
BU CAS CS 538. 1

CAS CS 538. Lecture Notes on Indistinguishability

(September 10, 2019 lecture by Leo Reyzin)

1 First attempt at relaxing perfect secrecy: allow a proba-

bility gap

As we said in the last class, if we want to allow for shorter keys, we need to relax the requirement of
perfect secrecy. But how? Here’s our first attempt.

Define an advantage or bias of an adversary A against two libraries Lleft and Lright as the positive
difference between the probabilities that the adversary outputs 1 when linked with the two libraries:

|Pr[A � Lleft ⇒ 1]− Pr[A � Lright ⇒ 1]| .

For example, consider the one-time-pad but with 0λ key disallowed. Consider the following
adversary: query two different message (mL,mR) and output 1 if the output is mL. It is not hard
to show that the advantage of such an adversary is ε = 1/(2λ − 1). This is the strongest one-query
adversary we can build (this requires a proof, which is a good exercise). With more queries, the
adversary can increase its advantage (think about how — another good exercise).

The notion of interchangeability [Ros19, Definition 2.5] says that the for every adversary, the
advantage is 0. We can relax this notion and allow a small advantage. The smaller the advantage,
the more secure the scheme. Advantage 1 means no security at all.

Definition 1. Let Lleft and Lright be two libraries with a common interface. We say Lleft
∼∼∼ε Lright if

for all programs A that output a single bit,

|Pr[A � Lleft ⇒ 1]− Pr[A � Lright ⇒ 1]| ≤ ε .

Definition 2. A symmetric-key encryption scheme Σ is ε-insecure if LΣ
ots-L
∼∼∼ε LΣ

ots-R.

Unfortunately, this relaxation doesn’t buy you much: instead of key length being at least equal
to message length, it will be at least half the message length, as the following theorem shows.

Theorem 1. Let Σ be encryption scheme for which Enc(k,m) is deterministic. If Σ is ε-insecure
for ε < 1, then |Σ.K| ≥

√
|Σ.M|.

Thus, for example, if key length is λ, then |Σ.K| = 2λ and thus |Σ.M| cannot be more than 22λ,
and thus the maximum message length is at most 2λ. So to encrypt a gigabyte of message, you need
a half-gigabyte key.

The proof for encryption schemes with randomized Enc is more complicated, and we will not do
it here. Note that we have not studied any such schemes so far (picking a random key is essential for
encryption, but is part of KeyGen, not of Enc).

We now prove Theorem 1.

Proof. Suppose, for purposes of contradiction, that |Σ.K| <
√
|Σ.M|, i.e., |Σ.K|2 < |Σ.M|.

The idea is to strengthen the proof of Shannon’s impossibility theorem form last class, so that
Pr[A � LΣ

ots-L ⇒ 1] = 1, while Pr[A � LΣ
ots-R ⇒ 1] remains at 0. We will do so by replacing c0
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with all possible ciphertexts that could be encryptions of mL. So, pick an arbitrary mL. Let C0 =
{Enc(k,mL) | k ∈ Σ.K}. C0 contains every possible ciphertext that mL could produce. Note that
|C0| ≤ |Σ.K|, because Enc(k,mL) is deterministic, and produces one ciphertext for each value k. Let
P = {Dec(k, c) | k ∈ Σ.K, c ∈ C0}. P contains every possible plaintext that could end up in C0.
Observe that |P | ≤ |C0| · |Σ.K| ≤ |Σ.K|2 < |Σ.M|. So let mR be a message in Σ.M− P .

Build a distinguisher A as follows: query (mL,mR) to get c; output 1 if c ∈ C0 and 0 otherwise.
Then

Pr[A � LΣ
ots-L ⇒ 1] = 1 ,

because C0 contains every possible ciphertext mL could produce.
At the same time,

Pr[A � LΣ
ots-R ⇒ 1] = 0 ,

because an encryption of mR could never end up in C0 by correctness of encryption, because nothing
in C0 decrypts to mR.

Thus, the advantage of A is 1, which contradicts the ε-insecurity of Σ with ε < 1.

Thus, a probability difference alone is not enough.

2 Second Attempt: add a running time bound

While the distinguisher from the proof of Theorem 1 achieves a very good advantage, it also has a
potentially very high running time and code size, because it needs to consult an exponential-size set
C0. In reality, no attacker has unlimited time. Perhaps we can salvage something if we limit the
attacker’s running time.

Definition 3. We say Lleft
∼∼∼t,ε Lright if for all A whose running time (plus code size) is at most t,

|Pr[A � Lleft ⇒ 1]− Pr[A � Lright ⇒ 1]| ≤ ε .

In the previous section, in Theorem 1, we showed that allowing nonzero advantage alone (without
limiting running time) is not very useful for overcoming impossibility results. Similarly, a running-
time bound alone (without allowing a nonzero advantage) is not very useful for overcoming impossi-
bility results, because the attacker from Shannon’s impossibility theorem from last class has a very
small running time (it just needs to test equality of two ciphertexts) and achieves a non-zero ad-
vantage. So we need to both limit the running time and allow a nonzero advantage to avoid the
impossibility results.

The Joy of Cryptography defines indistinguishability [Ros19, Definition 4.5] by saying that the
distinguishing advantage of every polynomial-time algorithm is negligible. It’s a good definition,
but sometimes you want to be more precise. Our Definition 3 above is a more precise definition of
indistinguishability, which takes into account the specific running time t (instead of any polynomial)
and distinguisher advantage ε (instead of any negligible function). As we will discuss later in the
course, precision is particularly important when you are deciding on setting parameters such as key
lengths, because you have to choose a specific length in order to provide security against a specific
class of adversaries. However, [Ros19, Definition 4.5] is easier to work with, especially for initial
intuition, because you don’t have to write down ε and t all the time.
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