

Architecture and Hardware for Scheduling Gigabit Packet Streams*

Raj Krishnamurthy, Sudhakar Yalamanchili, Karsten Schwan and Richard West*
{rk, sudha, schwan}@cc.gatech.edu {richwest@cs.bu.edu}

 Center for Experimental Research in Computer Systems *Department of Computer Science
 Georgia Institute of Technology Atlanta, GA 30332-0280 Boston University Boston, MA

Abstract

 We present an architecture and hardware for
scheduling gigabit packet streams in server clusters that
combines a Network Processor datapath and an FPGA
for use in server NICs and server cluster switches. Our
architectural framework can provide EDF, static-priority,
fair-share and DWCS native scheduling support for best-
effort and real-time streams. This allows – (i)
interoperability of scheduling hardware supporting
different scheduling disciplines and (ii) helps in
providing customized scheduling solutions in server
clusters based on traffic type, stream content, stream
volume and cluster hardware using a hardware
implementation of a scheduler running at wire-speeds.
The architecture scales easily from 4 to 32 streams on a
single Xilinx Virtex 1000 chip and can support 64-byte -
1500-byte Ethernet frames on a 1 Gbps link and 1500-
byte Ethernet frames on a 10 Gbps link. A running
hardware prototype of a stream scheduler in a Virtex
1000 PCI card can divide bandwidth based on user
specifications and meet the temporal bounds and packet-
time requirements of multi-gigabit links.

1.0 Introduction

While core routers carry the Internet’s traffic, web
and media server clusters at the edges produce and
consume heterogeneous traffic streams. These streams
require real-time guaranteed services along with best-
effort service end-to-end [3, 4, 5]. A stream may originate
from a source (possibly a server in a machine cluster) and
end at a consumer (another server or display terminal in a
machine cluster) located within the same cluster or in
another geographically separate location. Also, wire-
speeds in server clusters at the edge have been increasing

*This work is supported in part by the Department of Energy under the
NGI program and the National Science Foundation under a grant from
the Division of Advanced Networking Infrastructure and Research, by
hardware/software infrastructure support from Xilinx, Celoxica, Intel,
Aldec and Synplicity Corporations

steadily with increasing use of Gigabit Ethernet NIs and
switches. Sampling of Infiniband NI chipsets by different
vendors brings the promise of Infiniband (2.5Gbps) NI
and switch availability to server clusters over the next few
months [13, 14]. Flexible scheduling disciplines on the
end-system (server machine) and switches are required to
meet the real-time and best-effort service requirements of
traffic streams delivered by web and media clusters.
These scheduling disciplines must operate at wire speeds
to match the continual growth of wire speeds in server
clusters and maximize link utilization. Use of
heterogeneous hardware in the path of a stream with
different scheduling discipline capabilities is also possible
and must be allowed to promote flexibility, scalability and
availability.

Problem Statement

• Scheduling at wire-speeds for optical multi-
gigabit links, Infiniband (2.5, 10, 30 Gbps) and
the emerging 10GEA (10 Gigabit Ethernet
Alliance) [13, 14] standard necessitates
scheduling decisions be guaranteed to be
completed in a packet time.

• Architecture and implementations are required
that can meet cost/performance requirements
across a range of environments without ASIC
re-engineering overheads.

• It is necessary to trade-off scheduler throughput
in packets/sec with quality of service and
scheduling granularity, e.g. scheduling at the
packet level vs. MPEG frame level.

Solution We address these needs through the use of a
powerful scheduling discipline and a flexible target
architecture that combines a commercial microprocessor
datapath or a Network Processor with a tightly coupled
reconfigurable logic component such as a FPGA. Such
system-on-a-chip architectures have been announced in
the recent past and provide potential hardware solutions
for applications that demand both flexibility and the
performance that can be achieved via hardware
customization [11]. Our approach implements the
compute intensive scheduling decision logic within the

configurable logic component while control and data
movement is handled by the Network Processor. The
scheduling discipline for which we propose hardware
solutions is Dynamic Window-Constrained Scheduling
(DWCS) [2]. DWCS is a powerful scheduling framework
that can be configured to implement most existing
scheduling disciplines such as EDF (Earliest-Deadline
First), static-priority, WFQ (Weighted Fair Queuing) [5]
and also native (deadline and window-constrained dual-
attribute) scheduling [2]. This could allow heterogeneous
schedulers in the path of a stream encompassing end-
systems and switches to interoperate and schedule traffic.
While DWCS addresses the issue of provisioning QoS,
the complexity of stream selection and priority update
computations poses a challenging implementation
problem for scheduling a large number of streams over
multi-gigabit links. For example, the Ethernet frame time
on a 10 Gigabit link ranges from approximately 0.05
microseconds (64 byte) to 1.2 microsecond (1500 byte).
This can be substantially lower for ATM cells or SONET
frames that need to be scheduled at wire speeds. Packet
level QoS scheduling at these link speeds poses
significant implementation challenges. To meet the
challenge, we propose a scheduler architecture comprised
of a processor datapath coupled with a Field
Programmable Gate Array (FPGA). Our architecture
stores per-stream state and attribute adjustment logic in
Register base blocks and orders streams pair-wise using
multi-attribute-compare-capable Decision blocks in a
recirculating shuffle network to conserve area. Scheduling
logic does possess significant amount of parallelism for
which we propose a customized FPGA solution. Such
solutions are viable as FPGA technology pushes 10 M
gate designs with clock rates of up to 200MHz with
relatively low reconfiguration overheads. By carefully
crafting suitable implementations for compute-intensive
scheduler components for implementation within the
FPGA, we find tractable implementations for the fine
grained, real-time packet scheduling problem.

Table 1. Scheduler Decision Rules

Related Work A number of efforts [15], [10], [8] and [7]
have detailed and constructed priority queuing
architectures and corresponding hardware in switches and

network interfaces. The DWCS scheduling framework
allows flexible reconfiguration of the native scheduling
discipline into EDF, static priority and fair-share using
more complex multiple stream-attribute comparisons.
The architectures detailed in [10] are interesting but do
not scale well because of the complex nature of our
Decision block. The comparator tree requires log2N
levels of Decision blocks, while the shift-register and
systolic queue architectures require replication of the
(comparator) Decision block in each shift-regis ter or
systolic block. Our architecture conserves area and scales
better by using only log (number of streams) Decision
blocks in a recirculating shuffle-exchange network. This
is critical in an FPGA architecture where the design must
place-and-route and fit on a chip with minimal critical
path delay.

2.0 Packet Scheduling : Properties and
Implementation Complexity

 The fundamental idea in packet scheduling is to pick a
stream from a given set of streams and schedule the head-
packet from the eligible stream for transmission. The
scheduling discipline must make this decision based on
stream descriptors and attributes (which could be integer-
valued weights by which bandwidth of the output link is
to be divided or deadlines at which packets in each stream
may need service) so that the service requirements of each
stream (bandwidth, delay or jitter) are satisfied to the best
extent possible. The stream attributes of relevance to a
certain scheduling discipline by which streams are
ordered may be multi-valued (deadlines, loss-ratios) or
single-valued (stream weights) and may be abstracted for
convenience as stream priorities. The scheduling
discipline must also ensure that the scheduling decision is
completed in a packet-time (packet length in bits / wire-
speed of output link) to ensure maximum link utilization.
A static priority scheduling discipline (which minimizes
the weighted mean delay) for non-time-constrained traffic
picks a stream based on a static time-invariant priority. A
dynamic priority scheduling discipline on the other hand,
will bias or alter the priority of streams every scheduling
decision cycle so that streams waiting for service may
also be picked (albeit eventually) over the stream recently
serviced. This may be necessary for guaranteeing real-
time bounds (as in an Earliest-Deadline-First EDF
scheduler) or allocating bandwidth fairly among best-
effort streams. A scheduling discipline must strive to
provide performance bounds for real-time and fairness for
best-effort streams [2, 3, 5].

 The DWCS scheduling algorithm is a powerful
framework for realizing a range of practically interesting
schedulers. Every stream requiring service is assigned two
service attributes – a Deadline and a window-constraint or

Precedence among streams for pairwise ordering
• Earliest Deadline First
• Equal Deadlines, order lowest window constraint

first
• Equal Deadlines and zero window-constraints,

order highest window-denominator first
• Equal Deadlines and equal non-zero window

constraints, order lowest window-numerator first
• All other cases: first-come-first-serve

loss-tolerance (ratio) (Wi) [2]. A request period (Ti) is the
interval between deadlines of two successive packets in
the same stream (Si). The end of a request period (Ti) is
the deadline by which the packet requiring service must
be scheduled for transmission. The window-constraint
(Wi) or loss-tolerance (xi/yi) is the number of packets xi
(loss-numerator) that can be late/lost over a window yi
(loss-denominator) packet arrivals in the same stream Si.
All packets in the same stream have the same loss-
tolerance or window-constraint (Wi) but a different
deadline (separated by the request period). In order for a
winner or eligible stream to be picked, the streams must
be ordered pairwise based on the rules presented in
Table 1. The winner stream is then picked for service and
its deadlines and loss-tolerances adjusted. We refer the
reader to [2] for details but simply state here that the
deadline and loss-tolerance adjustments are simple
arithmetic operations (increments to deadlines and
increments/decrements to loss-numerator and
denominator). Similarly, other streams waiting for service
have their deadlines and loss-tolerances adjusted in a
different manner from the ‘winner’ stream if they miss
their deadlines (in effect to to increase their priorities).
Streams without any deadline misses are not adjusted.
These adjustments to deadline and loss-tolerances are
simple arithmetic increments and decrements and serve to
bias the priorities of streams (increase or decrease their
priorities) so that all streams get serviced without
starvation during the operation of the scheduling
discipline. This combination of deadline and loss-
tolerance specifications allows DWCS to provide real-
time guarantees and fair bandwidth division for streams.
In fact, DWCS can be configured to operate as an EDF
scheduler (loss-tolerances are 0/0), static priority
scheduler (infinite deadline, static priority is original loss-
tolerance of streams) and fair scheduler (WFQ weights
can be set using deadlines and loss-tolerances) [2, 6]. The
reader is referred to [2] where it is also shown that -
DWCS can ensure that the delay-bound of any given
stream is independent of other streams, delay of service to
real-time packet streams is bounded even when the
DWCS scheduler is overloaded and also that no more
than x packets miss their deadlines every y consecutive
packet arrivals, if the minimum aggregate bandwidth
requirement of all real-time streams does not exceed the
available outgoing link bandwidth. The ability of the
DWCS scheduling framework to realize a range of
scheduling disciplines for real-time and best effort
streams coupled with our experiences with software
implementations of the scheduling framework have
prompted us to adopt this scheduling framework for
architectural exploration and hardware realization[1, 3, 6].

 A hardware realization of a dynamic scheduling
discipline will need state storage for every stream,

pairwise ordering logic for determining the winner
stream, priority update logic that updates stream state
every scheduling or decision cycle and a control unit to
orchestrate progression through the operational states.
Our hardware architecture uses Register base blocks (for
state storage), Decision blocks (for pairwise stream
ordering) and Control & Steering logic with a suitable
network as described in Section 3 to realize and allow
architectural exploration of a range of scheduling
disciplines using a single hardware target architecture.

Figure 1. Scheduler Operational States

The principal operations in dynamic packet scheduling
will involve LOAD of stream attributes, winner
computation by pairwise ordering of stream attributes
during a SCHEDULE state and PRIORITY_UPDATE of
stream attributes in stream state storage as shown in
Figure 1. Once the LOAD operation is complete, the
SCHEDULE and PRIORITY_UPDATE operations may
alternate. The SCHEDULE and PRIORITY_UPDATE
operations are serialized - the winner stream id must be
available during PRIORITY_ UPDATE for use by each
stream to apply the necessary attribute adjustments (the
logic in every stream state storage compares its id with
the winner stream id). If a Decision block were to order
stream attributes pairwise based on the rules in Table 1
then, the Decision block would require deadlines, loss-
tolerances (numerator and denominator) and packet
arrival times of both streams for multi-attribute

comparison. Table 1 might suggest that each rule needs
sequential evaluation and possible multi-cycle Decision
block evaluation time. We show in Section 3.2 that
sufficient amount of parallelism exists in these rules for
concurrent evaluation of each rule resulting in single
cycle Decision block evaluation time. A winner must be
made available within a packet-time to meet the link rate
requirements of the outgoing link. This composition of
hardware components (suitably organized to save area
and allow scalability) along with minimal operational
state transition allows us to provide an architectural
solution capable of realizing a range of scheduling
disciplines and is detailed in the next Section.

3.0 An Architecture for Realizing Packet
Scheduling Algorithms

 Network services and their corresponding stacks are
frequently realized along the control plane, data plane and
management plane dimensions. Control-flow components
in control plane (admission control, connection
management), data plane and management plane
functions are easily mapped to processor instruction sets
and datapaths. Dataflow components in data plane
functions need acceleration to meet wire-speeds and
temporal bounds needed by different layers of the
network stack, frequently by exploiting parallelism in the
data flow functions. These may be realized as ASICs or
preferably in reconfigurable logic or FPGAs to keep pace
with the constantly changing landscape of standards and
protocols [15, 11].

 Our hardware architecture uses a combination of
processor datapath (preferably a Network Processor) and
FPGA interconnected using a high-speed interconnect.
Connection setup, admission control, stream identification
and buffering are managed by the processor while packets
in streams are scheduled for transmission using the
DWCS packet scheduling algorithm realized in the
FPGAs. Figure 2 shows packet queues on the stream
processor and the hardware scheduler on the FPGA
exchanging arrival times (processor to FPGA) and
winners (FPGA to processor). The Stream processor may
source streams from peer storage entities directly to
populate stream queues. The Stream processor software
architecture and the FPGA hardware architecture are
described in this Section.

3.1 Stream Processor Software Architecture

 Stream processor software is usually run on a Network
Interface (NI) peer on the same shared, switched or
custom interconnect as the FPGA running the scheduler
logic.

Figure 2. System Hardware and Software
Architecture

As streams arrive, input queues are instantiated on the
Stream processor. A single copy of packet data is
maintained in the Stream Processor and only addresses of
frames are placed on input or output queues. Stream
Register attributes are loaded into the FPGA stream
hardware Registers as streams arrive by communication
over the interconnect between the stream processor and
state machines running on the FPGA hardware. As
packets in each stream arrive, arrival times are
communicated for each packet to the FPGA hardware.
Packets in each stream are scheduled by the scheduler
hardware running in the FPGA and their stream/packet ids
are communicated to the stream processor for
transmission. Note that an FPGA board and the FPGA
chip itself have SRAM banks and on-chip block RAMs to
buffer packet arrival times and stream winners (5 bit

stream id) and also that only arrival times (offset or
absolute 16-bit values) are actually communicated
between the processor and FPGA and winner ids (5-bit)
between the FPGA and processor.

3.2 FPGA Hardware Architecture

 A hardware realization of QoS packet scheduling will
need state storage of stream descriptors and attributes,
decision logic for determination of the winner stream
every decision cycle and priority update logic for
adjusting priorities of streams that got serviced and those
waiting for service. The FPGA hardware architecture
consists of a Control and Steering logic block, Stream
descriptor Register base blocks and Decision blocks. The
Control and Steering logic block implements the memory
and interconnect interface and provides control and
steering signals for the Register base blocks.

Figure 3. FPGA Hardware Architecture:
Recirculating Shuffle-Exchange Network (Field
Length in Bits)

The Decision blocks are arranged in a single-stage
recirculating shuffle exchange network while the Register
base blocks form the base of the shuffle-exchange
network. The Control & Steering logic blocks, Register
base blocks and Decision blocks along with the shuffle

network are shown in Figure 3. N streams will require N
Register base blocks for state storage, (log2N) Decision
blocks for winner computation and (log2N) cycles of the
recirculating shuffle for a sorted list of streams based on
stream attributes.

 Stream attributes are stored in Register base blocks and
stream attributes are updated with logic provided in the
Register base blocks. Decision blocks compare stream
attribute values between any two streams pairwise and
provide winner and loser stream attributes as outputs. A
single-stage recirculating shuffle exchange network
provides circulation of winners and losers at each stage
for a sorted list of streams (based on stream attributes) at
the end of log2N cycles. A scheduling timeline usually
consists of three states - LOAD, SCHEDULE and
PRIORITY_UPDATE after which SCHEDULE and
PRIORITY_UPDATE states are repeated as shown in
Figure 1.

Stream Register Base Blocks

 Register Base blocks store stream attributes –
individual packet arrival times (16 bit), request periods
(16 bit), stream ids (5 bit), loss-tolerances (numerator (8
bit) and denominator (8 bit)), deadlines (16 bit), violation
state registers (1-bit) & counters (16-bit) and also packet-
drop flag state storage (1-bit). Stream attribute registers
are loaded during a LOAD cycle orchestrated by the
Control and Steering logic block in a serial fashion.
Arrival times for each packet corresponding to the
streams with state in the Stream Register base blocks are
updated during the PRIORITY_UPDATE cycle. Stream
attribute values are loaded into the registers and the
values can be applied to the Decision blocks during the
SCHEDULE state. After completion of stream attribute
load, the SCHEDULE state can begin and will take log2N
cycles for a list of sorted streams along with generation of
a winner. At the end of log2N cycles, the
PRIORITY_UPDATE cycle can begin and involves only
the Register blocks with control signals provided by the
Control and Steering logic. At the end of the
PRIORITY_UPDATE cycle, a new SCHEDULE cycle
can begin with the new stream attribute values available
along with the new arrival time of packets corresponding
to each Stream Register block. Note that the SCHEDULE
cycle and the PRIORITY_UPDATE cycle are serialized.
The PRIORITY_UPDATE cycle must complete
generating new stream attribute values, before the
SCHEDULE cycle can begin.

Decision Blocks
 Every scheduler decision cycle, winners are computed
by pairwise ordering of streams based on stream
attributes. Decision blocks (with degree two) allow

pairwise determination of winner and loser streams
which can be recirculated using a shuffle network to
obtain a list of streams sorted based on stream attribute
values. Stream ‘priorities’ may be compared based on a
single stream attribute (simple comparator) or multiple
stream attributes simultaneously. Comparisons are based
on ‘scheduler rules’ (example shown in Table 1) that
compare stream attributes and choose the winner stream
with the higher ‘priority’. An efficient Decision block will
compute the results of the ‘scheduler rules’ and compute a
winner stream in a single cycle. The Decision block in our
architecture encodes the ‘scheduler rules’ shown in
Table 1 and this may suggest sequential evaluation of
each rule, but a careful inspection of Table 1 reveals that
each scheduler rule may be evaluated concurrently. We
organize the concurrent evaluation of rules as values
selected by predicates (just as in a priority encoder) as
shown in Figure 4. Logic along all the lines of the value
bus are fired concurrently along with all the logic in lines
of the predicate bus. Encoding the predicate bus suitably,
allows selection of a single bit in the value bus which can
be used to select the winner or loser stream. Concurrently
allowing ‘scheduler rules’ to be evaluated based on values
selected by their corresponding predicates allows single
cycle Decision block evaluation.

Figure 4 shows the value bus consisting of four attribute
comparisons (deadline, window constraint, window
numerator, window denominator and arrival time).
Similarly, the predicate bus has deadline compares and
window constraint compares in its datapath. For the
purpose of comparing two window constraints, (expressed
as a fraction with numerator and denominator) we use an
8-by-8 multiplier to be able to compare over all possible
integer values of the numerator and the denominator. For
denominators with a power of two, divisions may be
implemented as simple shift operations and may also be
used along with repeated addition operations for
multiplication implementation. We choose to use a more
expensive multiplication operator as carry chains are
available in the Xilinx Virtex architecture and block
hardware multipliers are available in the Virtex II
architecture. Additionally, optimal timing for complex
operators is available with Xilinx RPM macros and cores.

 Recirculating Shuffle Network

 Stream Register blocks store stream attribute values
while Decision Blocks order streams pair-wise based on
stream attribute values. For N streams, the architecture
uses log2N Decision Blocks and takes log2N cycles to
generate a sorted list of winners based on stream
attributes.

Figure 4. Decision Block Architecture

We utilize a Recirculating shuffle network to accomplish
this in log2N cycles for N streams. Consider Figure 3,
during the first Decision cycle, stream attributes from
stream 1 and stream 2 are applied to Decision Block 1
while stream attributes from stream 3 and stream 4 are
applied to Decision block 2. For decision cycle 2, the
winners are pitched against the winners and losers are
pitched against the losers. Keeping this in mind, the
winners from Decision block 1 and Decision block 2 are
applied to Decision block 1 and the losers from Decision
Cycle 1 are applied to Decision block 2. Muxes at the
inputs of Decision block 1 and Decision block 2 apply
outputs from the Stream Register blocks or registered
outputs of the Decision blocks to each input of the
Decision block every cycle. The area in a recirculating
shuffle network grows linearly while the scheduling
decision time grows logarithmically in the number of
streams.

 Decision blocks require two attribute buses as inputs
(which are 53 bits in width each) and generate winner
and loser stream attribute buses as outputs. A
recirculating shuffle network temporally schedules the
binary Decision block tree (which requires log2N levels
of Decision blocks) and requires only log2N Decision
blocks with a sorted list of winners available every log2N
cycles. This saves area, and reduces the number of stream

attribute buses (needed for only one level of the binary
comparator tree) which eases placement and routing in an
FPGA architecture.

Control and Steering Block

 The Control and Steering logic block implements the
memory/interconnect interface between the scheduler
logic and the Stream processor. As new streams arrive,
stream attributes are loaded into Register base blocks by
the Control and Steering logic block by assertion of an
enable signal provided in each Register base block. As
new packets in admitted streams arrive, arrival times in
Register base blocks are updated using a different enable
signal provided in each Register base block. During a
recirculating shuffle, Decision blocks are supplied with
stream attribute values from Register base blocks or
outputs of the Decision blocks. The Control and Steering
logic block provides the necessary controls for the muxes
that apply different values for each Decision block during
different cycles of the recirculating shuffle. At the end of
log2N cycles of the recirculating shuffle, a sorted list of
stream attributes is available with the winner stream id
provided to the Control and steering logic block for
propagation to each Register base block during the
PRIORITY_UPDATE cycle. The stream id or register id
of each stream is necessary to compute the stream
attribute updates based on whether a stream is a winner or
loser (has not been selected during the current decision
cycle). Similarly, decision of whether a stream has missed
or met a deadline is based on comparison of the packet
deadline maintained in each Register base block and the
current time provided to each Register base block during
the PRIORITY_UPDATE cycle.

4.0 Hardware Implementation

 A hardware implementation of the above architecture
must meet the timing and area needs of the architecture,
and we choose an FPGA implementation for flexibility,
reconfigurability and enhanced price/performance. The
architecture is implemented in a Xilinx Virtex 1000
FPGA using the Synplify Pro 7.0 tool from Synplicity and
the ISE 4.1 Xilinx backend tools (map, place, route) from
Xilinx. We extensively used the Aldec VHDL simulator
for functional and timing simulation of our design [17].
Designs for the Decision blocks, Stream Register base
blocks were specified using structural VHDL by wiring
up components (from the Xilinx CORE library and our
own VHDL component descriptions). Designs for the
Control and Steering logic block and
memory/interconnect interface were specified using
behavioral VHDL and state machines for flexibility and
ease of adaptation to new memory/interconnect

environments. We synthesized a mapped EDIF netlist
using the Synplicity Synplify Pro 7 synthesis tool for
different stream capabilities. The EDIF netlist was then
placed-and-routed using the Xilinx 4.1i backend tools
with various effort levels provided to obtain optimal
timing [11, 12]. The netlist was downloaded to a Xilinx
Virtex V1000 PCI card for run-time performance
evaluation.

 For running our hardware design, we used a Virtex
1000 PCI card from Celoxica. The card sports a 32
bit/33MHz PLX controller and 8M SRAM accessible
from both a host/PCI peer and the Virtex 1000 FPGA
with suitable arbitration (between FPGA and host-PCI
peer) provided by the board firmware. Details of the card
are provided in [16]. Virtex V1000 bitstreams can be
downloaded to the Celoxica card over the PCI bus using
a software interface (tool and API) provided by the
vendor [16].

5.0 Performance Evaluation

 This Section presents the performance evaluation of
the architecture and its implementation in Xilinx Virtex
V1000 FPGAs [11]. We first present scaling results
expressed in terms of FPGA area and maximum clock
rate for different stream size capabilities. The running
hardware in the Virtex 1000 PCI card is then subjected to
stream load for which we report output stream bandwidths
for different scheduler attribute specifications.

5.1 Area/Delay Results

 For the purpose of this evaluation, we scaled the
design to handle a different number of streams from 4 to
32. For each result, we report the FPGA area (in slices)
reported by the Xilinx MAP tool and maximum clock rate
provided by the Xilinx TRACE tool. Our scalable design
specification allows us to scale our designs conveniently
by usage of VHDL generics and Figure 5 reports the
area/delay results for 4, 8, 16 and 32 streams. We did not
include the SRAM memory interface (the control and
steering logic was included) for each design datapoint and
also did not specify any pin locations so the Xilinx PAR
tool could provide the optimal pin assignments to
maximize the clock rate. As the number of streams
capable of being handled by the design is increased from
4 to 32, the number of slices utilized by the design also
grows linearly (doubling at each design data-point). This
is expected as a 4 stream design uses four Register base
blocks and 2 Decision blocks while the 8 stream design
uses 8 Register base blocks and 3 Decision blocks. The

amount of hardware used grows linearly with the number
of streams. The maximum clock rate of the 4 stream
version is 23 MHz and for rest of the designs the
maximum achievable clock rate is around 17 MHz. For
slice area utilizations over 10%, the “spread” of logic on

Area/Clock Rate Characteristics
Total Slices: 12288 (Virtex 1000)

35.20%

17.84%

10.5%

72.75%

16.843
17.20517.31

23

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 8 16 32

Number of Streams

A
re

a
(i

n
sl

ic
es

)

0

5

10

15

20

25

C
lo

ck
 (

M
H

z) Area(in slices)

Clock(MHz)

Figure 5. Area/Clock Rate Characteristics

the FPGA increases the critical path delay contributing to
the decrease in maximum clock rate. Although 4, 8, 16
and 32 stream designs take log2N cycles ie. 2, 3, 4, and 5
cycles for determination of a winner stream, they all
nearly maintain the same critical path delay (observed
from the output of the Register blocks to the output of the
Decision blocks) to allow nearly the same clock rate. For
our architecture, the scheduler area grows linearly but the
decision time grows logarithmically. By being able to
maintain nearly the same critical path delay, we are able
to meet the architecture’s theoretical lower bound on
decision time growth. Our 4, 8, 16 and 32 stream designs
can easily meet the packet-time requirements of 1Gbps
(64-byte and 1500-byte frames) and packet-time
requirements of 1500 byte frames on 10Gbps links.

5.2 Bandwidth Division

 The scheduler operation consists of a LOAD,
SCHEDULE and PRIORITY_UPDATE cycle. Once the
LOAD cycle is complete, SCHEDULE and
PRIORITY_UPDATE cycles are alternated repeatedly.
The SCHEDULE cycle yields the winner based on stream

attributes and the PRIORITY_UPDATE cycle updates the
packet arrival times and stream attributes. The winner
stream ids are placed in the SRAM bank during the
PRIORITY_UPDATE cycle and packet arrival times are
updated from the SRAM during the
PRIORITY_UPDATE cycle as well. Appropriate
partitioning of the SRAM banks allows concurrent access
(17ns access times) for reads (arrival times) and writes
 (winner ids). Note that stream arrival times and winners
are written to and read from the SRAM banks by the
Stream processor across the interconnect. For the
purposes of this Section, we evaluate our four stream
implementation. This Section uses the same design as in
Section 5.1 for the four stream version but with an
additional SRAM memory interface. Inclusion of the
SRAM memory interface does not elongate our clock
period and we are able to clock our design at 23MHz as
reported in Section 5.1. This allows us to meet the packet
time requirements of 1Gbps (64-byte and 1500-byte
packets) and 10 Gbps links (1500-byte packets) with
ease.

 The Celoxica Virtex V1000 board has 4 x 2MB SRAM
banks and we partitioned the SRAMs so that winner
reporting to SRAMs and packet arrivals could be
completed concurrently.

Figure 6. Bandwidth Division results for four
streams with equal ratios (1:1:1:1)

 We first backlogged the SRAM packet queues with
packet arrivals and timestamp values. Scheduler attribute
values (Deadlines, loss-tolerances for each stream) were
written to an SRAM partition so that Stream Base block
registers could be loaded with values when the Control

BW (ppUT) versus Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

Time (Clock Period*3) Units

P
ac

ke
ts

 p
er

 U
n

it
 T

im
e

Stream 1 (3/4)

Stream 2 (3/4)

Stream 3 (3/4)

Stream 4 (3/4)

Stream 1:2:3:4: 15999 : 16001 : 16000 : 16000 of 64000

and steering logic state machine was started. We

BW (ppUT) versus Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900
T i m e (C l o c k P e r i o d * 3) U n i t s

P
ac

ke
ts

 p
er

 U
ni

t T
im

e

Stream 1 (7/8)
Stream 2 (14/16)
Stream 3 (6/8)
Stream 4 (4/8)

Stream 4: 32000/64000
Stream 3: 16000/64000 Pkts

Stream 2: 8001/64000 Pkts

Stream 1

Stream 2

Stream 3

Stream 4

 Stream 1: 7999/64000 Pkts

Figure 7. Bandwidth Division results for four
streams with ratios (1:1:2:4)

downloaded our design bitstream into the Celoxica Virtex
V1000 prototyping card and set the clock to 23 MHz. So
during each PRIORITY_UPDATE cycle, winner Register
ids are written to the SRAM and packet arrival times
loaded for the stream with the recently scheduled packet,
along with update of stream attribute values. We
performed two bandwidth division experiments. In
Experiment I, four streams with loss-tolerances (¾, ¾, ¾,
¾) ie with equal bandwidth division ratios (¼, ¼, ¼, ¼)
were scheduled. X-axis reports scheduler output time, we
incremented time after each scheduler decision (which
deterministically completes always in 3 cycles – 2 for the
shuffle and 1 cycle for the priority update logic). In other
words, this is scaled real-time (clock period x 3
cycles/decision). This allows us to verify that winner
outputs are indeed available every three cycles and also
allows operation of the scheduler over longer periods of
time. We show time from 1 to 1000 time units although
the run was terminated after 64000 time units (ie after
64000 winners were scheduled). This allows observation
of starting transients and settling time of output
bandwidth of each stream clearly. Y-axis reports the
bandwidth as number of packets scheduled every unit-
time interval (ppUT). The bandwidth of each stream at the
output settles after 300 time units and maintains the same
value for each stream after the scheduler operation is
terminated after 64000 winners are computed. We
counted the packets scheduled for each stream and found
them to be equal, consistent with the output bandwidth
graph. We also verified that winner outputs were
available at the end of the PRIORITY_UPDATE cycle,
every three system clock cycles, for deterministic
temporally predictable scheduling. A second run was also
completed and recorded as Experiment II in Figure 7 with
loss-tolerances 7/8, 14/16, 6/8, 4/8 ie. bandwidth division

ratios (1:1:2:4). The results are shown in Figure 7 and
similar arguments as detailed above apply.

6.0 Conclusion

 We have proposed and implemented an architecture
for exploration of scheduler hardware realizations. The
ability of the scheduling framework to support EDF,
static-priority and fair-share scheduling along with
native (deadline, window-constrained) scheduling allows
us to experiment with a range of scheduling disciplines.
This allows us to match scheduling disciplines with traffic
types, service needs, cluster configurations and different
producer/consumer pairs for possible customized
scheduling within a cluster. Also, hardware implementing
the DWCS scheduling framework can easily interoperate
with its predecessor and successor nodes’ scheduling
disciplines in a stream’s path by suitable configuration.
The DWCS scheduler stores per-stream state and our
architecture grows linearly in the number of streams but
logarithmically in terms of decision time. This has been
verified by running hardware in an FPGA for 4, 8, 16 and
32 streams. The hardware realization of our architecture
for 4, 8, 16 and 32 streams can easily meet the packet
times of 1500 byte Ethernet frames on 1Gbps, Infiniband-
2.5Gbps and 10Gbps links and all frame sizes on 1 Gbps
links. The FPGA hardware implementation for four
streams can divide bandwidth among streams in user-
specified ratios and also produce winner stream ids. This
makes it a viable candidate for end-host scheduling within
a cluster and between clusters. Current work is focusing
on scalability of this architecture to support a large
number of streams in end-systems and cluster switches.

 We are looking at architectural and logic changes and
tool effort configurations to reduce critical path delay and
increase clock rate to meet packet time requirements of all
Ethernet frame sizes for 10Gbps links and Infiniband
30Gbps links [13, 14]. We are currently looking at
architectural modifications so that the architecture can be
completely pipelined for maximum throughput, reduction
in interconnect density, reduced area/delay utilization for
hundreds of streams and temporal scheduling of the
recirculating shuffle network by tiling Register base
blocks to support more streams. By retargeting this
architecture to the Virtex-II or Virtex2Pro Xilinx FPGA
chips, we hope to use the on-chip multipliers and block
ram banks to lower critical path delay and increase clock
rate to support hundreds of streams.

Acknowledgements We would like to thank the
reviewers for their many invaluable suggestions. Our

thanks to Prof. Ken Mackenzie for providing access to his
Xilinx CAD machines to allow large scale PAR runs.

References

[1] Raj Krishnamurthy, Sudhakar Yalamanchili, K.
Schwan and R. West. Architecture and Hardware Support
for Scheduling of Gigabit Packet Streams, Short paper
(work-in-progress) in CD-ROM proceedings of the IEEE
Conference on High Performance Computer
Architecture(HPCA-7), Monterrey, Mexico, Jan 2001.

[2] Richard West and C. Poellabauer. Analysis of a
Window-Constrained Scheduler for Real-time and Best-
Effort Packet Streams. In Proceedings of the 21 st Real-
Time Systems Symposium, Orlando, Florida, November
2000. Available at http://www.cs.bu.edu/fac/richwest.

[3] Raj Krishnamurthy, K. Schwan, R. West and M. Rosu.
A Network CoProcessor-Based Approach to Scalable
Media Streaming in Servers, In Proceedings of the 29 th

International Conference on Parallel Processing,
Toronto, Canada, July 2000.

[4] Raj Krishnamurthy, K. Azad, David Schimmel, Ken
Mackenzie, K. Schwan and S. Yalamanchili et al, “The
Georgia Tech ASAN Project”, Short paper(work-in-
progress) in CD-ROM proceedings of the IEEE
Conference on High Performance Computer
Architecture(HPCA-7), Monterrey, Mexico, Jan 2001.

[5] A. Demers, S. Keshav and S. Shenker. Analysis and
Simulation of a Fair-Queueing Algorithm. Journal of
Internernetworking Research and Experience, pages 3-
26, Oct 1990.

[6] R. West and K. Schwan. Dynamic Window-
constrained scheduling for multimedia applications. In 6th
International Conference on Multimedia Computing and
Systems, ICMCS’99. IEEE, June 1999.

[7] Srinivasan Keshav. On the efficient implementation of
fair queueing. In Internetworking: Research and
Experience Vol.2, 157-173, September 1991.

[8] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi.
Hardware-efficient fair queueing architectures for high-
speed networks. In IEEE INFOCOM'96, San Francisco,
March 1996.

[9] C.L.Wu and T. Feng. The universality of the shuffle-
exchange networks, IEEE Transactions on Computers,
vol. C-30, pp 324-332, 1981.

[10] Sung-Whan Moon, Jennifer Rexford, and Kang Shin.
Scalable hardware priority queue architectures for high-
speed packet switches. IEEE Trans. on Computers, vol.
49, no. 11, pp. 1215-1227, November 2000.

[11] Xilinx Virtex and Virtex-II Chipsets / Xilinx ISE 4.1
Tools. http://www.xilinx.com

[12] Synplicity Synplify Pro 7 Compiler.
http://www.synplicity.com

[13] 10GEA Alliance. http://www.10gea.org

[14] Infiniband Trade Association.
http://www.infinibandta.org

[15] John W. Lockwood, Jon S. Turner, David E. Taylor,
Field Programmable Port Extender (FPX) for Distributed
Routing and Queuing, ACM International Symposium on
Field Programmable Gate Arrays (FPGA'2000),
Monterey, CA, February 2000, pp. 137-144.

[16] Celoxica RC1000 (Virtex V1000) PCI card.
http://www.celoxica.com/products/boards/index.htm.

[17] The Aldec VHDL/Verilog/EDIF mixed simulator.
http://www.aldec.com

