will succeed with probability at least ε/(qhash + qsig + 1),

where ε is F ’s success probability. Thus, if ε isn’t negligible, then neither is the inversion probability
and hence f is not one-way.

2 Problems with Random Oracles

The problem with the random oracle model is that it doesn’t really model real life. In real life,
there are no random functions. There is usually a single fixed hash function that one uses, such
as MD5 or SHA-1. Therefore, even if the adversary may not work for a random function, it may
work for this specific one, if designed with it in mind.

In fact, even if we think that the adversary was fixed before MD5 or SHA-1 were designed, we
still cannot say that MD5 or SHA-1 were chosen at random. A simple counting argument shows
this: the number of functions {0, 1}k → {0, 1} is 22k

, hence a random function takes log2 22
k
= 2k

bits to represent. But this is an exponentially large number of bits, so most functions cannot even
be represented. The mere fact that MD5 and SHA-1 are polynomial-time computable makes them
“special”—it is theoretically possible that the adversary would fail for a random function, but not
for a polynomial-time one.

In fact, Canneti, Goldreich and Halevi [CGH98] constructed an artificial counterexample: one
that is provably secure in the random oracle model but insecure when the random oracle is instan-
tiated in real-life with any polynomial-time computable function.

The status of the random oracle model, thus, is as follows: it allows us to “prove” a whole lot
of pracitcal signature schemes secure (including, in addition to Full-Domain-Hash, [FS86, Sch89,
BR96] and others), as well as a lot of encryption schemes and other things, but the meaning of
these proofs is uncertain (as opposed to proofs in the model without random oracles, which clearly
imply that the scheme cannot be broken without violating the security assumption). It continues
to be used because of its power, but it would be very nice if someone figured out how to prove these
things without random oracles to give us more assurance that these are really secure. I personally
view it as a way to acknowledge our failures: there are a lot of constructions that seem secure on



Leo Reyzin. BU CAS CS 538. Fall 2003. 3

some intuitive level, but we can’t prove them secure in the standard model. So (hopefully until we
have a realy proof of security) we prove the secure in this funny fake model.

3 Signature Buzzwords

Here are some more buzzwords that we won’t study in any detail for lack of time.
The most used signature scheme is probably PKCS #1 v. 1.5 [RSA93] (which is essentially the

same as Full-Domain-Hash, except that the hash length is usually 160 bits, where as the length
of n tends to be much larger; the remaining bits are filled-in with 1’s; the result is not proven
secure even in the random oracle model). It is getting replaced by version 2.1 [RSA02], which
contains a Full-Domain-Hash-like scheme of [BR96]. Some ther commonly mentioned schemes are
DSA/DSS (“Digital Signature Algorithm/Standard”), standardized in [NIS94] (heuristically, but
not provably, based on discrete logarithms); Fiat-Shamir [FS86] provably based on factoring in the
random oracle model; Schnorr [Sch89] provably based on discrete logarithms in the random oracle
model; and Guillou-Quisquater [GQ88] provably based on the RSA assumption in the random
oracle model.

4 Use of Signatures and Public-Key Infrastructure

This is merely a short summary of the long discussion in class.
Signature tie messages to public keys, but they don’t tie public-keys to their owners. For

example, if you wish to get an authentic stock quote, it must be signed by the source, you must
trust the source, and you must know the public key of the source.

This is just like a problem in the physical world, where we recognize one another by face or
voice or handwriting instead of by key. We are usually introduced to one another by people we
know. This leads to the idea of “certificate” (proposed by Kohnfelder [Koh78] in an undergraduate
thesis), which is nothing more than a “letter of introduction” signed by someone you know. A
certificate is a document signed by a certifying authority (CA) that says something like “the public
key of www.bu.edu is x.” You need to trust the CA (i.e., the humans who run the CA) to check
that indeed someone authorized by “www.bu.edu” presents the public key for signature (otherwise,
you end up with a fake certificate), and you also need to have the public-key of the CA (but that is
usually built into your browser, since you need to trust your browser to verify signatures, anyway).
By the way, there is a serious issue of how do you know your software, or the compiler with which
it was compiled, or the compiler with which the compiler was compiled, etc., is trustworthy, which
is not currently solved; see [Tho84] for an introduction to these issues.

Note that certificates need not be stored with the CA: each user can simply present the certificate
together with a signature. Also note that CA is not trusted with any secrets beyond its own secret
key. Nonetheless, it is trusted to verify identity, and must be able to revoke certificates in case
of mistakes. Revocation, in particular, presents a serious issue, which we did not have time to
address in detail; people often use on-line certificate status protocol (OCSP), which in some sense
defeats the purpose of a certificate, because now the CA must be on-line; people also use certificate
revocatiotion lists (CRL), which are lists of revoked certifiates published and signed by the CA.
There are much more innovative approaches being proposed and marketed, based on Merkle trees,
hash chains, and other fun things, but we don’t have time to talk about them.



Leo Reyzin. BU CAS CS 538. Fall 2003. 4

References

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In Proceedings of the 1st ACM Conference on Computer and
Communication Security, pages 62–73, November 1993. Revised version available from
http://www.cs.ucsd.edu/~mihir/.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures:
How to sign with RSA and Rabin. In Ueli Maurer, editor, Advances in
Cryptology—EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Sci-
ence, pages 399–416. Springer-Verlag, 12–16 May 1996. Revised version appears in
http://www-cse.ucsd.edu/users/mihir/papers/crypto-papers.html.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revis-
ited. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
pages 209–218, Dallas, Texas, 23–26 May 1998.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology—
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer-Verlag, 1987, 11–15 August 1986.

[GQ88] Louis Claude Guillou and Jean-Jacques Quisquater. A “paradoxical” indentity-based
signature scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances
in Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages
216–231. Springer-Verlag, 1990, 21–25 August 1988.

[Koh78] Loren M. Kohnfelder. Towards a practical public-key cryptosystem. B.S. Thesis, super-
vised by L. Adleman, MIT, Cambridge, MA, May 1978.

[NIS94] FIPS publication 186: Digital signature standard (DSS), May 1994. Available from
http://csrc.nist.gov/fips/.

[NIS95] FIPS publication 180-1: Secure hash standard, April 1995. Available from
http://csrc.nist.gov/fips/.

[Riv92] Ronald L. Rivest. IETF RFC 1321: The MD5 Message-Digest Algorithm. Internet
Activities Board, April 1992. Available from http://www.ietf.org/rfc/rfc1321.txt.

[RSA93] PKCS #1: RSA encryption standard. Version 1.5, November 1993. Available from
http://www.rsaisecurity.com/rsalabs/pkcs/.

[RSA02] PKCS #1: RSA encryption standard. Version 2.1, June 2002. Available from
http://www.rsaisecurity.com/rsalabs/pkcs/.

[Sch89] C. P. Schnorr. Efficient identification and signatures for smart cards. In J.-J. Quisquater
and J. Vandewalle, editors, Advances in Cryptology—EUROCRYPT 89, volume 434 of
Lecture Notes in Computer Science, pages 688–689. Springer-Verlag, 1990, 10–13 April
1989.

[Tho84] Ken Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–
763, August 1984. Available from http://www.acm.org/classics/sep95/.


