OS / Middleware for Cyber-Physical
Systems

" Cyber-Physical Systems (CPS)

Richard West

Boston University
Boston, MA
richwest@cs.bu.edu

A

o =L

Computer Science,

= New innovations needed for software infrastructures

= Communication, computation & physical system aspects
to be considered

= Example applications:
= Coordinated vehicle/traffic management systems
= Tele-medicine

= Intelligent homes for appliance management and energy-
efficiency (electricity, gas, heating etc)

1 OS/Middleware Support

= COTS Systems

= There has been a push for their use for the past 5-10
years to support specialist apps

= Problems?
= Semantic gap between app needs and service
provisions of system
= Benefits?
= Cost savings, code reuse, reduced development time,
well-tested basis for new applications/services
= BUT...
= Should we continue this path of enhancing COTS
systems or are the CPS goals too challenging for
existing technologies?

{ Example System Structure

‘ Applications ‘
T

‘ System Libraries (libc) ‘
|

T
‘ System Call Interface ‘

1/O Related Process Related
File Systems Scheduler
Networking Memory Management
\ Device Drivers \ \ IPC \
T

I
‘ Architecture-Dependent Code ‘

‘ Hardware ‘

o1 Current System Problems

= Problems with current systems?
= Inadequate APIs — application mismatch

= Agnostic services — e.g., no real-time guarantees when
needed, scheduling policies for fairness rather than
predictability

= Inadequate extensibility — geared towards drivers rather
than app-specific services

= Need new interfaces to underlying system services to match
application demands
= Possibly retro-fit existing systems with APIs /
mechanisms to support extension technologies

o1 Challenges

= Cyber-Physical Systems pose challenges in:

= Design of composable application-specific services that
behave safely, securely, efficiently, predictably

= Design of underlying system / infrastructure to support
such services

= Hardware and software issues affect both the above
= More on this later...

o1 What about Virtualization?

= Stephen Hand et al (Xen, Cambridge U.) — HotOS paper:
= Are VMs micro-kernels done right?

= Right now, virtualization is a means to provide isolation
amongst other VMs/apps

= Useful for legacy systems/apps to co-exist on same
physical platform BUT...

= No significant communication between VMs unlike
client/server communication in micro-kernels

= Coarse-grained solution to safety / security
= No resource / service guarantees

o1 Basic Goals

= Basic goals:
= Service composition / customization
= Safety / security
= Access rights, capabilities
= Who should be allowed to deploy services and where?
= Predictability / efficiency
= real-time, latency, throughput guarantees etc
= Resource monitoring, management, QoS
= Communication protocols
= System structure
= API between underlying system and application
= Interactions between hardware and software
= Hardware abstraction / heterogeneity

{ Interactions Between Hardware & Software

= Leveraging architectural features in “best” way, e.g.:
= L2 shared caches
= Hyper-threading
= Multi-core architectures
= Tagged TLBs for protection
= Interrupt-vectoring to app-specific trusted services

o1 Heterogeneity

= Physical systems may have diverse computational and
resource characteristics
= Different processor architectures, memory capacities,
cache configurations, I/O devices, interconnects
= One vision:
= Build a base software system deployed across hardware
platforms that offers resource multiplexing and
communication between higher-level
applications/services
= Have hardware or a software compiler take a common-
language (or byte-code) base software and target it for
given platform

#1 A Common Platform Alliance

= OS developers provide base code and services in a
hardware-independent manner
= Atarget compiler for a given platform produces hardware-
enhanced binary image of base OS (like a very small
microkernel)
= Additional services are isolated and communicate using
“best” approach according to compiler for target platform,
the features of that platform and the requirements of
services/applications
= e.g., services may be isolated using hardware
segmentation/paging if available, or even compiler
generated run-time software checks to enforce
memory safety if hardware protection is unavailable

{ Example: Intelligent Home Network

= www.epa.gov/ne/pr/2004/jan/040110.html
= Study suggested that by replacing 5 most used light-
bulbs w/ energy efficient bulbs in every US household
could reduce electricity usage by 800 billion KWh per
year
= Equivalent to $60/yr per homeowner or output from 21
power plants per year
= Would reduce one trillion pounds of greenhouse gases
that cause global warming

" Example (continued)

Intelligent home network could support services to monitor
electricity (and other resources e.g., gas) throughout the day
= Services could suggest ways to more efficiently spread
energy usage over 24 hours, rather than at set hours
when demand is excessive
= Qver-riding control of appliance usage

= Possibly enforce resource quota or re-channeling of
resource (here, electricity) distribution amongst homes
according to a shared service policy

= GOAL: lowering overall resource consumption while
meeting individual objectives

" Example (continued)

= Who should be allowed to deploy specific services and
where?

= Perhaps not homeowners except to configure basic
parameters of existing services or to upgrade services

= Service providers could be 3' parties relative to system
developers

= To what extent can users control / influence service
provisions to other customers?

= Perhaps they shouldn’t be allowed to do this at all
= Perhaps they should be allowed to do this to some
degree if it is for the global good
= The socialist view — if | share my resources will you
repay the favor when needed?

{ Vehicle Control / Traffic Management Example

= Coordinated in-vehicle traffic management system
= Allow in-car services to communicate congestion hot-
spots to other vehicles, or even to over-ride user-
responsiveness when emergency braking is required
etc...

Questions?

= What limitations does the existing (architectural, intellectual etc)
separation between X and Y place on our ability to develop CPS? How
could we redesign X and Y to remove those limitations...?

= Mismatch between app-needs and agnostic service provisions
= TCP, IP networks not real-time, have bandwidth/latency
mismatches with certain apps
= OS services: scheduling, paging misaligned with demands of
apps
= Again, need extensibility here...a breakdown of the barriers
between coarse-grained services and components
= Possibly user-configurable and implementable protocols and
senices
= Methods to activate those services in keeping with QoS (real-
time, latency etc) requirements
= Methods to safely and securely isolate X and Y
= Leverage of hardware features in meeting these goals

1 Questions? (continued)

= Are there opportunities to co-design, hybridize, or otherwise
combine parts of the current state of the art in ways that
overcome existing limitations, without requiring us to re-start
from too primitive a basis?

= Could build new base software architecture for safe,
predictable and efficient resource multiplexing to higher-
level services and VMs
= Could allow for existing software to run above this
base layer

= Could retro-fit existing systems to support better
extensibility for user-configurable services, isolation and
invocation

= Provide improved APIs

