
BU CAS CS 538. 1

CAS CS 538. Lecture notes on Indistinguishability

(September 12, 2019 lecture by Leo Reyzin)

The The Joy of Cryptography defines indistinguishability (Definition 4.5) by saying that the
advantage of every polynomial-time algorithm in distinguishing is negligible. It’s a good definition,
but sometimes you want to be more precise. Precision is particularly important when you are deciding
on setting parameters such as key lengths, because you have to choose a specific length in order to
provide security against a specific class of adversaries.

So we will offer a more refined definition of indistinguishability, which takes into account the
specific running time and distinguisher advantage. This saves us from having to worry about what
“polynomial” and “negligible” mean. (We will, eventually, switch to just “polynomial” and “negli-
gible” instead of keeping track of t and ε for every theorem we do, but I want us to build up some
intuition first.)

Definition 1. We say Lleft
∼∼∼t,ε Lright if for all A whose running time1 is at most t,

|Pr[A � Lleft ⇒ 1]− Pr[A � Lright ⇒ 1]| ≤ ε .

This notion is called (t, ε)-indistinguishability. We can use in various security definitions (such as
Definition 5.1 for PRG security or Definition 5.3 for one-time-security of encryption); then instead
of saying simply “secure” (which means there is a negligible ε for all polynomial time t) you’ll say
(t, ε)-secure (which means a specific t and ε).

We can now make the Chaining Lemma (Lemma 4.7) more precise. (Note: I like to call it the
post-processing lemma, because it says that post-processing of library outputs by a program L∗
cannot help a distinguisher by any more than the running time of L∗.)

Lemma 1. If Lleft
∼∼∼t,ε Lright and L∗ runs in time at most s, then L∗ � Lleft

∼∼∼t−s,ε L∗ � Lright.

Proof. Suppose some adversary A runs in time at most t− s. Let A′ = A �L∗. Then A′ runs in time
at most (t− s) + s = t. Therefore, A′ cannot distinguish Lleft from Lright with advantage greater than
ε. Thus,

|Pr[A � (L∗ � Lleft)⇒ 1]− Pr[A � (L∗ � Lright)⇒ 1]| =
|Pr[(A � L∗) � Lleft ⇒ 1]− Pr[(A � L∗) � Lright ⇒ 1]| =

|Pr[A′ � Lleft ⇒ 1]− Pr[A′ � Lright ⇒ 1]| ≤ ε .

Even though this lemma seems trivial, it is extremely useful. It says that if you had and adversary
who could distinguish L∗ �Lleft from L∗ �Lright, then you could have another adversary to distinguish
Lleft from Lright with just s additional time. L∗ is called a reduction: it reduces the problem of
indistinguishability of something more complicated (namely L∗ � Lleft and L∗ � Lright) to the problem
of indistinguishability of something simpler (namely Lleft and Lright). Building reductions—that is,
figuring the right L∗ for your problem—is often the crucial step in proofs of indistinguishability.

There is one more very useful tool: transitivity of ∼∼∼ (also known as the “hybrid” argument).
Again, we state a more precise version of it than the book does in Lemma 4.6.

1To cover adversaries that save on running simply because they precompute and hardwire a huge table, our notion
of running time includes the time to load the program into memory—i.e., the length of the program

http://web.engr.oregonstate.edu/~rosulekm/crypto/

BU CAS CS 538. 2

Lemma 2. If L1
∼∼∼t,ε L2 and L2

∼∼∼s,δ L3, then L1
∼∼∼min(t,s),ε+δ L3.

Proof. Indeed, suppose A is an adversary whose running time is at most min(t, s). Then

|Pr[A � L1 ⇒ 1]− Pr[A � L3 ⇒ 1]| ≤ (because |x+ y| ≤ |x|+ |y|)
|Pr[A � L1 ⇒ 1]− Pr[A � L2 ⇒ 1]|+
|Pr[A � L2 ⇒ 1]− Pr[A � L3 ⇒ 1]| ≤

ε+ (because L1
∼∼∼t,ε L2)

δ . (because L2
∼∼∼s,δ L3)

This lemma, like the previous, may seem trivial, but is also very useful. Often the trick to proving
indistinguishability of two libraries (such as L1 and L3) is to find one (or more) intermediate library
(such as L2) and then prove the whole sequence to be indistinguishable in pairs. The difficulty is in
finding the correct L2 (or sequence of such libraries). It often combines some features of L1 and L3

and is therefore called a hybrid. The proof technique is called a hybrid argument.
An example of how both lemmas can be combined to give a non-trivial statement is the proof

that pseudorandom one-time-pads give computational one-time security, per Claim 5.4. The more
precise version of Claim 5.4 (i.e., with t and ε worked out) is the following.

Claim 1. Let pOTP denote Construction 5.2. If, for some t and ε, pOTP is instantiated using a
(t, ε) secure PRG G, then pOTP is (t − s, 2ε)-secure, where s is the time required to compute λ + `
XOR operations (in big-O notation, s = Θ(λ)).

The proof of the claim is the same as the proof of Claim 5.4: you use the hybrid argument Lemma
4.6 (Lemma 2 here) seven times. Five of those uses uses are just interchangeability (i.e., ≡). The
other two (from Lhyb-2 to Lhyb-3 and from Lhyb-5 to Lhyb-6) are indistinguishability (i.e., ∼∼∼) steps, and
each requires the chaining Lemma 4.7 (Lemma 1 here) to prove it. The chaining lemma results in the
s term being subtracted from t, which means each of these two steps is (t − s, ε)-indistinguishable,
for a total of (t− s, 2ε).

