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Abstract 
     
      We present an architecture and hardware for 
scheduling gigabit packet streams in server clusters that 
combines a Network Processor datapath and an FPGA 
for use in server NICs and server cluster switches. Our 
architectural framework can provide EDF, static-priority, 
fair-share and DWCS native scheduling support for best-
effort and real-time streams. This  allows – (i) 
interoperability of scheduling hardware supporting 
different scheduling disciplines and  (ii) helps in 
providing customized scheduling solutions in server 
clusters based on traffic type, stream content, stream 
volume and cluster hardware using a hardware 
implementation of a scheduler running at wire-speeds. 
The architecture scales easily from 4 to 32 streams on a 
single Xilinx Virtex 1000 chip and can support 64-byte - 
1500-byte Ethernet frames on a 1 Gbps link and 1500-
byte Ethernet frames on a 10 Gbps link.  A running 
hardware prototype of a stream scheduler in a Virtex 
1000 PCI card can divide bandwidth based on user 
specifications and meet the temporal bounds and packet-
time requirements of multi-gigabit links.  
 
1.0 Introduction  
 

While core routers carry the Internet’s traffic, web 
and media server clusters at the edges produce and 
consume heterogeneous traffic streams. These streams 
require real-time guaranteed services along with best-
effort service end-to-end [3, 4, 5]. A stream may originate 
from a source (possibly a server in a machine cluster) and 
end at a consumer (another server or display terminal in a 
machine cluster) located within the same cluster or in 
another geographically separate location.  Also, wire-
speeds in server clusters at the edge have been increasing 
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steadily with increasing use of Gigabit Ethernet NIs and 
switches. Sampling of Infiniband NI chipsets by different 
vendors brings the promise of Infiniband (2.5Gbps) NI 
and switch availability to server clusters over the next few 
months [13, 14]. Flexible scheduling disciplines on the 
end-system (server machine) and switches are required to 
meet the real-time and best-effort service requirements of 
traffic streams delivered by web and media clusters.  
These scheduling disciplines must operate at wire speeds 
to match the continual growth of wire speeds in server 
clusters and maximize link utilization. Use of 
heterogeneous hardware in the path of a stream with 
different scheduling discipline capabilities is also possible 
and must be allowed to promote flexibility, scalability and 
availability.  

 
Problem Statement 

• Scheduling at wire-speeds for optical multi-
gigabit links, Infiniband (2.5, 10, 30 Gbps)  and 
the emerging 10GEA (10 Gigabit Ethernet 
Alliance) [13, 14] standard necessitates 
scheduling decisions be guaranteed to be 
completed in a packet time. 

• Architecture and implementations are required 
that can meet cost/performance requirements 
across a range of environments without ASIC 
re-engineering overheads. 

• It is necessary to trade-off scheduler throughput 
in packets/sec with quality of service and 
scheduling granularity, e.g. scheduling at the 
packet level vs. MPEG frame level. 

 
Solution We address these needs through the use of a 
powerful scheduling discipline and a flexible target 
architecture that combines a commercial microprocessor 
datapath or a Network Processor with a tightly coupled 
reconfigurable logic component such as a FPGA. Such 
system-on-a-chip architectures have been announced in 
the recent past and provide potential hardware solutions 
for applications that demand both flexibility and the 
performance that can be achieved via hardware 
customization [11]. Our approach implements the 
compute intensive scheduling decision logic within the 



 

configurable logic component while control and data 
movement is handled by the Network Processor. The 
scheduling discipline for which we propose hardware 
solutions is Dynamic Window-Constrained Scheduling 
(DWCS) [2]. DWCS is a powerful scheduling framework 
that can be configured to implement most existing 
scheduling disciplines such as EDF (Earliest-Deadline 
First), static-priority, WFQ (Weighted Fair Queuing) [5] 
and also native (deadline and window-constrained dual-
attribute) scheduling [2]. This could allow heterogeneous 
schedulers in the path of a stream encompassing end-
systems and switches to interoperate and schedule traffic. 
While DWCS addresses the issue of provisioning QoS, 
the complexity of  stream selection and priority update 
computations poses a challenging implementation 
problem for scheduling a large number of streams over 
multi-gigabit links. For example, the Ethernet frame time 
on a 10 Gigabit link ranges from approximately 0.05 
microseconds (64 byte) to 1.2 microsecond (1500 byte). 
This can be substantially lower for ATM cells or SONET 
frames that need to be scheduled at wire speeds. Packet 
level QoS scheduling at these link speeds poses 
significant implementation challenges. To meet the 
challenge, we propose a scheduler architecture comprised 
of a processor datapath coupled with a Field 
Programmable Gate Array (FPGA). Our architecture 
stores per-stream state and attribute adjustment logic in 
Register base blocks and orders streams pair-wise using 
multi-attribute-compare-capable Decision blocks in a 
recirculating shuffle network to conserve area. Scheduling 
logic does possess significant amount of parallelism for 
which we propose a customized FPGA solution. Such 
solutions are viable as FPGA technology pushes 10 M 
gate designs with clock rates of up to 200MHz with 
relatively low reconfiguration overheads. By carefully 
crafting suitable implementations for compute-intensive 
scheduler components for implementation within the 
FPGA, we find tractable implementations for the fine 
grained, real-time packet scheduling problem.  
 

Table 1. Scheduler Decision Rules 
 
Related Work A number of efforts [15], [10], [8] and [7] 
have detailed and constructed priority queuing 
architectures and corresponding hardware in switches and  

network interfaces. The DWCS scheduling framework 
allows flexible reconfiguration of the native scheduling 
discipline into EDF, static priority and fair-share using 
more complex multiple stream-attribute  comparisons. 
The architectures detailed in [10] are interesting but do 
not scale well because of the complex nature of our 
Decision block. The  comparator tree requires log2N 
levels of Decision blocks, while the shift-register and 
systolic queue architectures require replication of the 
(comparator) Decision block in each shift-regis ter or 
systolic block. Our architecture conserves area and scales 
better by using only log (number of streams) Decision 
blocks in a recirculating shuffle-exchange network. This 
is critical in an FPGA architecture where the design must 
place-and-route and fit on a chip with minimal critical 
path delay. 
  
2.0 Packet Scheduling : Properties and 
Implementation Complexity  
 
     The fundamental idea in packet scheduling is to pick a 
stream from a given set of streams and schedule the head-
packet from the eligible stream for transmission. The 
scheduling discipline must make this decision based on 
stream descriptors and attributes (which could be integer-
valued weights by which bandwidth of the output link is 
to be divided or deadlines at which packets in each stream 
may need service) so that the service requirements of each 
stream (bandwidth, delay or jitter) are satisfied to the best 
extent possible. The stream attributes of relevance to a 
certain scheduling discipline by which streams are 
ordered may be multi-valued (deadlines, loss-ratios) or 
single-valued (stream weights) and may be abstracted for 
convenience as stream priorities. The scheduling 
discipline must also ensure that the scheduling decision is 
completed in a packet-time (packet length in bits / wire-
speed of output link) to ensure maximum link utilization. 
A static priority scheduling discipline (which minimizes 
the weighted mean delay) for non-time-constrained traffic 
picks a stream based on a static time-invariant priority. A 
dynamic priority scheduling discipline on the other hand, 
will bias or alter the priority of streams every scheduling 
decision cycle so that streams waiting for service may 
also be picked (albeit eventually) over the stream recently 
serviced. This may be necessary for guaranteeing real-
time bounds (as in an Earliest-Deadline-First EDF 
scheduler) or allocating bandwidth fairly among best-
effort streams. A scheduling discipline must strive to 
provide performance bounds for real-time and fairness for 
best-effort streams [2, 3, 5].  
 
     The DWCS scheduling algorithm is a powerful 
framework for realizing a range of practically interesting 
schedulers. Every stream requiring service is assigned two 
service attributes – a Deadline and a window-constraint or 

Precedence among streams for pairwise ordering 
• Earliest Deadline First 
• Equal Deadlines, order lowest window constraint 

first 
• Equal Deadlines and zero window-constraints, 

order highest window-denominator first 
• Equal Deadlines and equal non-zero window 

constraints, order lowest window-numerator first 
• All other cases: first-come-first-serve 



 

loss-tolerance (ratio) (Wi) [2]. A request period (Ti) is the 
interval between deadlines of two successive packets in 
the same stream (Si). The end of a request period (Ti) is 
the deadline by which the packet requiring service must 
be scheduled for transmission. The window-constraint 
(Wi) or loss-tolerance (xi/yi) is the number of packets xi 
(loss-numerator) that can be late/lost over a window yi 
(loss-denominator) packet arrivals in the same stream Si. 
All packets in the same stream have the same loss-
tolerance or window-constraint (Wi) but a different 
deadline (separated by the request period). In order for a 
winner or eligible stream to be picked, the streams must 
be ordered pairwise based on the rules presented in    
Table 1.  The winner stream is  then picked for service and 
its deadlines and loss-tolerances adjusted. We refer the 
reader to [2] for details but simply state here that the 
deadline and loss-tolerance adjustments are simple 
arithmetic operations (increments to deadlines and 
increments/decrements to loss-numerator and 
denominator). Similarly, other streams waiting for service 
have their deadlines and loss-tolerances adjusted in a 
different manner from the ‘winner’ stream if they miss 
their deadlines (in effect to to increase their priorities). 
Streams without any deadline misses are not adjusted. 
These adjustments to deadline and loss-tolerances are 
simple arithmetic increments and decrements and serve to 
bias the priorities of streams (increase or decrease their 
priorities) so that all streams get serviced without 
starvation during the operation of the scheduling 
discipline. This combination of deadline and loss-
tolerance specifications allows DWCS to provide real-
time guarantees and fair bandwidth division for streams. 
In fact, DWCS can be configured to operate as an EDF 
scheduler (loss-tolerances are 0/0), static priority 
scheduler (infinite deadline, static priority is original loss-
tolerance of streams) and fair scheduler (WFQ weights 
can be set using deadlines and loss-tolerances) [2, 6]. The 
reader is referred to [2] where it is also shown that - 
DWCS can ensure that the delay-bound of any given 
stream is independent of other streams, delay of service to 
real-time packet streams is bounded even when the 
DWCS scheduler is overloaded and also that no more 
than x packets miss their deadlines every y consecutive 
packet arrivals, if the minimum aggregate bandwidth 
requirement of all real-time streams does not exceed the 
available outgoing link bandwidth. The ability of the 
DWCS scheduling framework to realize a range of 
scheduling disciplines for real-time and best effort 
streams coupled with our experiences with software 
implementations of the scheduling framework have 
prompted us to adopt this scheduling framework for 
architectural exploration and hardware realization[1, 3, 6]. 
 
     A hardware realization of a dynamic scheduling 
discipline will need state storage for every stream, 

pairwise ordering logic for determining the winner 
stream, priority update logic that updates stream state 
every scheduling or decision cycle and a control unit to 
orchestrate progression through the operational states. 
Our hardware architecture uses Register base blocks (for 
state storage), Decision blocks (for pairwise stream 
ordering) and Control & Steering logic with a suitable 
network as described in Section 3 to realize and allow 
architectural exploration of a range of scheduling 
disciplines using a single hardware target architecture.  
 

 
 
 
Figure 1. Scheduler Operational States 
 
The principal operations in dynamic packet scheduling 
will involve LOAD of stream attributes, winner 
computation by pairwise ordering of stream attributes 
during a SCHEDULE state and PRIORITY_UPDATE of 
stream attributes in stream state storage as shown in 
Figure 1. Once the LOAD operation is complete, the 
SCHEDULE and PRIORITY_UPDATE operations may 
alternate. The SCHEDULE and PRIORITY_UPDATE 
operations are serialized - the winner stream id must be 
available during PRIORITY_ UPDATE for use by each 
stream to apply the necessary attribute adjustments (the 
logic in every stream state storage compares its id with 
the winner stream id). If a Decision block were to order 
stream attributes pairwise based on the rules in Table 1 
then, the Decision block would require deadlines, loss-
tolerances (numerator and denominator) and packet 
arrival times of both streams for multi-attribute 



 

comparison. Table 1 might suggest that each rule needs 
sequential evaluation and possible multi-cycle Decision 
block evaluation time. We show in Section 3.2 that 
sufficient amount of parallelism exists in these rules for 
concurrent evaluation of each rule resulting in single 
cycle Decision block evaluation time. A winner must be 
made available within a packet-time to meet the link rate 
requirements of the outgoing link. This composition of 
hardware components (suitably organized to save area 
and allow scalability) along with minimal operational 
state transition allows us to provide an architectural 
solution capable of realizing a range of scheduling 
disciplines and is detailed in the next  Section. 
 
3.0 An Architecture for  Realizing Packet 
Scheduling Algorithms 
 
     Network services and their corresponding stacks are 
frequently realized along the control plane, data plane and 
management plane dimensions. Control-flow components  
in control plane (admission control, connection 
management), data plane and management plane 
functions are easily mapped to processor instruction sets 
and datapaths. Dataflow components in data plane 
functions need acceleration to meet wire-speeds and 
temporal bounds needed by different layers of the 
network stack, frequently by exploiting parallelism in the 
data flow functions. These may be realized as ASICs or 
preferably in reconfigurable logic or FPGAs to keep pace 
with the  constantly changing landscape of standards and 
protocols [15, 11]. 
 
    Our hardware architecture uses a combination of 
processor datapath (preferably a Network Processor) and 
FPGA interconnected using a high-speed interconnect. 
Connection setup, admission control, stream identification 
and buffering are managed by the processor while packets 
in streams are scheduled for transmission using the 
DWCS packet scheduling algorithm realized in the 
FPGAs. Figure 2 shows packet queues on the stream 
processor and the hardware scheduler on the FPGA 
exchanging arrival times (processor to FPGA) and 
winners (FPGA to processor). The Stream processor may 
source streams from peer storage entities directly to 
populate stream queues. The Stream processor software 
architecture and the FPGA hardware architecture are 
described in this Section.  
 
3.1 Stream Processor Software Architecture  
 
     Stream processor software is usually run on a Network 
Interface (NI) peer on the same shared, switched or 
custom interconnect as the FPGA running the scheduler 
logic. 

 
Figure 2. System Hardware and Software 
Architecture 
 
      
As streams arrive, input queues are instantiated on the 
Stream processor. A single copy of packet data is 
maintained in the Stream Processor and  only addresses of 
frames are placed on input or output queues. Stream 
Register attributes are loaded into the FPGA stream 
hardware Registers as streams arrive by communication 
over the interconnect between the stream processor and 
state machines running on the FPGA hardware. As 
packets in each stream arrive, arrival times are 
communicated for each packet to the FPGA hardware. 
Packets in each stream are scheduled by the scheduler 
hardware running in the FPGA and their stream/packet ids 
are communicated to the stream processor for 
transmission. Note that an FPGA board and the FPGA 
chip itself have SRAM banks and on-chip block RAMs to 
buffer packet arrival times and stream winners (5 bit 



 

stream id) and also that only arrival times (offset or 
absolute 16-bit values) are actually communicated 
between the processor and FPGA and winner ids (5-bit) 
between the FPGA and processor.  
 
3.2 FPGA Hardware Architecture  
 
     A hardware realization of QoS packet scheduling will 
need state storage of stream descriptors and attributes, 
decision logic for determination of the winner stream 
every decision cycle and priority update logic for 
adjusting priorities of streams that got serviced and those 
waiting for service. The FPGA hardware architecture 
consists of a Control and Steering logic block, Stream 
descriptor Register base blocks and Decision blocks. The 
Control and Steering logic block implements the memory 
and interconnect interface and provides control and 
steering signals for the Register base blocks.  

Figure 3. FPGA Hardware Architecture: 
Recirculating  Shuffle-Exchange Network ( Field 
Length in Bits ) 
 
 
The Decision blocks are arranged in a single-stage 
recirculating shuffle exchange network while the Register 
base blocks form the base of the shuffle-exchange 
network. The Control & Steering logic blocks, Register 
base blocks and Decision blocks along with the shuffle 

network are shown in  Figure 3.  N streams will require N 
Register base blocks for state storage, (log2N) Decision 
blocks for winner computation and (log2N) cycles of the 
recirculating shuffle for a sorted list of streams based on 
stream attributes.  
 
    Stream attributes are stored in Register base blocks and 
stream attributes are updated with logic provided in the 
Register base blocks. Decision blocks compare stream 
attribute values between any two streams pairwise and 
provide winner and loser stream attributes as outputs. A 
single-stage recirculating shuffle exchange network 
provides circulation of winners and losers at each stage 
for a sorted list of streams (based on stream attributes) at  
the end of log2N  cycles. A scheduling timeline usually 
consists of three states - LOAD, SCHEDULE and  
PRIORITY_UPDATE after which SCHEDULE and 
PRIORITY_UPDATE states are repeated as shown in 
Figure 1.  
 
Stream Register Base Blocks 
 
     Register Base blocks store stream attributes – 
individual packet arrival times (16 bit), request periods 
(16 bit), stream ids (5 bit), loss-tolerances (numerator (8 
bit) and denominator (8 bit) ), deadlines (16 bit), violation 
state registers (1-bit) &  counters (16-bit) and also packet-
drop flag state storage (1-bit). Stream attribute registers 
are loaded during a LOAD cycle orchestrated by the 
Control and Steering logic block in a serial fashion. 
Arrival times for each packet corresponding to the 
streams with state in the Stream Register base blocks are 
updated during the PRIORITY_UPDATE cycle. Stream 
attribute values are loaded into the registers and the 
values can be applied to the Decision blocks during the 
SCHEDULE state. After completion of stream attribute 
load, the SCHEDULE state can begin and will take log2N  
cycles for a list of sorted streams along with generation of 
a winner. At the end of log2N  cycles, the 
PRIORITY_UPDATE cycle can begin and involves only 
the Register blocks with control signals provided by the 
Control and Steering logic. At the end of the 
PRIORITY_UPDATE cycle, a new SCHEDULE cycle 
can begin with the new stream attribute values available 
along with the new arrival time of  packets corresponding 
to each Stream Register block. Note that the SCHEDULE 
cycle and the PRIORITY_UPDATE cycle are serialized. 
The PRIORITY_UPDATE cycle must complete 
generating new stream attribute values, before the 
SCHEDULE cycle can begin.   
 
Decision Blocks 
      Every scheduler decision cycle, winners are computed 
by pairwise ordering of streams based on stream 
attributes. Decision blocks (with degree two) allow 



 

pairwise determination of  winner and loser streams 
which can be recirculated using a shuffle network to 
obtain a list of streams sorted based on stream attribute 
values. Stream ‘priorities’ may be compared based on a 
single stream attribute (simple comparator) or multiple 
stream attributes simultaneously. Comparisons are based 
on ‘scheduler rules’ (example shown in Table 1) that 
compare stream attributes and choose the winner stream 
with the higher ‘priority’. An efficient Decision block will 
compute the results of the ‘scheduler rules’ and compute a 
winner stream in a single cycle. The Decision block in our 
architecture encodes the ‘scheduler rules’ shown in   
Table 1 and this may suggest sequential evaluation of 
each rule, but a careful inspection of  Table 1 reveals that 
each scheduler rule may be evaluated concurrently. We 
organize the concurrent evaluation of rules as values 
selected by predicates (just as in a priority encoder) as 
shown in Figure 4. Logic along all the lines of the value 
bus are fired concurrently along with all the logic in lines 
of the predicate bus. Encoding the predicate bus suitably, 
allows selection of a single bit in the value bus which can 
be used to select the winner or loser stream.  Concurrently 
allowing ‘scheduler rules’ to be evaluated based on values 
selected by their corresponding predicates allows single 
cycle Decision block evaluation.  
 
Figure 4 shows the value bus consisting of four attribute 
comparisons (deadline, window constraint, window 
numerator, window denominator and arrival time). 
Similarly, the predicate bus has deadline compares and 
window constraint compares in its datapath. For the 
purpose of comparing two window constraints, (expressed 
as a fraction with numerator and denominator) we use an 
8-by-8 multiplier to be able to compare over all possible 
integer values of the numerator and the denominator. For 
denominators with a power of two, divisions may be 
implemented as simple shift operations and may also be 
used along with repeated addition operations for 
multiplication implementation. We choose  to use a more 
expensive multiplication operator as carry chains are 
available in the Xilinx Virtex architecture and block 
hardware multipliers are available in the Virtex II 
architecture. Additionally, optimal timing for complex 
operators is available with Xilinx RPM macros and cores.  
   
 Recirculating Shuffle Network 
 
     Stream Register blocks store stream attribute values 
while Decision Blocks order streams pair-wise based on 
stream attribute values. For N streams, the architecture 
uses log2N  Decision Blocks and takes log2N  cycles to 
generate a sorted list of winners based on stream 
attributes. 

 
Figure 4. Decision Block Architecture 
 
We utilize a Recirculating shuffle network to accomplish 
this in log2N  cycles for N streams. Consider  Figure 3, 
during the first Decision cycle, stream attributes from 
stream 1 and stream 2 are applied to Decision Block 1 
while stream attributes from stream 3 and stream 4 are 
applied to Decision block 2. For decision cycle 2, the 
winners are pitched against the winners and losers are 
pitched against the losers. Keeping this in mind, the 
winners from Decision block  1 and Decision block 2 are 
applied to Decision block 1 and the losers from Decision 
Cycle 1 are applied to Decision block 2. Muxes at the 
inputs of Decision block 1 and Decision block 2 apply 
outputs from the Stream Register blocks or registered 
outputs of the Decision blocks to each input of the 
Decision block every cycle. The area in a recirculating 
shuffle network grows linearly while the scheduling 
decision time grows logarithmically in the number of 
streams.  
 
     Decision blocks require two attribute buses as inputs 
(which are 53 bits in width each) and generate  winner 
and loser stream attribute buses as outputs. A 
recirculating shuffle network  temporally schedules the 
binary Decision block tree (which requires log2N  levels 
of Decision blocks) and requires only log2N  Decision 
blocks with a sorted list of winners available every log2N  
cycles. This saves area, and reduces the number of stream 



 

attribute buses (needed for only one level of the binary 
comparator tree) which eases placement and routing in an 
FPGA architecture.  
 
Control and Steering Block   
 
     The Control and Steering logic block implements the 
memory/interconnect interface between the scheduler 
logic and the Stream processor. As new streams arrive, 
stream attributes are loaded into Register base blocks by 
the Control and Steering logic block by assertion of an 
enable signal provided in each Register base block. As 
new packets in admitted streams arrive, arrival times in 
Register base blocks are updated using a different enable 
signal provided in each Register base block. During a 
recirculating shuffle, Decision blocks are supplied with 
stream attribute  values from  Register base blocks or 
outputs of the Decision blocks. The Control and Steering 
logic block provides the necessary controls for the muxes 
that apply different values for each Decision block during 
different cycles of the recirculating shuffle. At the end of  
log2N  cycles of the recirculating shuffle, a sorted list of 
stream attributes is available with the winner stream id 
provided to the Control and steering logic block for 
propagation to each Register base block during the 
PRIORITY_UPDATE cycle.  The stream id or register id 
of each stream is necessary to compute the stream 
attribute updates based on whether a stream is a winner or 
loser  (has not been selected during the current decision 
cycle). Similarly, decision of whether a stream has missed 
or met a deadline is based on comparison of the packet 
deadline maintained in each Register base block and the 
current time provided to each Register base block during 
the PRIORITY_UPDATE cycle.    
 

4.0 Hardware Implementation  
      
     A hardware implementation of the above architecture 
must meet the timing and area needs of the architecture, 
and we choose an FPGA implementation for flexibility, 
reconfigurability and enhanced price/performance. The 
architecture is implemented in a Xilinx Virtex 1000 
FPGA using the Synplify Pro 7.0 tool from Synplicity and 
the  ISE 4.1 Xilinx backend tools (map, place, route) from 
Xilinx. We extensively used the Aldec VHDL simulator 
for functional and timing simulation of our design [17]. 
Designs for the Decision blocks, Stream Register base 
blocks were specified using structural VHDL by wiring 
up components (from the Xilinx CORE library and our 
own VHDL component descriptions). Designs for the 
Control and Steering logic block and 
memory/interconnect interface were specified using 
behavioral VHDL and state machines for flexibility and 
ease of adaptation to new memory/interconnect 

environments. We synthesized a mapped EDIF netlist 
using the Synplicity Synplify Pro 7 synthesis tool for 
different stream capabilities. The EDIF netlist  was then 
placed-and-routed using the Xilinx 4.1i backend tools 
with various effort levels provided to obtain optimal 
timing [11, 12]. The netlist was downloaded to a Xilinx 
Virtex V1000 PCI card for run-time performance 
evaluation.  
 
      For running our hardware design, we used a Virtex 
1000 PCI card from Celoxica. The card sports a 32 
bit/33MHz PLX controller and 8M SRAM accessible 
from both a host/PCI peer and the Virtex 1000 FPGA 
with suitable arbitration (between FPGA and host-PCI 
peer) provided by the board firmware. Details of the card 
are provided in [16]. Virtex V1000 bitstreams can be 
downloaded to the Celoxica card over the PCI bus  using 
a software interface (tool and API) provided by the 
vendor [16].  
 
5.0 Performance Evaluation  
 
     This Section presents the performance evaluation of 
the architecture and its implementation in Xilinx Virtex 
V1000 FPGAs [11]. We first present scaling results 
expressed in terms of FPGA area and maximum clock 
rate for different stream size capabilities. The running 
hardware in the Virtex 1000 PCI card is then subjected to 
stream load for which we report output stream bandwidths 
for different scheduler attribute specifications.  
 
 
 
 
5.1 Area/Delay Results  
 
     For the purpose of this evaluation, we scaled the 
design to handle a different number of streams from 4 to 
32. For each result,  we report the FPGA area (in slices) 
reported by the Xilinx MAP tool and maximum clock rate 
provided by the Xilinx TRACE tool. Our scalable design 
specification allows us to scale our designs conveniently 
by usage of VHDL generics and Figure 5 reports the 
area/delay results for 4, 8, 16 and 32 streams. We did not 
include the SRAM memory interface (the control and 
steering logic was included) for each design datapoint and 
also did not specify any pin locations so the Xilinx PAR 
tool could provide the optimal pin assignments to 
maximize the clock rate. As the number of streams 
capable of being handled by the design is increased from 
4 to 32, the number of slices utilized by the design also 
grows linearly  (doubling at each design data-point). This 
is expected as a 4 stream design uses four Register base 
blocks and 2 Decision blocks while the 8 stream design 
uses 8 Register base blocks and 3 Decision blocks. The 



 

amount of hardware used grows linearly with the number 
of streams.  The maximum clock rate of the 4 stream 
version is 23 MHz and for rest of the designs the 
maximum achievable clock rate is around 17 MHz.  For 
slice area utilizations over 10%, the “spread” of  logic on 
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Figure 5.  Area/Clock Rate Characteristics 
 
the FPGA increases the critical path delay contributing to 
the decrease in maximum clock rate. Although 4, 8, 16 
and 32 stream designs take log2N  cycles ie.  2, 3, 4, and 5 
cycles for determination of a winner stream, they all 
nearly maintain the same critical path delay (observed 
from the output of the Register blocks to the output of the 
Decision blocks) to allow nearly the same clock rate. For 
our architecture, the scheduler area grows linearly but the 
decision time grows logarithmically. By being able to 
maintain nearly the same critical path delay, we are able 
to meet the architecture’s theoretical lower bound on 
decision time growth. Our 4, 8, 16 and 32 stream designs 
can easily meet the packet-time requirements of 1Gbps 
(64-byte and 1500-byte frames) and packet-time 
requirements of 1500 byte frames on 10Gbps links. 
 
5.2 Bandwidth Division   
 
     The scheduler operation consists of a LOAD, 
SCHEDULE and PRIORITY_UPDATE cycle. Once the 
LOAD cycle is complete, SCHEDULE and 
PRIORITY_UPDATE cycles are alternated repeatedly. 
The SCHEDULE cycle yields the winner based on stream 

attributes and the PRIORITY_UPDATE cycle updates the 
packet arrival times and stream attributes. The winner 
stream ids are placed in the SRAM bank during the 
PRIORITY_UPDATE cycle and packet arrival times are 
updated from the SRAM during the 
PRIORITY_UPDATE cycle as well. Appropriate 
partitioning of the SRAM banks allows concurrent access 
(17ns access times) for reads (arrival times)  and      writes 
 (winner ids). Note that stream arrival times and winners 
are written to and read from the SRAM banks by the 
Stream processor across the interconnect. For the 
purposes of this Section, we evaluate our four stream 
implementation. This Section uses the same design as in 
Section 5.1 for the four stream version but with an 
additional SRAM memory interface. Inclusion of the 
SRAM memory interface does not elongate our clock 
period and we are able to clock our design at 23MHz as 
reported in Section 5.1. This allows us to meet the packet 
time requirements of 1Gbps (64-byte and 1500-byte 
packets)  and 10 Gbps links (1500-byte packets) with 
ease. 
 
     The Celoxica Virtex V1000 board has 4 x 2MB SRAM 
banks and we partitioned the SRAMs so that winner 
reporting to SRAMs and packet arrivals could be 
completed concurrently. 

  
Figure 6. Bandwidth Division results for four 
streams with equal ratios (1:1:1:1) 
 
 
     We first backlogged the SRAM packet queues with 
packet arrivals and timestamp values. Scheduler attribute 
values (Deadlines, loss-tolerances for each stream) were 
written to an SRAM partition so that Stream Base block 
registers could be loaded with values when the Control 
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and steering logic state machine was started. We 
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Figure 7. Bandwidth Division results for four 
streams with  ratios (1:1:2:4) 
 
downloaded our design bitstream into the Celoxica Virtex 
V1000 prototyping card and set the clock to 23 MHz. So 
during each PRIORITY_UPDATE cycle, winner Register 
ids are written to the SRAM and packet arrival times 
loaded for the stream with the recently scheduled packet, 
along with update of stream attribute values. We 
performed two bandwidth division experiments. In 
Experiment I, four streams with loss-tolerances (¾, ¾, ¾, 
¾)  ie with equal bandwidth division ratios (¼, ¼, ¼, ¼) 
were scheduled. X-axis reports scheduler output time, we 
incremented time after each scheduler decision (which 
deterministically completes always in 3 cycles – 2 for the 
shuffle and 1 cycle for the priority update logic). In other 
words, this is scaled real-time (clock period x 3 
cycles/decision). This allows us to verify that winner 
outputs are indeed available every three cycles and also 
allows operation of  the scheduler over longer periods of 
time. We show time from 1 to 1000 time units although 
the run was terminated after 64000 time units (ie after 
64000 winners were scheduled). This  allows observation 
of starting transients and settling time of output 
bandwidth of each stream clearly. Y-axis reports the 
bandwidth as number of packets scheduled every unit-
time interval (ppUT). The bandwidth of each stream at the 
output settles after 300 time units and maintains the same 
value for each stream after the scheduler operation is 
terminated after 64000 winners are computed. We 
counted the packets scheduled for each stream and found 
them to be equal, consistent with the output bandwidth 
graph. We also verified that winner outputs were 
available at the end of the PRIORITY_UPDATE cycle, 
every three system clock cycles, for deterministic 
temporally predictable scheduling. A second run was also 
completed and recorded as Experiment II in Figure 7 with 
loss-tolerances 7/8, 14/16, 6/8, 4/8 ie. bandwidth division 

ratios (1:1:2:4). The results are shown in Figure 7 and 
similar arguments as detailed above apply.  
 
6.0 Conclusion 
 
      We have proposed and implemented an architecture 
for exploration of scheduler hardware realizations. The 
ability of the scheduling framework to support EDF, 
static-priority and  fair-share scheduling  along with 
native (deadline, window-constrained) scheduling allows 
us to experiment with a range of scheduling disciplines. 
This allows us to match scheduling disciplines with traffic 
types, service needs, cluster configurations and different 
producer/consumer pairs for possible customized 
scheduling within a cluster. Also, hardware implementing 
the DWCS scheduling framework can easily interoperate 
with its predecessor and successor nodes’ scheduling 
disciplines in a stream’s path by suitable configuration. 
The DWCS scheduler stores per-stream state and our 
architecture grows linearly in the number of streams but 
logarithmically in terms of decision time. This has been 
verified by running hardware in an FPGA for 4, 8, 16 and 
32 streams. The hardware realization of our architecture 
for 4, 8, 16 and 32 streams can easily meet the packet 
times of 1500 byte Ethernet frames on 1Gbps, Infiniband-
2.5Gbps and 10Gbps links and all frame sizes on 1 Gbps 
links.  The FPGA hardware implementation  for four 
streams can divide bandwidth among streams in user-
specified ratios and also produce winner stream ids. This 
makes it a viable candidate for end-host scheduling within 
a cluster and between clusters. Current work is focusing 
on scalability of this architecture to support a large 
number of streams in end-systems and cluster switches.   
 
      We are looking at architectural and logic changes and 
tool effort configurations to reduce critical path delay and 
increase clock rate to meet packet time requirements of all 
Ethernet frame sizes for 10Gbps links and Infiniband 
30Gbps links [13, 14]. We are currently looking at 
architectural modifications so that the architecture can be 
completely pipelined for maximum throughput, reduction 
in interconnect density, reduced area/delay utilization for 
hundreds of streams and temporal scheduling of the 
recirculating shuffle network by tiling Register base 
blocks to support more streams. By retargeting this 
architecture to the Virtex-II or Virtex2Pro Xilinx FPGA 
chips, we hope to use the on-chip multipliers and block 
ram banks to lower critical path delay and increase clock 
rate to support hundreds of streams.  
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