
6.889: New Developments in Cryptography February 15, 2011

Fully Homomorphic Encryption - Part II

Instructor: Boaz Barak Scribe: Elette Boyle

1 Overview

We continue our discussion on the fully homomorphic encryption scheme of van Dijk, Gentry, Halevi,
and Vaikuntanathan [vDGHV10]. Last week we constructed a weakly homomorphic encryption
scheme such that for any pair of properly generated ciphertexts c ← Enc(b), c� ← Enc(b�), the sum
or product of c, c� yields a value that decrypts to the sum (resp, product) of the original underlying
plaintexts. That is, Dec(Add(c, c�)) = b ⊕ b� and Dec(Mult(c, c�)) = b · b�. However, the scheme
suffered from two problems: 1) the cipertext formed as the output of the Add or Mult operation
does not have the same distribution as a ciphertext properly generated via the Enc algorithm, and
2) if we try to perform too many Add and Mult operations, we are no longer guaranteed decryption
to the correct value (indeed, in the scheme, the noise in the ciphertext grows larger in each operation
and will eventually lead to a nonempty intersection of the set of encryptions of 0 and 1).

As we discussed last week, these two problems will be solved if we can construct the following
two operations:

• ReRand(X): takes as input any encryption of a bit b with noise ≤ 2n
0.4

(for example, in our
scheme this includes the bit b itself!) and outputs a ciphertext with noise ≤ 2n

0.5
with the

correct distribution ReRand(X) ≈s Enc
2n

0.5

(b).

• Clean(X): takes as input a ciphertext with noise ≤ 2n
0.9

and outputs a ciphertext for the
same message with noise ≤ 2n

0.3
. That is, it reduces the noise of the ciphertext.

Further, when combined with the original scheme, these operations will actually give us a fully

homomorphic encryption scheme, by cleaning and rerandomizing the resulting ciphertext after
every operation.

We showed how to do ReRand last week. Today, our focus will be on the more complicated
operation: Clean.

2 Review from last week

We briefly review some information from last lecture. For formal definitions and discussions of
these items, we refer the reader to the preceding set of scribe notes.

2.1 Notation

1. We use lowercase letters (such as t) for values that are polynomial in the security parameter
n, and capital letters (such as N , P , Q, and R) for large numbers that have poly(n) digits
(and hence are exponential in the security parameter n).

2. ZN : We denote by ZN the set {0, . . . , N − 1} and by Z∗
N the set {X ∈ ZN : gcd(X,N) = 1}.

3-1

3. P(C): For a circuit C, we define P(C) to be the polynomial Zm → Z that C computes.

4. |f |M : For a polynomial f : Zm → Z and M ≥ 0, we define |f |M to be the maximum value
attained by f over all possible inputs of size ≤ M :

|f |M = max
x1,...,xm
|xi|≤M

|f(x1, ..., xm)|.

5. EE
N,P (b): We denote by EE

N,P (b) = {X : X = RP +2E+ b (mod N), R ∈ ZQ, E ∈ [−E,+E]}
the set of possible encryptions of b with parameter E, public parameter N , and secret key P .

2.2 The weakly homomorphic scheme

The weakly homomorphic scheme (Gen,Enc,Dec,Add,Mult) is defined as follows.

Key Generation: Draw a random n-bit prime P and a random n4-bit prime Q. Set N = PQ,
keep P as the secret key, and publish N as a public parameter.

Encryption: For b ∈ {0, 1}, we let EncN,P (b) = Enc2
√

n

N,P (b), where EncEN,P (b) is the distribution
defined as follows: choose R ←R ZQ and E ←R [−E,+E], and output X = RP + 2E + b

(mod N).

Decryption: To decrypt X, output X−�X/P �P (mod 2). (Where �x� denotes the integer closest
to x.) In other words, find the nearest multiple of P to X, subtract it away to get the noise,
and then the parity of the noise is the decrypted bit.

Addition: Given ciphertexts X,X �, output AddN (X,X �) = X +X � (mod N).

Multiplication: Given ciphertexts X,X �, output MultN (X,X �) = X ·X � (mod N).

We refer the reader to last week’s notes for a proof of semantic security of the scheme based on
the Learning Divisor with Noise assumption (in addition to the definition of this assumption), and
proof that the scheme satisfies a “noisy” homomorphism property.

3 Bootstrapping to a Fully Homomorphic Scheme

3.1 Clean and ReRand operations

As we discussed, to make the scheme fully homomorphic, it will suffice to add the following two
operations.

• Clean(X) will take as input a ciphertext in E2n
0.9

(b) and output a ciphertext in E2n
0.3

(b).
That is, it reduces the noise of the ciphertext.

• ReRand(X) will take as input a ciphertext in E2n
0.4

(b) and output a ciphertext that distributed

statistically close to the uniform distribution over E2
√
n
(b), that is, ReRand(X) ≈s Enc(b).

3-2

Fully homomorphic encryption Together Clean and ReRand imply a fully homomorphic en-
cryption scheme: we just change the definition of Mult and Add to apply Clean and ReRand as
follows:

• Add(X,X �) = ReRand(Clean(X +X � (mod N))).

• Mult(X,X �) = ReRand(Clean(X ·X � (mod N))).

Note that in an actual implementation, we can increase efficiency by performing several additions
and multiplications back-to-back, running a Clean only when the noise gets too large. The ReRand
operation also only needs to be run a single time at the very end of the calculation.

3.2 Teaser: Lucas’s Theorem

We will use the following result later in the proof of correctness of Clean. To simplify the discussion,
we present the proof now and simply make reference to it later.

Theorem 3.1 (Lucas). If a =
�

aip
i
and b =

�
bip

i
for some integer p and ai, bi ∈ [0, p) ∩ Z,

then �
a

b

�
≡

��
ai

bi

�
(mod p).

Proof. We show the claim by equating the coefficient of xb in the following two expansions of the
formal polynomial (x+ 1)a (mod p):

�

k

�
a

k

�
x
k = (x+ 1)a = (x+ 1)

�
i aip

i

=
�

i

(x+ 1)aip
i

≡
�

i

(xp
i
+ 1)ai (mod p).

On the left-hand side, the coefficient of xb is simply
�a
b

�
. On the right-hand side, since each ai < p,

the only way to form xb is to take the xbip
i
term from the ith factor (xp

i
+ 1)ai . The coefficient of

xbip
i
in the ith factor is precisely

�ai
bi

�
. Thus, the coefficient of xb in the entire right-hand expansion

will be
�

i

�ai
bi

�
, as desired.

3.3 Getting Clean using “wishful thinking”

Last week we started discussing how one could go about implementing the Clean functionality.
Obtaining Clean appears to be very challenging, because, up until this point, any operation that
we performed on ciphertexts (such as adding, multiplying, or re-randomizing) only increased the
noise. In fact, it seems somewhat counterintuitive that we could decrease the noise of a ciphertext
without knowing the secret key, since if you could decrease too much then you would be able to
identify the underlying plaintext. Nevertheless, we saw that if the decryption algorithm of the
weakly homomorphic scheme is sufficiently simple, then we can use the bootstrapping trick of
Gentry [Gen09a, Gen09b, Gen10] to achieve our goal.

We can view the decryption algorithm Dec as a function from the bits of the secret key and
the ciphertext into the message space {0, 1}. Since the function is efficient, it can be computed

3-3

by a polynomial-size Boolean circuit. Suppose further that we were lucky and it was also the case
that |P(C)|2n0.1 < 2n

0.3
; that is, for any input (x1, ..., xm) to P(C) with |xi| ≤ 2n

0.1
, the value of

|P(C)(x1, ..., xm)| is bounded by 2n
0.3
. For example, this will hold if the polynomial P describing

the decryption circuit has {0, 1} coefficients and degree at most n0.1. Then we could implement
Clean as follows:

Recall that Clean is given as input X = RP + 2E + b where |E| ≤ 2n
0.9

and must output a
ciphertext X � = R�P + 2E� + b such that |E�| ≤ 2n

0.3
.

1. At the key generation stage, we publish additional public parameters corresponding to encryp-

tions of the bits of the secret key P , each with small noise. Explicitly, let Yi = Enc2
n0.1

N,P (Pi),

where Pi is the i-th bit of the secret key. Publish Y1, ..., Yn. The noise value 2n
0.1

is smaller
than the standard encryption parameter (2

√
n) but is still large enough to ensure security.

2. Now, suppose we are a third party (without the secret key) who wishes to run Clean on some
ciphertext X.

(a) We take Y1, ..., Yn from the public parameters; then define Yn+1, . . . , Ym (where m =
n+ n5) according to the bits of the ciphertext X. That is, Yn+1 is 1 if the first bit of X
is 1 and 0 otherwise, and so on.

Note that we can think of the number 1 also as an encryption of 1 (after all, 1 =
0 · P + 2 · 0 + 1) and similarly we can think of the number 0 also as an encryption of
0. We thus have ciphertexts Y1, ..., Ym that are encryptions of the bits of the string
P ||X (where || denotes concatenation). Moreover, these ciphertexts Yi have very low
noise—indeed, each has noise at most 2n

0.1
.

(b) Now, we know that Dec(P ||X) = b, and so if we run the circuit C homomorphically

on the ciphertexts Y1, ..., Ym of P ||X, then we should get a ciphertext X � encrypting b,
which is exactly what we wanted! (Very cool!)

The last thing to check is that the noise of X � is not too large. But, since we started from
ciphertexts with small noise, this will be the case if the decryption circuit is simple as hoped.
Specifically, the final noise level will be at most |P(C)|2·2n0.1+1.

The issue. The issue is that we unfortunately have no reason to believe our decryption circuit
has small norm. Generally a circuit over {0, 1}m is expected to have polynomial degree about
m ∼ n5, and indeed it seems that one can verify that the decryption circuit actually computes a
polynomial of degree at least n/100, and will satisfy |P(C)|1 > 2n/100. So we’re off by a polynomial
factor in the exponent.

We will tackle this issue by making an additional tweak to the encryption scheme, intended to
“squash” the decryption circuit and make it of smaller degree.

A divergence— is decryption inherently complex? One can wonder whether it’s an accident
that we were unlucky, or there is something inherently fishy about trying to get an encryption
scheme with a very simple decryption function. Consider the adversary’s task in breaking an
encryption scheme: he gets access to labeled ciphertexts (X1,Dec(X1)), . . . , (Xpoly(m),Dec(Xm))
and then gets a new ciphertext X∗ and needs to guess Dec(X∗). This is exactly the task of learning
the decryption function. But this should raise a red flag, since low degree polynomials are easy to

3-4

learn. Fortunately, this depends on the definition of “low”— the algorithms to learn polynomials of
degree d take roughly time

�n
d

�
, which means that for degree n0.1 polynomials we can still hope for

non-trivial security. This does mean however that we should not expect breaking the decryption
to take more than 2n

0.1
time, even if we use a large noise parameter. Since no such algorithms

are known for our decryption algorithm, this suggests we need to tweak our scheme to become less

secure if we want to ensure it can be implemented by a low degree polynomial. This is indeed what
we’ll do.

4 Getting the Clean operation—squashing decryption

While at a high level, what we do amounts to squashing the decryption circuit, and in the papers
it is described in this way, our goal is just to get the Clean operation in some way. Thus, we
will just show what we do to implement Clean. We will not change the actual encryption and
decryption algorithms at all, just add some public parameters. Thus, all the properties of our
scheme (correctness, homomorphism, and rerandomization) will be preserved.

4.1 Sparse Subset Sum (SSS) Assumption

In order to accomplish our goal, we will need to rely on an additional cryptographic assumption,
the Sparse Subset Sum assumption. This is a variant of the subset sum problem.

Subset Sum Problem The subset sum problem is the question, given m� = poly(m) m-bit num-
bers α1, . . . ,αm� and a target number β ∈ [2m], whether there exists a subset T ⊆ [m�] such
that

�
i∈T αi = β (mod 2m). When m� is sufficiently large as a function of m, this is con-

sidered a hard problem. We will assume hardness of a average-case decision variant of this
problem where the set T is relatively small (of size m� for some � > 0).

Sparse Subset Sum (SSS) Assumption For any m, � > 0 and β ∈ [M = 2m], we assume
there is some m� = poly(m) such that the following two distributions on α1, . . . ,αm� are
computationally indistinguishable:

1. α1, . . . ,αm� are chosen randomly and independently in [M].

2. We choose a set T ⊆ [m�] of size m� at random, for i �∈ T choose αi randomly and
independently from [M], while on the other hand we ensure that

�
i∈T αi = β (mod M).

(Technically we can do so by selecting αi ∈R [M] randomly for i ∈ T \ {i∗} and then
setting αi∗ = β −

�
i∈T\{i∗} αi (mod M) for some chosen index i∗ ∈ T).

Note that the SSS assumption implies that one can view the numbers α1, . . . ,αm� as an
“encryption” of the number β such that

�
i∈T αi = β (mod M), which can be recovered by

someone one knows the secret set T .

4.2 Adding Public Parameters

We now return to the weakly homomorphic scheme. We want to include additional public parame-
ters that won’t break the security of the scheme (based on our new assumption), but that will help
simplify the computation of the decryption circuit to the point where we can use the bootstrapping
technique described in Section 3.3.

Recall the decryption algorithm takes a ciphertext X and computes X − �X/P �P (mod 2).
The computationally expensive part of this evaluation is calculating �X/P �. Thus, we will try to

3-5

“help it out” by giving it a value closely related to 1/P .1 Now, obviously we cannot publish this
value in the clear, since it would allow anyone to decrypt. What we will instead do is hide it in
the form of a subset sum within a list of random values. The location of the special set of indices
T where the value is hidden will become an additional part of the secret key.

More explicitly, let M = 2100n and α1, ...,αm� be random elements of [M] subject to the con-
straint �

i∈T
αi = �M/P � (mod M),

for a randomly selected subset T ⊆ [m�] of size |T | = n1/100. (The number of random elements
m� = poly(n) that we need to hide T is dictated by the sparse subset sum assumption).

Publish: M α1, ...,αm�

Note that by the SSS assumption, the list of elements αi is indistinguishable from a list of completely
random numbers, and so the scheme remains secure.

For each i ∈ [m�], define

ti =

�
1 i ∈ T

0 i /∈ T
.

Let Ti = Enc2
n0.1

P (ti) be an encryption of ti with the small noise parameter 2n
0.1
, and make the

additional security assumption that it is safe to publish T1, ..., Tm� as a public parameter.

Publish: T1 = Enc(t1) · · · Tm� = Enc(tm�)

The notion that the scheme remains secure even given an encryption of (part of) the secret
key is a property known as circular security, and is a specific case of the more general notion of
key-dependent message (KDM) security. See last week’s notes for a brief discussion.

4.3 Implementation of Clean

We are now ready to implement the Clean operation. Again, we are given a ciphertext X =
RP + 2E + b where |E| ≤ 2n

0.9
and our goal is to come up with X � = R�P + 2E� + b such that

|E�| ≤ 2n
0.3
. We can assume without loss of generality that the input X itself is even; otherwise,

we can always add 1 to the input, run Clean, and then add 1 back to the output.

The Clean algorithm. Given input X, perform the following steps:

1. Take α1, ...,αm� from the public parameters; for i = 1, . . . ,m�, compute α̃i = X · αi.

2. Construct a mod 2 circuit C(t1, . . . , tm�) that computes the following function:

C(t1, . . . , tm�) =

��m�

i=1 α̃i · ti
M

�
(mod 2). (1)

for any sparse input (t1, ..., tm�) (i.e., with Hamming weight ≤ |T | = n1/100).

3. Invoke C on the ciphertexts T1, . . . , Tm� using Add,Mult in the place of addition and
multiplication mod 2 to obtain the ciphertext X �.

1Indeed, for M = 2k a large power of 2, the value �M/P � can be viewed as k bits of precision of the fraction 1/P .

3-6

Analysis of Clean. We need to prove the following lemmas:

Lemma 4.1. Given α̃1, . . . , α̃m� we can find a polynomial time circuit C satisfying (1) such

that |P(C)|2n0.1 < 2n
0.3
.

Lemma 4.2. Applying the circuit C to the true secret values t1, ..., tm� gives

b =

��m�

i=1 α̃i · ti
M

�
(mod 2).

That is, C serves the functionality of a decryption circuit.

We begin by proving Lemma 4.2, which will actually be the simpler of the two.

Proof of Lemma 4.2. We know that

m��

i=1

α̃i · ti =
m��

i=1

X · αi · ti = X

�

i∈T
αi = X(KM + �M/P �)

for some integer multiple K. Now, if we divide the RHS by M we get

(∗) = XK +X �M/P � /M.

Since X is even XK is an even integer, and since M � P (M is 100n bits while P is n

bits), X �M/P � /M is within 0.01 distance to �X/P �, meaning that �(∗)� (mod 2) = �X/P �
(mod 2) = b.

Proof of Lemma 4.1. We now argue that we can construct such a circuit with small norm.
Consider the following observations.

1. Since M is a power of 2, dividing by M will simply shift the input by logM bits.

2. Multiplying α̃i by ti is just the identity function or 0, since ti ∈ {0, 1}.
3. In the proof of Lemma 4.2 above, we showed that the number we end up rounding will

be within distance 0.02 to an integer. So to determine whether it comes out to being
odd or even, we just need to look at, say, four binary digits of the sum

�
i α̃iti. (That

is, strictly speaking, we won’t prove Lemma 1 as stated but rather we’ll come up with
a circuit that agrees with the rounding operation when the number involved is within
0.02 distance from an integer, and we don’t care what it does otherwise.)

4. Furthermore, since we know at most k = |T | = n0.01 of the numbers in this sum are
nonzero (since ti = 0 ∀i /∈ T), it suffices to look at a “window” of, say, 2 log k digits
within this sum. Indeed, digits corresponding to 21 and higher are irrelevant since we
are considering the value mod 2, and digits below a certain point cannot make make any
significant difference on the distance of the resulting sum from an integer.

So, ignoring all binary digits outside the 2 log k window, our task boils down to coming up
with a circuit for the following problem:

Let α̂1, . . . , α̂m� be m� numbers of 2 log k bits, and t1, . . . , tm� be numbers in {0, 1} such
that at most k of them are nonzero, and j ∈ [3 log k]. Compute the jth bit of

�
α̂iti.

3-7

Figure 1: Calculating �
�

i α̃iti� (mod 2). Shaded squares: Since the sum is close to an integer, we
only need a few bits of precision to accurately round. Window of relevant digits: Since few terms
α̃iti are nonzero, we can disregard low-order bits (and bits 21 and higher since working mod 2).

ignore window of relevant digits ignore
· · · 22 21 20 2−1 2−2 2−3 · · · 2−2 log k · · ·

α̃1t1

α̃2t2
...

+ α̃m�tm�
�

i α̃iti

digits used to round

We’ll show one can do this in a circuit of poly(m�, k) size that computes a polynomial with 0/1
coefficients and < k3 degree, hence completing the proof. This will follow from the following
two claims:

Claim 4.3. Let a1, . . . , am ∈ {0, 1}. The jth bit of
�m

i=1 ai is equal modulo 2 to

�

S⊆[m]:|S|=2j

�

i∈S
ai. (2)

Proof. Let s =
�m

i=1 ai. Now, the value of Expression (2) is precisely the number of subsets
S ⊆ [m] of size 2j such that ai = 1 ∀i ∈ S. This can be counted equivalently by

� s
2j
�
, since

the sum s equals the number of ai equal to 1. By Lucas’s Theorem 3.1, we have

�
s

2j

�
≡

�
sj

1

��

k �=j

�
sk

0

�
(mod 2),

where sk denotes the kth bit of s. Indeed, this is because the binary representation of 2j will
have a single 1 in the jth bit and 0s elsewhere. But, since

�sk
0

�
= 1 ∀k, this product is just�sj

1

�
= sj , which is the jth bit of s =

�m
i=1 ai as desired.

Claim 4.4. There is an arithmetic circuit of size poly(m) that computes the polynomial of

(2) over the integers.

Proof. We can compute the polynomial efficiently using dynamic programming. For any
subset A ⊆ [m] and integer � ≤ |A|, we define the partial sum

SA,� =
�

S⊆A
|S|=�

�

i∈S
ai.

Our goal is to calculate the value of this sum when A = [m] and � = 2j . To do so, we
divide and conquer: we will calculate and maintain a table of partial sums for subsets of [m],
beginning with the singleton subsets, and then merging subsets in pairs until we reach [m]
itself. Explicitly, S{i},1 = ai for each i. For subsets A,B ⊆ [m] with |A| = |B| and A∩B = ∅,

3-8

given the values of SA,�� and SB,�� ∀�� ≤ |A|, we can calculate the value of SA∪B,� using the
following merge rule:

SA∪B,� =
��

��=0

SA,�� · SB,�−�� .

Storage: At each level i of m/2i different subsets of [m] size 2i; for each such subset A we
have |A| + 1 different partial sums SA,�, corresponding to � = 0, ..., |A|. At any given
time, we never need to store more than two levels of partial sums, since previous levels
never appear again in calculation. Thus the total storage needed is O(m).

log2m
...

level 1 1 2 · · · m

Computation: Consider a single merge at level i. That is, let A ⊆ [m] be the new merged
subset of size 2i. Using the merge rule above, for any given �, the computation to
calculate SA,� requires O(�) ≤ O(2i) additions and multiplications. Since there are
|A| = 2i different values of � for this set A, and m/2i different choices for A at this level,
the total computation to go from level i− 1 to level i will be O(m2i) ≤ O(m2). Finally,
there are log2m different levels, yielding an overall computation of O(m2 log2m).

Completing the proof of Lemma 4.1 These two claims together allow us to compute
the j-th digit of any collection of 0s and 1s. We can use this to find a digit in the sum of larger
(namely, 2 log k-bit) numbers by simply adding one column at a time in the bit representation
and keeping track of carries, as in the standard long addition gradeschool algorithm.

Let a�i be the �-th digit of ai. For m < �, we denote by carrym,� the �-th digit of the sum�
i a

m
i : that is, the contribution in location � of the final sum that we get from adding the

m-th column of 0/1 values. The jth digit of the output
�

i ai can be obtained by XORing
the following values:

0. The j-th digit of (
�

i a
0
i)

1. The (j − 1)th digit of
��

i a
1
i + carry0,1

�

2. The (j − 2)th digit of
��

i a
2
i + carry0,2 + carry1,2

�

3. The (j − 3)th digit of
��

i a
3
i + carry0,3 + carry1,3 + carry2,3

�

...

j. The 0th digit of
��

i a
j
i + carry0,j + carry1,j + carry2,j + · · ·+ carryj−1,j

�

From Claim 4.3, each term carrym� can be computed by a polynomial with 0/1 coefficients
and degree 2�−m. In turn, the (j − i)th digit of the appropriate sum of (values + carries)
can be computed by a polynomial with 0/1 coefficients and total degree 2j−i · 2i, where the
2i comes from the maximum degree of the terms within the sum (namely, from carry0,i).
Further, by Claim 4.4, each of these steps can be implemented by an arithmetic circuit of

3-9

polynomial size. Since there are only polynomially many of these values to calculate, and
j ∼ log|T | = log n1/100, the corresponding polynomial will have sufficiently small norm.

Now, putting the final pieces together, the complete circuit to compute the value of (1) simply
runs the above process 4 times to determine 4 digits of the sum needed for rounding, and
then (since we know the value is close to an integer) implement a simplistic mod 2 rounding
functionality that sends 0.000, 1.111 �→ 0 and 0.111, 1.000 �→ 1.

The Bottom line We have obtained a fully homomorphic private-key encryption! This is al-
ready good enough for our applications such as cloud computing, zero knowledge, and multiparty
computation (where one side generates the keys and the other just applied Eval), but it is also very
easy to transform it to a public-key encryption.

References

[Gen09a] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford Uni-
versity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of

the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 169–178,
New York, NY, USA, 2009. ACM.

[Gen10] Craig Gentry. Computing arbitrary functions of encrypted data. Communications of

the ACM, 53:97–105, March 2010.

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Proceedings of the 29th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT ’10, pages 24–43, Berlin, Heidelberg, 2010. Springer-Verlag.

3-10

