2 CAS CS 585 Image and Video Computing - Fall 2018

CAS CS 585 Image and Video Computing - Fall 2018

Course Info - Course Objectives - Course Materials - Grading Policy - Collaboration and Academic Integrity
Help - Course Schedule - Labs - Assignments - Computer Vision Companies

Lectures: Tuesday, Thursday 12:30 pm - 1:45 pm in CAS 313
Labs: Friday 10:10-11:00 (A2), or 12:20-1:20 (A3), or 1:25-2:15 (A4) in EMA 304
Instructor: Prof. Margrit Betke
Teaching Assistant: Yifu Hu
Class web page:
Class mailing list:
Contact Information:

Staff Email Phone Office Hours / Homework Demo Hours Office
Margrit Betke betke @ bu.edu 353-8919   Tuesdays 1:45-2 (at CAS 313), 3-4 pm (my office), Wednesdays 10-11 am, Thursdays 1:45-2:30 pm.
and by appointment  
MCS 286  
Yifu Hu yfhu @ bu.edu Please email Tuesdays 5-6 pm, Wednesdays 4-6 pm,
and by appointment  
Undergrad CS Lab,
730 Commonwealth Ave  

Seeing Me in My Office:
Please feel free to stop by my office anytime. My office is in MCS 286 (111 Cummington Mall). I am generally around every day, but often in meetings, so the best time to reach me is during office hours. You can also make an appointment by email. I'm happy to talk with you about the course, computer vision research, your plans for the future, or anything else. Check out my personal web page to get to know me a little.

Teaching Fellow Responsibilities:
Yifu is responsible for teaching the Laboratory section, helping you out during his office hours, and grading of the homework (or managing graders). Please talk to Yifu if you have questions about your homework grades.

Course Objectives

Our goal is to build computer systems that analyze images automatically and determine what the computer "sees" or "recognizes." The course gives you a fundamental introduction to computer vision methods. Applications include human-computer interfaces, face detection, medical image processing, infrared image analysis of animals, and vision systems for intelligent vehicles.

Prerequisites: 1 year programming experience (e.g., C++ or Java at CAS CS 112 level), linear algebra or geometric algorithms, and calculus.

Course Materials

Handouts: The updated course syllabus and most handouts are made available online. Check our course web page at least once a week for homework assignments and other information.

Textbook: I recommend some chapters in Robot Vision by BKP Horn, MIT Press. The book is not required. I will propose alternative reading material, and I will place the book on reserve in the Science Library.

Computing Environment: You will use one of the Computer Science Department's servers csa2.bu.edu or csa3.bu.edu, to download code and submit programming solutions.

To get an account, go to the Computer Science Department's Undergraduate Lab located at 730 Commonwealth Ave. You can work on various platforms in the Lab there, use the cameras, and have immediate access to the computing staff. You can also access the servers remotely using scp and ssh.

Grading Policy

Homework: The homework includes bi-weekly programming, reading assignments, and problem sets. The due dates are listed below. Programs and reports must be submitted electronically. Solutions to problem sets must be submitted in class. They do not need to be typed but should look professional, in particular, write legibly and leave a margin for grading comments.

Guidelines for submission are provided with each assignment. Late solutions will be levied a late penalty of 20% per day (up to three days). After three days, no credit will be given.

You must demo your bi-weekly programming projects and your final class project to Yifu or the grader within one of the offered time slots in order to receive full credit for your project submission. A signup sheet with available demo times will be circulated during class before the due date.

Your electronic project submission should include detailed instructions for compiling and setting up your program. The grader will recompile your program and test it on your input videos.

Project: Please read the project guidelines. You can propose your own project topic or use one of my project suggestions. I will discuss your project's scope, design, and presentation with you in my office hours and provide guidance throughout the semester. You must work in a group of 2-4 students. You will be asked to select a project topic by the middle of the semester and present the final project in class at the end of the semester. Here will be the project schedule.

Computer Vision Talks: Students are strongly encouraged to attend the Image and Video Computing talks, which are part of the new AI Seminar series on Wednesdays, 1-2 pm, Room TBA, and the CS Department Colloquia (typically Wednesdays 11-12 or 3-4 pm, MCS 148) on course related topics.

Class Participation: Come to class and participate regularly. Reading the textbook and listening in class will only give you a "passive understanding" of the material. I encourage discussions in class to help you acquire an "active understanding" of the material so that you can evaluate existing computer vision techniques critically and develop your own creative solutions. I may give a short (announced) quiz so that shy students have a chance to discuss a topic in written form.

Talk Writups: You must attend at least two talks on subjects related to CS 585 and write a summary on each talk (at most 2 pages per summary). Your summary should give a problem definition, summarize the algorithms and results, discuss the work critically, and also briefly explain how the work relates to material discussed in class. You must submit a printout of your summary at the beginning of class on the dates listed in the syllabus. Check your text for typographical and grammatical errors (e.g., use grammarly.com). You will lose points if you simply copy the speaker's abstract, your review is late, contains typographical and grammatical errors, does not contain a discussion, and does not contain a statement how the talk relates to class material.

Exams: There will be two exams on the material discussed in the class and practiced with homeworks. The exams will be quite easy for students who come to class, participate in our discussions, and keep up with homework assignments and programming projects. The date of the midterm exam is Thursday, October 4, 2018, the date of the final exam is in the final exam period, as determined by the Registrar's Office. The final exam will focus on material discussed in the second part of the course, but may test earlier material. You are allowed to use one double-sided page of notes in each exam.

Grading Policy: Your final grade will be determined roughly as follows:

Collaboration and Academic Integrity

You are encouraged to collaborate on the solution of the homework. If you do, you must acknowledge your collaborators. Each student must submit his or her own electronic version of the solutions. You can request an exception to this rule for your final project. If you use algorithms or code that are not your own original work and that were not provided in class or discussed in the textbook, you must give a detailed acknowledgment of your source .

You are not allowed to collaborate on the solution of the take-home exam. Sources must be acknowledged.

Cheating and plagiarism are not worthy of Boston University students. I expect you to abide by the rule stated above and the standards of academic honesty and computer ethics policy described in http://www.bu.edu/computing/ethics/ and http://www.bu.edu/academics/policies/academic-conduct-code


Image and Video Computing is an elective course that will introduce you to an exciting topic in computer science. It should be fun and not too much of a struggle for you. Make sure that you have had the prerequisites. Depending on your level of programming experience and/or mathematics background, the course may be challenging for you. If you do not understand the material, ask for help immediately. Ask questions in class. If one student is confused about something, then maybe others are also confused and grateful that someone asked. Come and see me or the TF for help or send us email. Our task is to help you learn a very interesting topic!

You may also ask help from graduate students who are tutors in the undergraduate laboratory. Many of them have expertise in image and video computing. The names of tutors and their hours are listed on the Tutoring Schedule.

Course Schedule

Dates Topics Readings Assignments
9/4 Course Introduction: Why study IVC? Industry successes and current needs.
Camera Mouse, Image formation, image and video formats, color.
Handout of slides. Lecture 1 links, Camera Mouse, and Wiki Intro or Horn Ch. 1.  
9/6 Programming with Images: Pitfalls. Image Projections, Flood Fill Algorithm, Sequential Multi-object Labeling Algorithm. Handout on Sequential Labeling, Lecture 2. 9/7: A1 out
9/11-13 Template matching background differencing. Skin-based face detection. Similarity Functions (SSD, NCC), Motion: Template-based Tracking. Image Pyramids. Binary Image Analysis: Moments, Orientation, circularity measures, distance measures. Object Skeletons Tumor Detection in Computed Tomography Images. Wiki on template matching, normalized correlation. Moments and distances. Image Moments, Binary Image Analysis. Skeleton, Horn Ch. 3, A1 due.
9/18-20 ROC analysis, Neighborhoods. Hausdorff Distance, Hu Moments, Morphology, Lung image analysis with morphology operators. Hausdorff distance, Hu Moments, Border following algorithm. Fawcett (ROC analysis), Horn Ch. 4, Morphology, Erosion, Thresholding, Optional: Wang et al. 2005. A2 out.
9/25-9/27 Segmentation: Thresholding techniques, Region Merging, Splitting, and Growing, Region Representations. Censusing Bats. Image Smoothing, Edge Detection. Segmentation (not all covered). Segmentation examples, Segmentation in biomedical images. Wiki on: Edge Detection, Censusing Millions of Bats. A2 due, A3 out
10/2-4 Edge detection examples. Lecture notes on edge detection & active contours Canny Edge Detection. Active Contours. Lung Fissure Detection.
Last day to drop class (without a 'W' grade), Wednesday, 10/9/2018.
Sobel, Prewitt, Roberts, Mexican Hat, Difference of Gaussians, Canny Edge Detector. Curve Growing for Lung Fissure Detection. Williams and Shah, 1992: paper, figures, and lecture. Hausdorff distance. A3 due.
10/4 Inclass Midterm Exam    
10/11, 10/16-18 Tracking Methods and Applications: Tracking with Alpha-beta Filter, Kalman Filter, Tracking Groups of Animals, Multiple Object Tracking and Data Association.
No class on Tuesday, October 9 (Monday schedule).
Bat tracking presentation, Alpha beta filter, Kalman filter. Multiple-Object Tracking A4 out, Project proposal P1 out
10/23-25 Horn-and-Schunk Algorithm. 2D Optical Flow. 3D Structure from Motion. Eckman's Facial Action Units. Optical Flow, Horn 81 Recovering Motion, Horn 88 P1 due (10/25)
10/30-11/1 Recovering 3D Motion. Facial Expression Recognition. Absolute Orientation in 2D. Lung Nodule Registration. Quaternions, Absolute Orientation in 3D. Facial Expressions, Black/Yacoob 95, Yacoob1 avi, Yacoob2 avi
Absolute Orientation, Horn 89,
A4 due (Oct 31)
11/6-8 Object Recognition, Guest lecture by Bryan Plummer.
Friday, 11/10/2017: Last day to drop class (with a 'W' grade).
Lecture notes on object recognition  
11/13- 15 Iterative Closest Point Algorithm. Lung Surface Alignment. Stereoscopy, relative orientation, calibration. Geometric Transformation. 3D Rigid Body Alignment Epipolar geometry, binocular stereo, multi-camera 3D reconstruction. Besl and McKay, 1992. Ko and Betke, 2001. Betke, Hong et al., 2003 Theriault et al., 2014. Project proposal feedback. Project assignment P2 out.
11/20 TBA   Project update P2 due. Talk 1 review due.
11/21-25 Thanksgiving Recess    
11/27-11/29 Image Net, Face Recognition Lecture slides on Image Net
Lecture slides on Face Recognition
A5 out (no programming)
12/4-6 Lenses, Shading, Lambert's Law. Photometric Stereo, Thin lens equation for image formation.
Wiki on Lambert's law, Lambertian reflectance,
Lecture slides on photometric stereo,
Friday, 12/7 and Tuesday, 12/11 Student Projects: Guidelines, Topics, Schedule   Projects (P3) due, A5 due. Talk 2 review due.
Wed, 12/19, 12:30-2:30 Final Exam    


The links will become active as the semester progresses.


The assignments will have some programming components and some paper-and-pencil exercises. The links will became active when the assignment is announced.

There will be two assignments that relate to your projects (P1 and P2). For project ideas, check here.

(Potential) Topics:


Please find your grades here: CS585 Grades.

Computer Vision Links

Check out http://www.cs.bu.edu/faculty/betke/links.html if you need additional ideas for your class project, if you are looking for a job in computer vision (list of companies), or if you are interested in computer vision research. You will find a list of links to computer vision conferences, journals, research groups, and companies.

Calculus Background

I do not expect you to have a background multivariate calculus. I will introduce the tools we will need. You may find the first few chapters of these notes by Cain and Herod useful, in particular, partial derivatives, Taylor polynomial, Multivariate Taylor polynomial.

Margrit Betke, Professor
Computer Science Department
Boston University
111 Cummington Mall (campus map)
Boston, MA 02215
Email: betke @ bu.edu
URL: http://www.cs.bu.edu/faculty/betke
Phone: 617-353-8919
Fax: 617-353-6457

Last updated: September 7, 2018